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ABSTRACT
In cloud computing, a cloud provider is faced with the prob-
lem of allocating physical resources to an incoming stream
of requests for virtual resources in such a way to satisfy
requirements and maximize resource usage while providing
good performance. Traditionally, when a request is for a vir-
tual machine (VM), the problem of placing it on a particular
physical machine (PM) may be expressed as a bin packing
or an online, stochastic knapsack problem. The typically
large size of such a problem forces one to resort to approx-
imate and heuristics-based optimization techniques. Now,
the trend is for a request to involve more than just a single
VM. In particular, a request consists of a set of heteroge-
neous VMs with some interrelationships due to communica-
tion needs and other dependability-induced constraints. The
placement of such constrained, networked virtual clusters in
the physical infrastructure, including compute, storage, and
networking resources is much more challenging. Several re-
search avenues are and have been explored to deal with such
a problem, albeit mostly in other areas such as mapping task
graphs in parallel systems and provisioning of virtual private
networks. The sheer size of the cloud incites one to inves-
tigate statistical approaches to solving this cloud placement
problem.

In this paper, we provide an algorithm for the placement of
constrained, networked virtual clusters in the cloud, that is
based on importance sampling (also known as cross-entropy).
A straightforward implementation of such a technique proves
inefficient. We considerably enhance the method by biasing
the sampling process to incorporate communication needs
and other constraints of requests to yield an efficient algo-
rithm that is linear in the size of the cloud. We investigate
the quality of the results of using our algorithm on a simu-
lated cloud, where we study the effects of the various param-
eters on the solution and performance of the algorithm.

1. INTRODUCTION
As cloud computing matures, the demand for virtual re-
sources is changing from units of virtual machines (VM) to
a collection of heterogeneous VMs with communication de-
mand among them as well as availability constraints. Such
a collection forms a virtual cluster where, once deployed in
the physical infrastructure, the requester user launches a dis-
tributed application where components of the applications
run on different reliable VMs with defined communication

needs. The problem for the cloud provider is to efficiently
place such a virtual cluster in the cloud on physical machines
(PM), in such a way that the availability constraints are
satisfied, the virtual cluster experiences good performance,
and the rejection rate is kept at minimum. Further, the
time to come up with a placement decision should be rea-
sonably small and it should scale with the size of the cloud.
A less constrained problem than the one considered in this
paper was shown to be NP-Hard [12]. General techniques
for solving bin packing and/or mixed integer programming
problems may be applicable, but are usually inefficient since
heuristics specially tailored to the problem at hand should
result in more efficient solutions. Recently, there were re-
search attempts to address those issues, though with some
limitations. In [12], the authors present heuristic placement
algorithms based on graph decomposition, but only in the
case where one VM is placed on a PM. In [9], a heuristic
algorithm based on clustering is presented and is shown to
work when placing in an empty system.

A similar problem has existed in the area of virtual network-
ing. Notably, a divide-and-conquer approach is presented
in [25], where a collection of connected physical resources is
first identified as the target for placement, instead of the en-
tire system. The problem of identifying the best cluster for
placement has been studied in [11]. An alternate separation
technique is described in [24]. A practical testbed imple-
mentation is discussed in [14]. In [2], a cloud networking
platform is described. And, various models of communica-
tion among VMs are investigated in [13].

Looking at the mapping of a virtual cluster to PMs as a map-
ping of a graph representing the interconnected VMs in the
virtual cluster to a graph representing the interconnected
PMs through some communication network is not new. In
the area of parallel processing and grid computing, a sim-
ilar problem existed where a task graph is to be mapped
onto a system graph. An approximate algorithm based on
ordering the nodes in the task graph in such a way that com-
munication overhead is minimized is presented in [20, 23].
A heuristic algorithm which investigates the traversing of
a graph and identifying potential neighborhoods for place-
ment is described in [1]. Several heuristic algorithms for
this graph mapping problem are contrasted in [3]. A graph
matching technique has also been tried [7, 19]. Other ap-
proaches are presented in [6, 10]. A similar problem related
to code placement has also been considered [18, 22].



Biologically-inspired algorithms and genetics methods have
been investigated and suggested to solve this graph mapping
problem, [4] and [5], respectively. Further, the cross entropy
technique [15, 16] which is analogous to importance sam-
pling has also been considered [17, 8]. The only drawback
is that one has to analyze a large number of samples, hence
hindering the possibility of dealing with a large system.

In this paper we are concerned with the problem of placing
patterns of VMs with some networking demands and avail-
ability constraints onto a large-sized physical infrastructure.
We introduce a placement algorithm that is based on im-
portance sampling, where we bias the sampling to accom-
modate the problem constraints and the communication de-
mand. This biasing technique is shown to lead to efficient
placement solutions and exhibit a linear complexity in the
system size.

The paper is organized as follows. We describe the physical
and virtual components of the cloud, along with communi-
cation and availability definitions in section 2. The perfor-
mance measures and objectives are introduced in section 3.
In section 4 we state the placement optimization problem.
Our placement algorithm is described in section 5. Simula-
tion results are presented in section 6.

2. SYSTEM DESCRIPTION
We consider a cloud system which consists of a set of physical
machines (PM) that are connected through switches (SW)
via links (LK). A PM hosts virtual machines (VM). A col-
lection of VMs make up a virtual cluster, or pattern, which
is the unit of deployment in the cloud. We proceed to de-
scribe each of the above entities and their relationships in
more detail

2.1 Physical machines
Let PM denote the set of npm physical machines in the
cloud, npm = |PM|. We will refer to an element in the
set as pmi, i = 1, · · · , npm. Each PM provides a set of re-
sources, R, consisting of resources rk, k = 1, · · · , nr. Exam-
ples of such resources are CPU, memory, and disk storage.
The total capacity of resource rk on pmi is denoted by ci,k.
The demand (also referred to as usage) of such a resource is
denoted by di,k, di,k ≤ ci,k.

2.2 Physical network
A PM is connected to one or more switches via links. Switches
are interconnected via links. This interconnection network
forms a graph where the vertices are PMs and SWs, and the
edges are LKs. Let SW denote the set of switches. A par-
ticular element in SW is referred to as swi, i = 1, · · · , nsw ,
where nsw is the number of switches, nsw = |SW|. Fur-
thermore, let LK denote the set of links. And, we refer to
an element in LK as lki, i = 1, · · · , nlk, where nlk is the
number of links, nlk = |LK|. Each link provides bandwidth
for communication. The total bandwidth capacity of lki

is denoted by bi. The demand (also referred to as usage)
of such a link is denoted by ai, ai ≤ bi. We assume that
network congestion occurs due to link utilization only. In
other words, we assume that the switches are fast and that
communication delay is solely due to link congestion. A
path hi,j between pmi and pmj consists of an ordered set of

links {lkπi,j (1), lkπi,j(2), · · · }, with path length denoted by
ηi,j = |hi,j |.

For convenience we define wi(l), i = 1, 2, · · · , npm, and l =
0, · · · , L as the set of PMs such that for pmj ∈ wi(l) we
have ηi,j = l.

2.3 System availability
We model the availability of the cloud as follows. Focussing
on a pair of PMs, say pmi and pmj , i, j = 1, · · · , npm. Let
vi,j be the probability that at least one of pmi or pmj is
available, i.e. one minus the probability that both pmi and
pmj are down. (Hence, vi,j = vj,i and vi,i is the proba-
bility that pmi is available.) The matrix [vi,j ] may be ob-
tained through a comprehensive availability analysis which
considers units such power supplies, cooling units, security
hazards, in addition to electronic, cables, and storage units
and their interdependencies as far as failure and repair char-
acteristics are considered. Such an analysis is beyond the
scope of this paper. As an alternative to this analysis, it
may suffice to partition a data center into a hierarchy of
availability zones, where PMs in the same zone have similar
availability characteristics. In such a case, one may model
this hierarchy as a tree, where the leaves are the PMs and
an intermediate node represents a zone of availability. As
such, we associate an availability level, Vl, l = 0, · · · , L, for
a node at level l in the tree, where l = 0 represents the
leaves and l = L represents the root of the tree with height
L. It follows that V0 < V1 < · · · < VL, since two PMs
in distant availability zones have less common components
and hence higher chance of having at least one of them avail-
able. Using this tree model, two PMs pmi and pmj with the
lowest common ancestor at level l have vi,j = Vl. (Clearly,
vi,i = V0). For convenience we define gi(l), i = 1, 2, · · · , npm,
and l = 0, · · · , L as the set of PMs such that for pmj ∈ gi(l)
we have vi,j = Vl. In the general case where the matrix
[vi,j ] does not partition the PMs into a hierarchy, we define
Gi(v), i = 1, 2, · · · , npm, and 0 ≤ v ≤ 1 as the set of PMs
such that for pmj ∈ Gi(v) we have vi,j ≤ v.

2.4 Virtual machines
Each VM is characterized by a set resource demands, one
per resource type in the set R. These resource demands
are taken into consideration when placing a particular VM
onto a PM, making sure that there is enough available re-
source capacity on the PM to satisfy the resource demand of
the VM. We refer to the PM which hosts vmi as pm(vmi).
Furthermore, a pair of VMs, say vmi and vmj may have
bandwidth demand which we denote by λi,j . Again, such
demands need be satisfied by all the links along the path
connecting pm(vmi) and pm(vmj).

2.5 Virtual clusters (Patterns)
A virtual cluster is a collection of VMs that make up a de-
ployable unit which we refer to as pattern. Hence, a pattern
is defined as a set of VMs, along with the resource demands
of the VMs and the pairwise bandwidth demand among the
VMs in the pattern. In particular, let’s consider pattern
p. Denote the number of VMs in p by nvm(p). They form
the set VM(p) = {vm1(p), vm2(p), · · · , vmnvm(p)(p)}. The
communication bandwidth demand of p may be represented
by a matrix [λi,j ], where 1 ≤ i, j ≤ nvm(p). We assume



that this matrix is symmetrical with zero diagonal, i.e. the
bandwidth requirements among VMs in a pattern may be
represented by an undirected graph where the nodes repre-
sent the VMs, the edges represent pairwise communications,
and the weight of an edge represents the amount of band-
width demand between a pair of distinct VMs.

For pattern p, we express availability requirements as fol-
lows. Let S(p) ⊆ VM(p) be a subset of VMs in p of size
n. An availability requirement is specified as k-out-of-n,
1 ≤ k ≤ n, VMs in S(p) have to be be simultaneously
available with some probability β, written as A(S(p), k) =
β. (Without loss of generality, we assume throughout that
whenever the values of availability are discrete, as in the tree
model described above, the availability requirement is that
of equality, whereas if the values are continuous, as in the
general case, the availability requirement is that of superi-
ority (larger than)). The VMs in S(p) may be each provid-
ing a given service and a minimum k of them need to be
available with high probability. Multiple non-overlapping
subsets in a pattern may be defined as A(Sm(p), km) =
βm, m = 1, 2, · · · , M . The requirement A(S(p), k) = β may
be translated to a set of requirements vpm(vmi),pm(vmj ) = α,
where vmi, vmj ∈ S(p). The value of α is calculated using
β through a straightforward k-out-of-n analysis. Note that
the homogeneous requirement of α is sufficient, but not nec-
essary. One might choose to have two VMs in S(p) be placed
on a pair of highly available PMs, whereas the rest of the
VMs are placed on less available PMs. However, for simplic-
ity we assume a homogeneous requirement.

We denote by π(p) a particular placement of pattern p. In
other words, π(p) maps each VM inVM(p) to a PM in such
a way that (1) the resource requirement of the VM is sat-
isfied by this PM, (2) the communication demand between
this VM and other VMs in p is satisfied by the links of the
communication network, and (3) the pairwise availability
requirements are satisfied. We write such a placement as
π(p) = {(vmi, pmm) | pm(vmi) = pmm,∀vmi ∈ VM(p)}.

3. PERFORMANCE EVALUATION
3.1 System performance
System performance is characterized by resource utilization
and delay measures. We define the utilization, ρi,k, of re-
source rk on pmi as ρi,k = ui,k/ci,k. Further, let ρk be the
random variable representing the utilization of resource rk

among all PMs. Moreover, let ρ denote the vector of ρk.

For link lki in the interconnection network, we define the
utilization, νi, as νi = ai/bi. Further, let ν be the random
variable representing the utilization of links in the network.
We divide links into broadly two types: edge links and core
links. We define edge links to be the links directly connected
to a PM, whereas all other links are core links. The utiliza-
tion of edge links and core links are denoted by νedge and
νcore, respectively. (Other, more detailed classification of
links are possible, such as the level of a link with respect to
a PM in a hierarchical network.) The state of the cloud is
represented by C = {ρ, ν}.

The utilization of a path consists of the set of utilization of
the links constituting the path. The path bottleneck utiliza-
tion is defined as the utilization of the most utilized link in

the path, which we denote by γi,j . Hence, we have

γi,j = max{νhi,j(1), νhi,j(2), · · · , νhi,j(ηi,j)}.

The network delay between pmi and pmj is the sum of the
link delays along the path hi,j . We are not concerned about
absolute delay, rather delay factor as provided by a series
of M/M/1 queues, each representing a link along the path.
Denoting the delay factor between pmi and pmj by Ti,j , we
write

Ti,j =

ηi,j
X

k=1

1

1 − νhi,j(k)

.

The above expression gives a nominal value of delay assum-
ing a unit service time. In comparing delay among pairs of
PMs, we use a delay index metric denoted by δ. The delay
index δi,j between pmi and pmj along path hi,j is given by

δi,j = 1 −
ηi,j

Ti,j

,

which is a value in [0, 1], where δi,j = 0 represents no delay
and δi,j = 1 represents infinite delay. A higher value of δi,j

signifies more relative network congestion along the path
hi,j .

Thus far, we have defined performance measures such as
resource utilization, ρi,k, link utilization, νi, path bottleneck
utilization, γi,j , path delay factor, Ti,j , path length, ηi,j ,
and path delay index, δi,j . Such measures were defined on
a resource, link, or path between a pair of PMs. For a given
pattern, we provide measures defined on the pattern.

3.2 Pattern performance
We express the performance of a pattern by taking the nor-
malized weighted sum of a particular performance measure
of the pattern. For example, we define a weighted path
length (distance) for pattern p, denoted by η(p), as

η(p) =

P

vmi,vmj
λi,j ∗ ηpm(vmi),pm(vmj)

P

vmi,vmj
λi,j

,

where vmi and vmj go over the set VM(p). Similarly, we
define the weighted delay index for pattern p, denoted by
δ(p), as

δ(p) =

P

vmi,vmj
λi,j ∗ δpm(vmi),pm(vmj )

P

vmi,vmj
λi,j

.

Further, let η and δ denote the random variable represent-
ing the weighted path length and the weighted delay index
among all patterns in the system.

3.3 Performance objective
The question here is: when deciding on the placement of
a pattern, p, what should the performance objective be?
The overall performance objective comprises two compo-
nents: (1) system performance expressed as the average and
skew of the utilization of the various system resources and
(2) pattern performance expressed as the average and skew
of pattern related measures such as communication path
length, communication delay, and deviation from availabil-
ity requirements. Now, we define a combined overall per-
formance objective for the cloud using the above-mentioned



performance metrics. As for the first component, we con-
sider PM and network link resources. Thus, system per-
formance is characterized by ρk, k = 1, 2, · · · , nr, νedge and
νcore. For the second component, we have η(p) and δ(p),
representing representing the weighted path length and the
weighted delay index of pattern p, respectively.

In general, let X be the random variable representing a per-
formance metric. We denote the average and standard de-
viation of X by µ(X) and σ(X), respectively.

The objective function is defined as

F (π(p)|C) =
Pnr

k=1 ω2resk
σ(ρk)

+ω1edge µ(νedge) + ω2edge σ(νedge)
+ω1core µ(νcore) + ω2core σ(νcore)
+ωpath η(p) + ωdelay δ(p),

where ωiresk
, ωiedge, ωicore, i = 1, 2, are weights for the av-

erage and standard deviation of the utilization of PM re-
sources, edge and core links, respectively, and ωpath and
ωdelay are weights for the pattern weighted path length and
delay index, respectively. As far as the PM resources are
concerned, we care about the imbalance through the stan-
dard deviation, whereas the average is not included in the
objective function since the pattern to be placed imposes
some given demand independently (ω1resk

= 0). As for the
network, we seek to lower both the average amount of traffic
as well as any imbalance among the links. It is desirable to
have ω1edge > ω1core while ω2edge < ω2core. This is due to
the more damaging impact from the imbalance in the core
network than the edge links.

Note that, in addition to system performance measures, the
objective function includes performance measures of the pat-
tern to be placed. As such our objective function targets
both social optimization, reflected in the health of the sys-
tem, including PMs and network links, as well as individual
optimization, reflected in the specific performance that a
given pattern is experiencing.

4. OPTIMIZATION PROBLEM
Given a cloud in state C, we are concerned with the place-
ment π(p) of pattern p so as to minimize the objective func-
tion F (π(p)|C). In particular, consider an arrival process of
patterns which are to be placed in the cloud. A placed (de-
ployed) pattern remains in the cloud for some lifetime after
which the pattern departs and releases all of its resources.
In this paper we focus on the handling of an arriving pattern
rather than studying queueing and occupancy characteris-
tics. As such, we are dealing with a loss system where an
arriving pattern request p may be lost in case the placement
algorithm fails to find a mapping π(p) to place the pattern.
In other words, we state our optimization as follows.

Given C, find π(p) | min{F (π(p)|C)}.

An optimal placement algorithm attempts to find PMs in
the cloud that have enough capacity to host the VMs in
the pattern, while making sure that there is enough band-
width in the network to accommodate inter-VM bandwidth
requirements, as well as satisfying any pairwise VM avail-
ability constraints. Such a choice of placement would have to
minimize the above mentioned objective function, i.e. min-
imize the imbalance (skew) of resource usage, the amount

of network traffic, and path lengths and network conges-
tion for the pattern. Note that other objective functions are
possible. For example, one may be concerned with rejection
probability over a time horizon, or some overall performance
of all patterns already placed in the cloud. These and others
may be subject of future research.

As stated above, finding an optimal solution is NP-hard.
Several approaches are possible. A basic approach may be to
attempt to only satisfy the constraints while neglecting the
optimization part. This may lead to an inefficient state of
the cloud where patterns may be dropped even though they
could have been accepted with some better placement (or re-
arrangement) of already deployed patterns. Heuristic-based
approaches would try to incorporate the objectives in the
way a solution is sought while searching the solution space.
The difficulty with such an approach is that the heuristic
procedure would have to change as the objective function is
altered. Our approach is to find a close to optimal solution
by statistically sampling mapping solutions, then using im-
portance sampling techniques (cross-entropy) to refine the
sampling process and get closer to sampling near an opti-
mal solution. A straightforward implementation of such a
technique may prove inefficient due to the potentially large
number of samples that one has to consider. Alternatively,
we use the communication and availability constraints to
bias the sampling as we build a sample of a mapping for a
pattern. In the next sections we describe our method and
then provide simulation results.

5. PLACEMENT ALGORITHM
5.1 Importance sampling
We provide a brief overview of the cross-entropy method,
also known as importance sampling, in appendix A. The
main idea is that in order to find an optimal solution to a
combinatorial (maximization) problem, one generates many
samples of solutions using a parametrized probability distri-
bution. The samples (solutions) are ordered in their attained
values of the objective function. Then, the top small frac-
tion of samples, in other words the important samples, are
used to adjust the values of the parameters of the generating
probability distribution so as to skew the generation process
to yield samples with large objective values. The method
iterates a few times until a good solution is obtained.

In our case, a sample is analogous to a mapping solution
of VMs in a given pattern to PMs in the cloud. Of course
we only consider valid samples, in which individual VM re-
source demands as well as pairwise VM communication de-
mands and availability constraints are met. We need to
solve this placement problem at the time a pattern p ar-
rives, given the current state of the cloud C. For simplicity,
since in this section we refer to a particular pattern p, we
will omit any variable related to the pattern. We define the
parameters for the sample generation process as a matrix
P = [pi,j ] of probabilities, where i = 1, 2, · · · , nvm, is the
ith VM in the pattern according to some order discussed be-
low, and j = 1, 2, · · · , npm, is pmj in the cloud. Thus, pi,j

represents the probability of assigning vmi in the pattern to
pmj . Starting from some initial P, which may be based on
resource availability as discussed below, the algorithm pro-
ceeds to modify P until a solution is reached, represented
by a dominant (close to 1) entry in each row of P and all



other entries are negligibly small (close to 0). In every itera-
tion of the importance sampling algorithm, the entries in P
that correspond to a large objective value are reinforced and
amplified, at the cost of other solutions that are away from
optimality. (Note that the importance sampling algorithm
is stated to solve a maximization problem, whereas we deal
with an equivalent minimization problem.) A straightfor-
ward implementation of the importance sampling method
to our placement mapping problem would be terribly ineffi-
cient (as illustrated in section 6), since typically thousands
of samples need to be generated at each iteration. This is a
very costly proposition for a cloud-sized problem. Therefore,
one needs to bias the values of P while building a solution
so as to accelerate arriving at a solution to the problem

5.2 Sample biasing
As we decide on the placement of a pattern we sequentially
consider the VMs in the pattern without backtracking, i.e.
once vmi, i = 1, 2, · · · , nvm is placed, the choice for place-
ment is only left for vmi+1, · · · , vmnvm . Thus, the order of
VMs in a pattern plays a role during placement. We propose
to satisfy the availability constraints before satisfying com-
munication need. Hence, we place the VMs with availability
constraints ahead of the remaining VMs in the order. Fur-
ther, we propose to satisfy the higher communication needs
than the lower ones. Hence, we order the VMs according
their pairwise communication need. Other ordering criteria
are also possible. A natural one is where VMs with high
communication need are placed close to each other in the
order. Such approach was taken in [20] using a clustering
technique described in [23].

5.2.1 Initial biasing
The initial setting of P should reflect the state C. A simple
choice that is only based on PM resources is pi,j ∝ 1/ρj,k,
where k is the bottleneck resource. It may also depend
on the communication bandwidth available to pmj through
the utilization of say link lkj connected to pmj , as pi,j ∝
1/(ρj,k + νj). Or, it may include the utilization of further
hops, but it makes the computation more complex. The
choice of the initial pi,j may also depend on the resource need
of vmi to mimic best-fit or first-fit strategies. In our simu-
lation experiments we use the simple criterion pi,j ∝ 1/ρj,k.

5.2.2 Availability constraint biasing
Once vmi is placed on say pmi = pm(vmi), we examine any
availability constraint with vmm, m = i + 1, · · · , nvm in a
look-ahead fashion. More precisely, let’s say that vmi and
vmm have an availability constraint of level l. Then, we need
to bias pm,j positively towards pmj ∈ gi(l) and negatively
to all other PMs. In case the constraint is hard then the
negative bias should make the corresponding entries zeros.
Otherwise, the negative biasing becomes more negative for
pmj ∈ gi(l − 1) ∪ gi(l + 1), pmj ∈ gi(l − 2) ∪ gi(l + 2), and
so on. That is if the constraint is soft on both sides of the
desired availability level. Otherwise, it would consider only
the higher availability levels.

The way biasing is done is through multiplying pm,j by a
factor fm,j and normalize the pm,· after all biasing factors
are applied. In our simulation experiments we set fm,j =
10d, where d ∈ [3,−3], a range that is divided for deviation

values 0, 1, · · · , L, corresponding to cases l, l − 1, · · · , l − L,
respectively.

5.2.3 Communication biasing
In a similar way to biasing the probabilities to reflect avail-
ability constraints, we bias them depending on the num-
ber of hops between a given PM and the other PMs in the
cloud. A measure that is based on path congestion, rather
than number of hops is also possible but it is more complex
to partition the PMs based on congestion with respect to
a given PM. Once vmi is placed on say pmi = pm(vmi),
consider the communication demand λi,m between vmi and
vmm, m > i. In order to keep vmm placed close to pmi

we positively bias pm,j towards pmj ∈ wi(0), i.e. pmi, then
less positively towards pmj ∈ wi(1), and so on until we
reach a most negative bias towards pmj ∈ wi(L), the far-
thest away PMs from pmi. Similar to availability constraint
biasing, we multiply pm,j by a factor fm,j and normalize
pm,·. In our simulation experiments we set fm,j = 10dλi,m,
where d ∈ [3,−3], a range that is divided for distance values
0, 1, · · · , L.

6. RESULTS
6.1 Description of setup
We consider a cloud with a base configuration consisting of
256 PMs, each with a CPU capacity of 64 cores. The PMs
are connected by a tree network with degree equal to 16,
hence a two-level tree. The bottom level consists of 256 edge
links, each with capacity 128 units, and the top level consists
of 16 core links each with capacity 512 units. There is a pre-
defined set of VM sizes. The choices of VM CPU capacities
are {1, 2, 4, 8, 16} cores. And, the choices of inter-VM com-
munication bandwidth capacities are {1, 2, 4, 8, 16} units,
with no specific relation to the number of cores of the two
communicating VMs. We assume that the choice mix of VM
sizes are inversely proportional to the size, hence the average
VM demand is 5 × 16/31 = 2.58 CPU cores. The number
of VMs in a pattern is uniformly distributed between 2 and
14, hence an average of 8 VMs. The particular VMs that
make up a pattern are not necessarily homogeneous, rather
they are generated using the above mix. VMs that commu-
nicate within a pattern form a graph model where a node
corresponds to a VM and the existence of an edge signifies
communication needs between a pair of VMs. Rather than
assuming a random graph model, we use a ”small-world”
graph which exhibits more structured connectivity [21]. In
such a graph model, nodes are laid down on a ring and each
node is originally connected to its K adjacent nodes from
both sides. Then, each edge is rewired with probability p
by selecting one endpoint of the edge and replacing it by a
different node at random without self-cycling or duplicating
edges. We use K = 1 and p = 0.5.

Our availability model is hierarchical and overlays the com-
munication tree topology. In other words, each PM forms an
availability zone of level 0, each group of 16 PMs that are
connected to a common switch forms an availability zone
of level 1, and the group of the latter groups forms a zone
of level 2. This hierarchy may correspond to 16 PMs on
a blade center, and 16 blade centers are housed in a rack.
Two PMs in the same blade center have lower availability
level than two PMs in different blade centers in the rack.



We assume that for patterns of more than 4 VMs, one-third
(rounded to nearest integer) of the VMs have an availability
level requirement among them of 1 or 2, with probability
0.6 and 0.4, respectively. This is a hard constraint, so a pat-
tern is dropped if the constraint cannot be satisfied by the
placement algorithm.

We simulate the above described system and workload, start-
ing from an empty system, leading up to a loading of 80%
average PM CPU utilization, then having Poisson pattern
arrivals and exponentially distributed pattern lifetime main-
taining the 80% average loading figure. The placement al-
gorithm is configured to generate 20 samples per iteration
with the top 0.1 fraction used to generate the importance
sampling of the subsequent iteration. The stopping criterion
is obtaining the same value of the objective function in two
consecutive iterations.

We use the following weights in the objective function: ω2res0
=

2, ω1edge = 4, ω1core = 2, ω2edge = 1, ω2core = 2, ωpath =
3, and ωdelay = 0. We are mostly concerned about the
amount of traffic on edge links, hence we wanted to force
placement of VMs in the same pattern on the same PM as
much as possible. As discussed earlier, we care about the
imbalance in the core network than the edge network. The
imbalance in CPU loading among PMs is relevant, but not
as important as decreasing network traffic. Lastly, for pat-
tern performance measures, we consider the path length to
be more relevant than the delay index, which is a function of
link utilization which already appears in the equation some-
where else.

The algorithm is coded in Java and runs on a MacBook Pro
with 2.4 GHs Intel Core 2 Duo and 4GB RAM, running Mac
OS X 10.5 and JVM 1.6.0. The code is not optimized and
could be easily made faster, but our purpose here is purely
comparative. A word on the algorithm execution time is in
order. The placing time of a pattern depends on the arrival
rate of patterns and their lifetime. Let’s do some back-of-
the-envelope calculation. Consider a configuration of 1000
PMs running at 80% with a workload similar to the one
described above. Given an average of 2 cores per VM and an
average of 8 VMs per pattern, a PM with capacity 64 cores
could host a maximum of 64/(2×8) = 4 patterns. Hence, the

 0

 0.2

 0.4

 0.6

 0.8

 1

PM Edge Core

U
til

iz
at

io
n

Resource

Figure 1: PM and network utilization (uncon-
strained).
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Figure 2: Placement performance (unconstrained).

whole data center would have an average of 1000×0.8×4 =
3, 200 concurrently deployed patterns. If the average lifetime
of a pattern is 8 hours, then the arrival rate of patterns is
3, 200/(8× 3, 600) = 0.11 requests/sec, i.e. the average time
between two consecutive requests is about 9 sec. Therefore,
practically speaking 1 sec or less placing time for one pattern
is quite reasonable for this configuration. Note that our
algorithm is easily parallelizable since several samples may
be tried independently in parallel in case the number of PMs
is an order of magnitude higher. Also, other solutions such
as decomposition of the cloud into separately managed zones
are possible.

6.2 Unbiased importance sampling
A straight implementation of importance sampling resulted
in having to generate a large number of samples. We con-
sidered two scenarios: 1,000 and 10,000 samples per itera-
tion. In the case of no availability constraints, the resulting
utilization of the edge links were 38% and 28% in the two
scenarios, respectively. And, the utilization of the core links
were 64% and 28%, respectively. Consequently, patterns ex-
perienced an average weighted path length of 1.29 and 0.70,
and an average weighted delay index of 0.22 and 0.07, re-
spectively. The average total number of trials (samples) in
order to place one pattern was 6,048 and 83,041, respec-
tively. Further, the average placing time of a pattern was
388 msec and 5,406 msec, respectively. As demonstrated
next, using our biasing algorithm yields much better perfor-
mance, resulting in almost no network traffic for the base



case, at a much lower cost.

6.3 Base: biased, unconstrained
We first consider the case where there are no availability
constraints. As depicted in the box-and-whisker diagrams
shown in Figure 1, we note that the distribution of PM uti-
lization is centered close to the 80% target, at around 78%
with half of the PMs in the range [67%,89%], with a reason-
able spread where there is very few PMs below 50% and a
few reaching 100%. A perfect load balancing is not desirable
since one would want to have some PMs with low to mod-
erate utilization to accommodate a potential future request
for a large-sized VM. The amount of network traffic is neg-
ligible (about 2% average), hence communicating VMs were
mostly placed on the same PM. Consequently, the weighted
path length and weighted delay index for deployed patterns
were almost zero (not shown).

In Figure 2 we plot the histograms of the number of trials
(samples) considered for placing a pattern and the real time
it took the placement algorithm to place a pattern. The
average placing time of a pattern in this case was 57 msec
with a stdDev of 47 msec.

6.4 Base: biased, constrained
Now, let us consider the availability constraints described
above. Such constraints would force the placement of a
third of the PMs in the pattern in different availability zones,
hence increasing the amount of communication traffic that
flows over the network. A good placement algorithm would
attempt to keep the highly communicating VMs in a pattern
close to each other as much as possible. Also, it would try
to keep the utilization of the core links balanced. Our algo-
rithm achieved those objectives as illustrated in the figures.
In Figure 3 we show the distribution of PM CPU utilization
as well as link utilization. For the CPU utilization we were
able to obtain similar results to the unconstrained case. The
link utilization was kept low, with the average utilization for
edge links and core links at about 22% and 35%, respectively.
The traffic through the core links was inevitable in order to
accommodate the availability constraint of level 2, i.e. some
VMs in a pattern had to be placed on different blade centers,
hence incurring cross blade center communication. Notice-
able though is the extremely low skew in the utilization of
the 16 core links (standard deviation was 0.03%).
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Figure 3: PM and network utilization (constrained).
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Figure 4: Pattern performance (constrained).

The pattern performance measures are exhibited in Figure 4.
The average weighted path length was 0.67 with a stdDev of
0.59. In other words, two communicating VMs in a pattern
had an average of 2/3 of a link between them. Note that 2
PMs in the same blade center are 2 links apart, and 2 PMs
on different blade centers are 4 links apart. The weighted
delay index measure for patterns was 0.07 on average with
an equal stdDev of 0.06. This means that the effect of link
congestion was minimum.

The performance of the placement algorithm is exhibited in
Figure 5. The average number of trials (samples) per pattern
placement was about 48 with a stdDev of 14. The placing
time for a pattern was 71 msec on average with a stdDev
of 72 msec. The maximum placing time experienced in this
case was 428 msec, i.e. quite reasonable given the discussion
above.

6.5 Impact of biasing
In order to illustrate the impact of biasing the sampling pro-
cess during pattern placement, we consider a small example
where we have only 9 PMs with a tree network of degree 3,
hence a 2-level tree. In other words, we have three blade cen-
ters containing the following PMs {pm0, pm1, pm2}, {pm3,
pm4, pm5}, and {pm6, pm7, pm8}, respectively. All other
parameters are as presented above in the base case. We trace
the placement of particular pattern, pat28, with connectivity
graph depicted in Figure 6. As shown, the pattern consists
of 9 VMs, vm252 through vm260, with communication de-
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Figure 5: Placement performance (constrained).

mands as per the weights on the edges. Three VMs {vm252,
vm253, vm254} have pairwise availability constraints of level
2 (shown as dashed lines with a Roman II), i.e. each has to
be placed in separate blade center.

The sequence of steps in placing this pattern is illustrated in
Table 1. With PMs as columns and VMs in the pattern as
rows, entries are the probabilities of placing a particular VM
on a particular PM. At step 0, the probabilities are set for
the various PMs inversely proportional to their availabilities
and independent of the VMs. Here, the VMs are consid-
ered in their numerical order. At step 1, vm252 is equaly
likely to be placed on pm0, pm3, or pm4. Then, vm253 is
equaly likely to be placed on pm0, pm1, or pm3. Accord-
ingly, vm254 favors the third blade center in order to be dis-
tant from vm252 and vm253, choosing pm6 and pm8 with
probabilities 2/3 and 1/3, respectively. Starting from vm255
through vm260, the communication needs causes a VM to be
close to the ones that it communicates with. The probabili-
ties keep getting refined until step 4 we see the final feasible
placement assignment, where {vm252, vm256, vm257} are
assigned to pm3, {vm253, vm255, vm258, vm259, vm260}
are assigned to pm1, and {vm254} is assigned to pm6. The
placement of the pattern is depicted in Figure 7. Note that
{vm252, vm253, vm254} are each placed in a separate blade
center. Also note that vm256 was assigned the same PM
as vm252, with which it has a high communication demand
of 4 units. Further vm257 and vm256 are co-assigned the
same PM since vm257 communicates only with vm256. All

Figure 6: Pattern pat28 description.

the remaining VMs were assigned the same PM as vm253,
with which there is significant communication demand.

6.6 Effect of pattern size
Now, we investigate the effect of the pattern size. We in-
crease the maximum number of VMs in a pattern from 10
to 31, in steps of 3. The results are depicted in Figure 8.
The load was kept at 80% PM CPU utilization. Due to our
’small-world’ graph model of the communication demand in
a pattern, the number of edges is proportional to the number
of nodes in the graph, and hence the increase in communi-
cation demand is linear in the pattern size as shown in the
figure. The R2 value of the linear fit was 0.98 to 0.99 for
edge and core utilization, respectively. Note that the place-
ment algorithm managed to keep the traffic split between
the edge links and core links the same, independent of the
pattern size. The pattern performance measures, weighted
path length and weighted delay index, also grew linearly
with the pattern size with R2 equal to 0.98 and 0.99, re-
spectively. Since the biasing of samples is O(n2) in the size
of the pattern, we see that the placing time of a pattern grew
quadratically (R2 = 1.00), but still less than a second on av-
erage (maximum 420 msec at max pattern size of 31). The
number of trials, however, grew linearly with R2 = 0.99. In
all cases, there was hardly any pattern rejections (less than
0.0005).

6.7 Effect of load
We varied the PM CPU utilization from 70% to 95% with in-
crements of 5%, as depicted in Figure 9. We clearly see a lin-
ear increase in link utilization, indicating that the placement
algorithm performed well even at high utilization. Further,
the pattern performance measures, weighted path length
and weighted delay index, also grew linearly and very slightly.
Another indication that the placement algorithm managed
not to create a skew in network utilization and hence con-
gestion. The rejection probability of patterns started to in-
crease at 95% loading to a significant 1.7%, but quite ex-



pm 0 1 2 3 4 5 6 7 8
Step 0
vm252 .15 .16 .08 .10 .20 .13 .11 .02 .05
vm253 .15 .16 .08 .10 .20 .13 .11 .02 .05
vm254 .15 .16 .08 .10 .20 .13 .11 .02 .05
vm255 .15 .16 .08 .10 .20 .13 .11 .02 .05
vm256 .15 .16 .08 .10 .20 .13 .11 .02 .05
vm257 .15 .16 .08 .10 .20 .13 .11 .02 .05
vm258 .15 .16 .08 .10 .20 .13 .11 .02 .05
vm259 .15 .16 .08 .10 .20 .13 .11 .02 .05
vm260 .15 .16 .08 .10 .20 .13 .11 .02 .05
Step 1
vm252 .33 0 0 .33 .33 0 0 0 0
vm253 .33 .33 0 .33 0 0 0 0 0
vm254 0 0 0 0 0 0 .67 0 .33
vm255 .33 .33 0 .33 0 0 0 0 0
vm256 .33 0 0 .33 .33 0 0 0 0
vm257 .67 0 0 .33 0 0 0 0 0
vm258 .33 .33 0 .33 0 0 0 0 0
vm259 .33 .33 0 .33 0 0 0 0 0
vm260 .67 .33 0 0 0 0 0 0 0
Step 2
vm252 0 0 0 .33 .67 0 0 0 0
vm253 .67 .33 0 0 0 0 0 0 0
vm254 0 0 0 0 0 0 .67 0 .33
vm255 .67 .33 0 0 0 0 0 0 0
vm256 0 0 0 .33 .67 0 0 0 0
vm257 .33 0 0 .67 0 0 0 0 0
vm258 .67 .33 0 0 0 0 0 0 0
vm259 .67 .33 0 0 0 0 0 0 0
vm260 .67 .33 0 0 0 0 0 0 0
Step 3
vm252 0 0 0 1 0 0 0 0 0
vm253 .67 .33 0 0 0 0 0 0 0
vm254 0 0 0 0 0 0 1 0 0
vm255 .67 .33 0 0 0 0 0 0 0
vm256 0 0 0 1 0 0 0 0 0
vm257 0 0 0 1 0 0 0 0 0
vm258 .67 .33 0 0 0 0 0 0 0
vm259 .67 .33 0 0 0 0 0 0 0
vm260 .67 .33 0 0 0 0 0 0 0
Step 4
vm252 0 0 0 1 0 0 0 0 0
vm253 0 1 0 0 0 0 0 0 0
vm254 0 0 0 0 0 0 1 0 0
vm255 0 1 0 0 0 0 0 0 0
vm256 0 0 0 1 0 0 0 0 0
vm257 0 0 0 1 0 0 0 0 0
vm258 0 1 0 0 0 0 0 0 0
vm259 0 1 0 0 0 0 0 0 0
vm260 0 1 0 0 0 0 0 0 0

Table 1: Pattern pat28 placement biasing steps.

Figure 7: Placement of pattern pat28.

pected at that saturation level. Surprisingly, the placing
time for a pattern and the number of trials (samples) re-
mained fairly constant and independent of the loading fac-
tor. Hence, the placement algorithm did not have to work
any harder to place patterns at high loading.

6.8 Effect of number of hosts
In order to investigate the scalability of our placement al-
gorithm we varied the number of PMs from 128 to 1024 in
powers of 2, as illustrated in Figure 10. The load factor for
the PM CPU utilization was kept at 80%. As the system
size increased, the sample space increased exponentially due
to the combinatorial effect. However, our placement algo-
rithm managed to increase the network link utilization only
slightly by about 1% for every doubling of the system size,
while keeping a linear placing time (R2 = 0.76). The pattern
performance measures, weighted path length and weighted
delay index, also grew by about 2% and 1%, respectively,
for every doubling of the system size. The utilization and
its derivative measures kept constant in the system size. The
placement algorithm exhibits a linear behavior in the system
size. Further, there were no pattern rejections experienced
even at the large system size of 1024 PMs

7. CONCLUSION AND FUTURE WORK
We demonstrated a method for biasing samples when per-
forming an importance sampling approach to solving a large-
scale optimization problem arising from placing virtual clus-
ters in compute clouds. The performance of our algorithm
grows linearly in the number of PMs in the cloud and is
shown to take about 275 msec in the case of 1024 PMs.

Several issues need further investigation. The algorithm is
quadratic in the size of the pattern. This begs the question of
whether the ordering of VMs in a pattern could help reduce
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Figure 8: Effect of maximum pattern size.
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Figure 9: Effect of load.
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Figure 10: Effect of number of hosts.

the complexity to a linear one by applying the biasing on a
fixed number of VMs, instead of all remaining VMs in the
pattern.

When placing a pattern, we were concerned about the per-
formance that the pattern would experience given the cur-
rent state of the system. One should also be concerned with
the impact of placing a pattern, not only on system resource
utilization, but on the performance experienced by the al-
ready placed patterns.
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APPENDIX
A. CROSS-ENTROPY FOR COMBINATO-

RIAL OPTIMIZATION
We provide a brief overview of the cross-entropy method for
combinatorial optimization [15, 16]. Consider the maximiza-
tion problem of a real-valued objective function S on a finite
set of states X , whose solution x∗ defined by

S(x∗) = γ∗ = max
x∈X

S(x). (1)

Let V be a set of vectors of real-valued parameters and
define {f(·;v),v ∈ V} as a family of discrete pdfs on X
parametrized by v. Define the associated stochastic prob-
lem to optimization problem 1 as

ℓ(γ) = Pu(S(X) ≥ γ) =
X

x

I{S(x)≥γ}f(x;u) = EuI{S(X)≥γ},

where u ∈ V, Pu is a probability measure, Eu denotes expec-
tation, and {I{S(x)≥γ}} is a collection of indicator functions
on X for various values γ ∈ R. The problem at hand is to be
able to estimate parameter values v, use them to generate
samples using f(·;v) in such a way to mostly generate the
solution x∗ and γ is close to γ∗. The method of minimizing
cross-entropy yields an equation for the parameter as

v∗ = argmax
v

EuI{S(X)≥γ} lnf(X;v).

The method provides an iterative algorithm which uses the
likelihood ratio estimator to estimate such parameter values
leading to an optimal solution. At iteration t, t = 1, 2, · · · , T ,
of the algorithm, we get estimates for γ and v as γ̂t and v̂t,
respectively, in such a way that γ̂T is close to the optimal γ∗

and v̂T leads to the generation of the optimal solution x∗

given by equation 1. Let v̂j,t be the jth element of v̂t, then
it is computed at iteration t, assuming that we generated n
samples X1,X2, · · · ,Xn from the density f(·; v̂t−1) as

v̂j,t =

Pn

i=1 I{S(Xi)≥γ̂t} I{Xi∈Xj}
Pn

i=1 I{S(Xi)≥γ̂t}

, (2)

where Xj is the set of solutions which result with parameter
value v̂j,t.

The cross-entropy optimization algorithm follows. It has
two parameters: n, the number of samples which is typically
in the hundreds or thousands depending on the size of the
problem, and ρ, the fraction of samples which may lead to
the optimal solution, typically set around 0.01.

1. Initialization. Set t = 0 and some initial value v̂0.

2. Iteration step. Set t = t + 1.

(a) Generate samples. Generate X1,X2, · · · ,Xn from
the density f(·; v̂t−1) and compute the (1 − ρ)-
quantile, γ̂t.



(b) Adjust parameters. Using generated samples com-
pute v̂t using equation 2.

(c) Stopping condition. Check stopping criterion, e.g.
minimal change in γ̂t.

3. Optimal solution.γ∗ = γ̂t.


