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Abstract—Considering physical objects with certain sensing
capabilities in an Internet-of-Things (IoT) sensory environment,
in this paper, we propose an efficient energy management
framework to control the duty cycles of these objects under
quality-of-information (QoI) experience in a multi-task-oriented
IoT sensory environment. Contrary to past research efforts, our
proposal is transparent and compatible both with the underlying
low-layer protocols and diverse applications, and preserving
energy-efficiency in the long run without sacrificing the QoI levels
attained. Specifically, we first introduce the novel concept of QoI-
aware “object-to-task relevancy” to explicitly consider the sensing
capabilities offered by an object to the IoT sensory environments,
and QoI requirements required by a task. Second, we propose a
novel concept of the “critical covering set” of any given task in
selecting the objects to service a task over time. Third, energy
management decision is made dynamically at runtime, to reach
the optimum for long-term application arrivals and departures
under the constraint of their service delay. Finally, an extensive
case study based on utilizing the sensing objects to perform
water quality monitoring is given to demonstrate the ideas and
algorithms proposed in this paper, and a complete simulation is
made to support all performance analysis.

I. INTRODUCTION

The Internet of Things (IoT, [1]) represents a next stage
in the evolution of computerized interconnectivity. In it, not
only computers but smart physical objects, or “things” will
interconnect. It is powered by the proliferation of computer-
ized intelligence, sensors and RFID tags embedded in things
(vehicles, buildings, habitants, humans, utility grids, contain-
ers, garments, goods, cell phones, etc.) that allows sensing the
state of the objects and their surroundings [2]. Through the
gathering and processing of this state, a variety of smart appli-
cations and services gain awareness of situations impacting the
objects (and their surroundings) and act to affect them (e.g,.
through environmental control, or utility (electricity, water)
grid management systems), or trigger actions involving third
party entities (e.g., supply chain monitoring, remote patient
monitoring, infrastructures monitoring [3]).

Fig. 1 shows the architectural elements of the IoT systems
of interest in this paper. They comprise a collection of appli-
cations and services at the top that act and react on the col-
lective knowledge gathered by the computerized intelligence
embedded in objects at the bottom. As the figure shows, these
objects may belong to a number of domains (e.g., belong to
different city agencies) and the IoT applications can cut across
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Fig. 1. The overall IoT architecture, where a middleware platform (composed
of the IoT application gateway, EMS, and real-time operational database)
bridges a variety of applications with the physical objects.

these domains (e.g., a smart cross-agency application, such as
traffic management and emergency response). Between the two
ends, there is a number of supporting middleware services that
facilitate the effective bridging between the varieties of IoT
applications and objects, managing the various resources they
provide.

In the figure these middleware services are shown across
a distributed platform comprising an application gateway for
information collection, processing and delivery, a real-time
operational database for information archiving and query, and
a resource management entity that includes our proposed IoT
energy management server (EMS) for object energy and appli-
cation quality management. It is worth noting that the presence
of EMS capabilities is closer to the objects, where possibly
the EMS functionality could be hierarchically spread/deployed
on several intermediary nodes located as necessary anywhere
within the end-to-end system. Nevertheless, for ease of expo-
sition, in this paper we consider a centralized system focusing
on the fundamentals of our proposal, leaving their extensions
to distributed system for future studies.

EMS controls/optimizes the object duty cycles upon re-
ceiving the orders from the applications waiting to be ex-
ecuted to deploy different sensing tasks (or, simply, tasks)
to the physical world. For instance, “to monitor the water
quality of relative position (x1, y1, z1) of Hoover Dam” and
“to monitor the pollutant concentration of relative position
(x2, y2, z2) of Hoover Dam” are two tasks. Nevertheless, the
heterogeneity of the huge number of objects deployed in
IoT sensory environments (e.g, with different object types,
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protocols, manufactures, data schema, etc.), motivates the need
of a system-level management operation that can work with
systems that engage to medium access control (MAC) level
energy conservations, as much of previous research efforts[4].
Meanwhile, an efficient scheme should minimize sending the
number of control signals crossing different domains, and thus
we are seeking a long-term optimal solution. Furthermore,
many low-level network concerns (e.g., security, networking,
energy etc.) remain only within the individual access network,
but not exposed to the applications, as end-users mainly
focus on the reusability and interoperability of the sensory
environments to build/run larger, more dynamic applications.
Finally, maintaining these battery-dependent objects in such
an environment is far too labor intensive and costly and,
hence, energy conservation while producing good quality-of-
information (QoI) produced is of paramount importance.

Broadly speaking, QoI relates to the ability to judge whether
information is fit-for-use for a particular purpose [5], [6], [7].
For the purposes of this paper, we will assume that QoI is
characterized by a number of attributes including accuracy,
latency, and physical context (specifically, object coverage in
this paper [5]).

Here is the central theme of the paper. We aim to design an
energy management service (and supporting algorithms) that is
transparent to and compatible with any lower layer protocols
and up-running applications, while providing the long-term
energy-efficiency under the satisfactory QoI constraints.

In support of our design, we first introduce the new concept
of “object-to-task relevancy” to explicitly consider the sensing
capabilities offered by an object (or a set of objects) to the
applications and QoI requirements required by a task. Second,
we use the generic information fusion function to compute
the “critical covering set” of any given task in selecting the
objects to service a task over time. Third, we propose a runtime
energy management framework based on the previous design
elements to control the duty cycles of an object in the long
run, i.e., the control decision is made optimally considering the
long-term task usage statistics where the service delay of each
task serves as the constraint. Finally, an extensive case study
related to water quality monitoring is given to demonstrate the
ideas and algorithms proposed in this paper, and a simulation is
made to support all performance analysis. To the authors’ best
knowledge, this is the first piece of research that manages the
energy usage of a variety of objects from different domains,
irrespective of how the provided sensing capabilities will be
used by different applications.

The rest of this paper is organized as follows. The system
model, including the objects and tasks, are described in
Section II, and based upon which, the system flow of the
proposed efficient energy management framework is given.
Then, the object-to-task relevancy and the critical covering set
are introduced in Section III, and the optimization problem
of efficient energy management is formulated in Section IV,
where several solutions are also given and analyzed. A case
study of water quality monitoring is then followed and ex-
plained in detail in Section V, and its simulation results

are provided in Section VI. Section VII presents the related
research efforts. Finally, concluding remarks are drawn in
Section VIII.

II. SYSTEM MODEL

We consider an IoT sensory environment that comprises a
collection N of N objects (indexed by n ∈ {1, 2, . . . , N}),
plus a gateway (the sink). Each object n ∈ N is associated
with certain sensing, processing and communication capabili-
ties. The sensing capability of an object represents its ability to
offer a certain level of QoI to a task, but independently of any
specific task. The sensing capability of object n is described by
the K-vector cn ∈ RK , whose entries include QoI attributes
such as the measurement errors, latency in reporting, its
coverage, etc. Contrary to the collection N , the gateway
is assumed to have sufficient processing power and energy
capacity. Finally, we assume that our energy management
scheme is running within the IoT EMS, interacting with both
the applications and the gateway, such that control signals can
be computed, generated, and sent to the objects (see Fig. 1).

We also consider a collection M of M task types (indexed
by m ∈ {1, 2, . . . ,M}). Each task type represents a specific
class of activities that may share a common spatial property
but not temporal properties, such as starting time or duration.
For example, “monitor the water quality at location Ω” may
represent one of the M tasks, while doing so between times
t1 and t2 or t3 and t4, represents two instances of the same
sensing task executed over two different time periods. Each
task’s desired QoI is described by a K-vector qm, describing
the desired accuracy, latency, coverage, etc. Note that the
elements in qm can be vectors as well, as a QoI requirement
can be defined by more than one parameters, as illustrated in
a case study in Section V.

We assumed a discrete (or slotted) time system operation.
Duty-cycling decision and control operations are made every
L time slots, which define the duration of an (L-slot) frame
in the system.

A. Task Model
We would like to model the behavior of tasks over time,

including the evolution of any given task over time, and the
relationship among different tasks in the long run. We begin
our analysis with a generic model; a specific example is given
in Section V.

An instance of a task represents a single continuous period
that the task is in service, which is called the service time. An
instance of task m has an average duration of τm1 slots, and
the time between them has average duration of τm0 slots. We
assume that L � min{τm1 , τm0 }, ∀m = 1, 2, . . . ,M , which
ensures that the probability that any task changes its status
during a frame is negligible. Furthermore, we also assume
that the current service time is known to the IoT EMS and
gateway every time it starts. Therefore, at the beginning of
each frame, the IoT EMS only needs to predict the starting
time of each task in the current frame and then wake up/sleep
the appropriate objects at the appropriate time.
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Fig. 2. System flow of the proposed energy management framework.

Let t denote the time of a decision point, i.e., the beginning
of a certain frame, and Δm

t , m ∈ M be the starting time
of the task m following time t. Let Δt = {Δm

t , ∀m ∈ M}.
Specifically, Δm

t is defined in such a way that, if Δm
t = 0,

task m is already in service at time t, if 0 < Δm
t < L, Δm

t + t
is the starting time of task m, and if Δm

t = L, task m will
not start in the current frame. Clearly, |Δt| = ML.

Let Hm
t describe the history information of task m up to

time t, i.e., the sequence of times that task m has changed
its state, and Ht = {Hm

t ,m ∈ M}. As a generic model,
we assume that the conditional probability of Δt given Ht is
known and denoted by Λ, i.e.,

Λ = Pr{Δt|Ht}. (1)

This generic model is used primarily to aid our analysis,
and in general, the computation complexity can increase
exponentially with M .

B. System Flow
Fig. 2 illustrates the procedure for the proposed application-

layer energy management during one frame, which can be
summarized as follows:

1) At the object deployment stage, compute the critical cov-
ering sets of each task based upon the object capabilities
and the desired QoI of the tasks (see Section III).

2) At the beginning of a frame, the gateway makes a
decision on when to activate/deactivate which object and
for how long in the current frame based on the task
model and the penalty constraints, and sends the control
message back to each object (see Section IV).

3) During a frame, each object follows its predetermined
waking-up schedule without further communications
with the gateway until the next frame.

III. QOI-AWARE OBJECT-TO-TASK RELEVANCY

In [8], the 5WH principle was proposed to summarize the
information needs of a task and the sensing capabilities of
network resource, and in [9], the spatial relevancy of the
provided information was introduced along with a way to
measure it. Inspired by the above work, we propose the
relevancy of an object to a task as the degree to which the

object can satisfy the task’s QoI requirements. Specifically,
we define:

rnm = f
(
cn, qm

)
∈ [0, 1], ∀n ∈ N ,m ∈ M, (2)

where rnm denotes the relevancy of object n to task m, and
f(·) is a generic relevancy function that takes value in [0, 1]
by definition. A specific example of f is given in Section V.

We define an object irrelevant to a task if and only if its
relevancy to the task is 0. Examples of irrelevant objects to a
task include objects whose sensing region have no overlap with
the desired service region of a task, and objects that cannot
provide the type of information the task requires, such as an
object providing temperature readings to an air pressure related
task. On the other hand, for the coverage requirement of a task,
we say an object covers a task if and only if the computed
relevancy is 1. By definition, an object covers a task if and only
if it can individually satisfy the desired QoI of the task. In an
IoT sensory environment, the retrieved information of a single
relevant object usually cannot satisfy all QoI requirements of a
task (with relevancy value varies between 0 and 1). Therefore,
to fully satisfy a task’s QoI requirement, fusing information
collected from multiple coordinating objects is needed.

A. Information Fusion
Some QoI requirements, like the coverage of a region, can

be achieved by certain fusion algorithm (function) even if no
individual object can achieve it. The authors in [9] proposed
to select a number of providers that cumulatively provide
the most relevant information using an abstract, scalar-valued
representation of QoI. While similar in principle, here we
consider a more general way to accommodate a vector-valued
QoI in information fusion. Specifically, let Zn, ∀n ∈ N , be the
retrieved information of object n. We assume that information
fusion is always beneficial, i.e., the information produced by
the fusion of information from the objects in a set S ⊆ N
is always more relevant than the information offered by one
single object alone in S. For ease of presentation, we use g(·)
for the generic fusion function, and clearly, g should take a
variant number of single object “capabilities” and output an
aggregated capability in all aspects. Denoting the capability of
a subset S of objects by cS , we have:

cS = g
(
{cn|n ∈ S}

)
. (3)

Then, the relevancy of a subset of objects to a task can be
defined in the same way as that of a single object to a task
based upon their aggregated sensing capability, i.e.,

rS,m = f
(
cS , qm

)
, ∀S ⊆ N ,m ∈ M. (4)

B. Critical Covering Set
We define the critical covering set (CCS) of a task as a set

of objects whose aggregated object-to-task relevancy always
achieves 1; and if the retrieved information of any object is
lost, the aggregated relevancy will drop below 1. It is worth
noting that there is finite probability that the smart objects may
not be able to cover the entire area of interest when randomly
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deployed. Furthermore, the desired QoI of certain tasks may be
too demanding that even multiple collaborated objects could
not satisfy it. Therefore, it is possible that a task has no CCS.
In this paper, we assume that there is sufficient density of
deployed objects to always guarantee the existence of at least
one CCS for each task, leaving other cases for future studies.
However, it is worth noting that the system performance metric
we defined in Section IV-B also fits the case in which there
exists no CCS for certain tasks. For ease for presentation, let
S
m, ∀m ∈ M, be the set of all CCSs for task m and S = {Sm}

the collection of all these sets.

IV. QOI-AWARE LONG-TERM ENERGY MANAGEMENT

As discussed earlier, in order to fully exploit the energy-
efficiency in an IoT sensory environment without sacrificing
the QoI delivered to a task, only (a) the irrelevant objects, i.e.,
objects that are not relevant to any future incoming tasks, and
(b) the redundant objects, i.e., objects that are not critical at
all to any tasks, are allowed to be switched to the sleeping
mode permanently (or OFF). In this section, we propose a
framework to control the duty-cycling of these objects based
upon the task model outlined in Section II-A.

A. Duty-Cycling of Objects
We assume that there are only two power consumption

levels for each object n ∈ N : (a) εn during the active sensing
model (or ON); and (b) for simplicity, 0 during the sleeping
mode (or OFF, and this number is relatively very small if
compared with εn in reality). The duty-cycle of an object is
defined as the fraction of time that the object is ON, i.e.,
T n
ON(T )/T , ∀n ∈ N , where T n

ON(T ) is the aggregation of the
ON times during the lifetime T . Note that here we express the
aggregated ON time as a function of T to explicitly describe its
dependency on the lifetime T . However, this straightforward
definition of duty-cycle does not directly reflect the energy
spent while switching between the two modes. Therefore, we
propose a generalized duty cycle to explicitly incorporate the
extra energy penalty paid each time the objects switch modes.
Specifically, let En denote the energy consumed each time
the objects switch modes, and Nn

s (T ) the number of switches
object n makes up to time T , the generalized duty cycle ηn

of object n is defined as

ηn =
En

εn
·
Nn

s (T )

T
+

T n
ON(T )

T
, ∀n ∈ N . (5)

The goal of energy management is to minimize the (general-
ized) object duty cycle in an IoT sensory environment, without
sacrificing the QoI levels attained. At the beginning of each
frame, the IoT EMS informs the gateway on the decisions
as when to turn ON/OFF objects in the current frame. For
simplicity, we assume an object keeps ON in a frame after it
is waken up. Let At = {ant }, 0 ≤ ant ≤ L, n ∈ N , denote
the set of actions for all objects when decisions are made at a
decision point t. Then, At specifies the scheduled waking-up
time for every object. Specifically, ant is defined in such a way
that, if 0 ≤ ant < L, ant + t is the next wake-up time for task
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Fig. 3. An illustrative example of service delay under the proposed task
model, where four tasks follows different arrival and departure statistics, and
during one single emergence, its maximum allowed service delay is shown.
Task 1, 2 4 have two instances and task 3 has only one instance in this
example.

n, and if ant = L, object n will remain asleep in the current
frame. Clearly, the cardinality of the decision space of At is
NL.

B. Delay Penalty for Tasks
It is likely that task instances may not be serviced immedi-

ately following their arrival, i.e., when a task starts again, an
object’s duty cycle is controlled periodically by the IoT EMS.
As a result, it is possible that no active CCS of a task exists
when it starts. Therefore, the task may have to wait for the
next frame when the EMS informs the gateway to wake up a
CCS for its service. This service delay may be tolerable for
elastic traffic (e.g., a few seconds delay for reporting the water
quality levels are highly likely tolerable), and thus we define
it as:

dmi = tmi,s − tmi,a, ∀m ∈M, i ∈ N
+, (6)

where N+ is the set of non-negative integers, tmi,a, tmi,s and dmi
are the task starting time, the service start time and the service
delay of task m for its i-th instance, respectively. An example
of service delay is illustrated in Fig. 3.

In order to characterize the performance degradation of
tasks by the potential service delay, we propose a delay-
induced, non-decreasing penalty function:

h(·) : dmi → ζmi , (7)

where ζmi denotes the penalty for the i-th arrival of task m.
By specifying the delay requirement Dm, an example of h(·)
can take the following form:

h(dmi ) =

⎧⎪⎨
⎪⎩
νd

m

i , if 0 < dmi < Dm,

νD
m

, if dmi ≥ Dm,

0, otherwise,
(8)

∀i ∈ N+,m ∈ M, and parameter ν is chosen to be ν ≥ 1.
Particularly, if ν = 1, we always have h(dmi ) = 1, or: the
associated task m is delay-sensitive application.

Finally, the average penalty of task m up to its I-th instance
can be computed as:

ζm =
1

I

I∑
i=1

ζmi , ∀m ∈M, I ∈ N
+, (9)
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and if ν = 1, the average penalty is reduced to the probability
that the task is not served immediately when it starts (during
the life time of the monitoring system).

C. Problem Formulation
At the beginning of each frame, the EMS informs the

gateway of decisions made on the energy consumption state
of each object n ∈ N , i.e., which set of objects should be
waken up for task service in the current frame, and which set
of objects are allowed to be turned OFF, given the historical
task service information and the historical object activity
information that is denoted by Gt. Therefore, a decision policy
π is defined as a mapping from Gt and Ht to At, given the
task model and the CCS information:

At = π(Gt,Ht|Λ, S). (10)

The goal of EMS algorithm is to find the optimal decision pol-
icy π∗ that optimizes the object duty-cycles under the penalty
constraints for tasks. We propose two performance metrics
to describe the system performance, and then formulate two
corresponding optimization problems.
1) Minimize the maximum duty cycle: As a collection

of N objects comprise the IoT sensory environments, the
optimization of one single object duty-cycle does not represent
the overall optimum, and this model starts from the overall IoT
lifetime perspective that aims at providing a degree of fairness
among all objects (or in other words, the usage of all objects
are relatively comparable). The optimization problem is:

minimize:
π

ηmax = max
n∈N

ηn

subject to: ζm ≤ ξm, ∀m ∈ M, (11)

where the constraint is the average penalty for service de-
lay should be smaller or equal than the tolerable value
ξm, ∀m ∈ M.
2) Minimize weighted average duty cycle: This model aims

at minimizing the average cost of the entire IoT sensory
environment, where in reality smart objects execute different
tasks and thus of different importance to the lifetime of the
system, which are then defined as the weights. The optimiza-
tion problem is:

minimize:
π

η =
∑
n∈N

βnη
n,

subject to: ζm ≤ ξm, ∀m ∈ M, (12)

where βn are weight factors with 0 ≤ βn ≤ 1, n ∈ N , and∑
n∈N βn = 1; for important objects EMS will assign higher

βn accordingly.
It is worth noting that another possible constraint condition

for the optimization problem (11) and (12) could be the
weighted average penalty for all tasks, i.e.,

ζ =
1

M

M∑
m=1

αmζm ≤ ξ, (13)

where αm are weight factors with 0 ≤ αm ≤ 1, m ∈M, and∑
m∈M αm = 1.

O b j e c t s T a s k s 

1
2
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( 2 ) 

( 3 ) 

( 4 ) ( 5 ) 

( 6 ) ( 7 ) 

( 8 ) 

( 9 ) ( 1 0 ) 

Fig. 4. An illustrative example of the reservoir plane graph to monitor the
water quality of four locations (as red square), where ten randomly deployed
objects with certain sensing range are shown (as black dots).

V. A CASE STUDY

In this section, we show an example of our methodology.
We illustrate this by assuming a monitoring IoT application,
such as using (randomly deployed) pollutant-sensing objects
with certain sensing range to measure the water quality of
certain location in a reservoir supplying water to city dwellers.
In this section, we present the system pertinent solutions and
algorithms, and in the next section we show results from
simulations that we conducted.

A. System Model
In our water quality monitoring system, each object, or in

particular the sensors with pollution level monitoring capa-
bility, is randomly deployed and its spatial coverage follows
a classic disk model. To close the real scenario, we assume
that the sensory data within the sensing region is corrupted by
noise during measurement and/or transmissions. Fig. 4 shows
an illustrative example of the reservoir plane graph for sensor
and task deployment.

In this example, accuracy is the only QoI requirement
(however with multiple metrics) we considered, and we first
define its probabilistic model as:

Pr
{
|Zm

t − z| ≥ δmz
}
≤ εm, ∀m ∈ M, (14)

where the random variable Zm
t is the object-retrieved infor-

mation for task m at time t, and z is the actual but unknown
information, i.e., the ground truth. Analogously to the desired
QoI functions in [9], we define qm as:

qm =
{
Ym, (δm, εm)

}
, ∀m ∈M, (15)

where Ym and {δm, εm} are the geographical location and
accuracy requirement of task m, respectively.

On the other hand, the capability of object n, i.e., cn, can
be defined as:

cn =
{
(Xn, rn), γn

}
, ∀n ∈ N , (16)
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where Xn is the location of the object and rn is its sensing
radius. We model the measurement noise as additive white
Gaussian noise (AWGN) with variance γn for object n. A
object-to-task relevancy function for this model is

f(cn, qm) = f(Xn, rn, γn, Ym, δm, εm)

= 1{dist(Xn, Ym) ≤ rn} ·max

{
εm

Pr{|Zn
t − z| ≥ δmz}

, 1

}

= 1{dist(Xn, Ym) ≤ rn} ·max

{
2εm

Q( δm√
γn

)
, 1

}
, (17)

∀n ∈ N ,m ∈ M, where 1{statement} is the indicator
function that takes value 1 if the statement is true and 0 other-
wise. Let dist(Xn, Ym) be the Euclidean distance between two
points, the random variable Zn

t be the retrieved information
of object n at time t, and Q{·} be the tail probability of the
standard normal distribution.

If task m is serviced solely by object n, then Zm
t = Zn

t ;
otherwise, if it is serviced by a subset S of objects, then
Zm
t = ZS

t . A possible information fusion algorithm of relevant
objects in this case can be:

ZS
t = argmin

z′

1

|S′|

∑
n∈S

1

γn

∣∣∣∣Zn
t − z′

∣∣∣∣
2

=

∑
n∈S

Zn

t

γn∑
n∈S

1

γn

. (18)

The right hand of (18) is a specific example of the fusion
function g(·) we defined in Section III-A. Specially, if all γn
are equal and Zn

t ∼ N(1, 1/γ), the fused information of a
group of N ′ relevant objects is the average of the individual
ones and ZS

t ∼ N(1, 1/(N ′γ)), where N(μ, σ2) is a Gaussian
distribution with mean μ and variance σ2. Based on the above
fusion algorithm, CCSs of every task can be computed during
the object deployment stage, and used in the online duty-
cycling control.

We assume a simple penalty function for the task which fits
both delay-sensitive and delay-insensitive tasks, i.e.,

h(dmi ) =

{
0, if 0 ≤ dmi ≤ D,

1, if dmi > D,
(19)

∀m ∈ M, i ∈ N+ and D is the delay requirement for all
tasks. Specifically, if D = 0, the task is delay-sensitive, and
if D > 0, the task is delay-insensitive. Then, average penalty
ζm in this case has the meaning of the average probability
that task m’s delay requirement is not satisfied over time.

We model the evolution of tasks as a (discrete) semi-Markov
process. A semi-Markov process is a stochastic process which
moves from one state to another, with the successive states
visited forming a Markov chain, and that the process stays
in a given state a random length of time (holding time). The
state space of a semi-Markov process is countable and the
distribution function of the holding times may depend on the
current state as well as on the one to be visited next [10].
When modeling the task evolution by a semi-Markov model,
the tasks are treated as the states. The behavior of the tasks
can be summarized in the following three aspects:

• There is one, and only one task in service at any time slot
(as illustrated in Fig. 3). And because of this, we call it
the exclusive task model;

• A new task starts immediately after a current task ends
with certain “task transition” probability;

• The service time of a task is known at the time it starts.
We denote P = {pk,m} as the task transition probability from
task k to task m.

B. A Greedy Algorithm
The optimization problems in (11) and (12) are generally

NP-hard and their optimal solution are difficult to find without
an exhaustive search. In this paper, we propose a greedy
algorithm for optimization problem (12). The algorithm is
greedy in that at any decision point, it chooses the action that
leads to the least marginal increment in η.

For ease of presentation, suppose the system starts at t = 0.
Denote t = iL as the beginning of the i-th frame, where i ∈ N.
Denote ηnt as the runtime generalized duty cycle of object n
up to time t. ηnt can be updated recursively by

ηnt =
1

t

[
En

εn

(
Nn

s (t)−Nn
s (t− L)

)
+

(
T n
ON(t)− T n

ON(t− L)

)

+ ηnt−L · (t− L)

]
, t = iL, i ∈ N

+, (20)

with ηn0 defined to be zero. Note that Nn
s (t) − Nn

s (t − L)
and T n

ON(t)−T n
ON(t−L) are the number of state switches and

the aggregated ON time between time t − L and time t for
object n, respectively. We define the marginal increase in the
normalized energy consumption of object n between time t
and t+ L as:

Θn
t �

En

εn

(
Nn

s (t+L)−Nn
s (t)

)
+
(
T n
ON(t+L)−T n

ON(t)
)
, (21)

and clearly, we have:

ηnt =
1

t

(
Θn

t−L + ηnt−L · (t− L)
)
, ∀n ∈ N . (22)

Further, define the weighted average marginal increase in the
normalized energy consumption of all objects between time t
and t+ L as

Θt �
∑
n∈N

βnΘ
n
t . (23)

At the i-th decision point, the gateway needs to predict
the task activities in the i-th frame and prepare the objects
accordingly. Rather than a global algorithm that minimizes
η throughout the lifetime of the IoT sensory environment, we
specify an algorithm that minimizes Θt at each decision point.
It is fairly reasonable that minimizing Θt at every decision
point helps to reduce the overall average duty cycle.

On the other hand, consider the penalty constraint for task
m, which we rewrite in the following as

ζm =
1

I

I∑
i=1

ζmi ≤ ξm, ∀m ∈ M. (24)
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If ζmi ≤ ξm is satisfied for all i = 1, 2, . . . , I , the penalty
constraint condition is clearly satisfied as well. This implies a
greedy solution from the penalty constraint side: for a given
task, prepare the objects in such a way that the expected
penalty does not exceed the prescribed penalty constraint.
Specifically, define Pm

i (t) as the probability that task m’s i-th
starting time is t, and Qm(t) the probability that at least one
CCS of task m exists at time t. Clearly,

E[ζmi ] =
T∑

t=0

Pm
i (t)

(
1−Qm(t)

)
, ∀m ∈M, (25)

where T can be viewed as the system lifetime. Note that
Pm
i (t) is zero almost everywhere. To see this, Pm

i (t) = 0
if: (a) t is not a task transition time, (b) either less than i− 1
or greater than i+1 instances of task m have occurred. In other
words, Pm

i (t) takes non-zero value only at the time of task
transition and task m is expecting its i-th instance. Therefore,
the above summation is easy to compute.

As an illustrative example, the exclusive task model is
simple in that the gateway knows exactly the time when the
current task ends and the next task starts, whereas which
specific task succeeds the current one is uncertain. Therefore,
if there is no transition between tasks in a frame, the system
only needs to keep awake the CCS of the current task that leads
to the least Θt and set the other objects to sleep. Otherwise,
if a task transition is bound to happen in a frame, the system
has to wake up the corresponding objects to make preparation
for all possible succeeding tasks under their specific penalty
constraints. Suppose the current task will end at time t′ − 1
and a new task will start at time t, where t ∈ [iL, (i + 1)L).
Our greedy algorithm at the i-th decision point is the solution
to the following optimization problem

minimize:
π

ΘiL

subject to: Pm(t′)(1−Qm(t′)) ≤ ξm, ∀m ∈ M. (26)

where ΘiL is defined in (21) and (23). This optimization
problem is easy to solve. To see this, the constraint condition
requires that

Qm(t′) ≥ 1−min

{
1,

ξm
Pm(t′)

}
, (27)

where Pm(t′) is the transition probability from the current
task to task m. Essentially, (27) specifies the minimum re-
quired probability of existence of CCSs for each task at the
task transition time t′. Therefore, the gateway can determine
whether to wake up a CCS for each task according to Qm(t′),
either jointly or separately. Clearly a decision that considers all
tasks jointly will do no worse, and in all likelihood outperform,
the separate per task decision. However, this will induce
further computational complexity, especially when M is large.
Therefore, as another “degree of greediness”, we assume the
gateway makes decision separately for each task. After the
decision on making preparation for which group of tasks is
made, the gateway chooses and schedules the wake-up times
for a subset of objects that can cover that selected group of

�

�

�

�

p21 p13

p34p42

p12

p14

p24 p43

p31

p41

p23

p32

Fig. 6. Markov chain model for task dynamic involvements.

tasks and induces the minimum increase in the marginal energy
consumption ΘiL. In the (i+1)-th frame, which task follows
the previous task is already known and all the irrelevant objects
prepared for the possible occurrence of other tasks can be sent
to sleep.

The algorithm can be summarized in the following steps:

1) At the beginning of each frame, shut down any object
that is not critical to the current task, if there exist such
objects;

2) If no task transition is going to happen in the current
frame, keep the current status of each object until the
next frame;

3) If task transition is bound to happen in the current
frame, for each task, compute the minimum required
probability of existence of a CCS based on the delay-
induced penalty constraint by (27), and determine (by
random tests) whether to make preparation for that task
according to the derived probability. At the time of task
transition, wake up a subset of objects that critically
covers all the tasks to be prepared for, yet induces the
minimum increase in the marginal energy consumption.

The algorithm is greedy in three aspects:

1) The algorithm satisfies the penalty constraints every time
task transitions happen;

2) The algorithm minimizes the marginal increase in energy
consumption at every decision point;

3) The algorithm makes decision on whether to prepare for
the possible occurrence of each task separately.

Note that we can revise the greedy algorithm in such a way
that it makes decision on whether to prepare for the possible
occurrence of each task jointly. Compared to the original
greedy algorithm whose computation complexity increases
linearly with M , the computation complexity of the revised
greedy algorithm increases exponentially with M and it is
therefore much more computationally challenging. In order
to show the difference, we plot the results for both greedy
algorithms in Section VI for a small M .
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Fig. 5. Simulation results for: (a) average normalized duty cycle η with different frame size L, (b) Average normalized duty cycle η with different penalty
constraint ξ, and (c) The run-time remaining energy of the system corresponding to the task evolution in Fig. 6.

VI. SIMULATION RESULTS

Our simulation setup is based on the water quality monitor-
ing system discussed above. Specifically, the system consists
of N = 10 objects and M = 4 tasks, as illustrated in
Fig. 4. The capabilities (exclusive of sensing radius which
is illustrated in Fig. 4) of all objects are: γ1 = γ6 = 2,
γ2 = γ3 = γ4 = γ8 = 1, γ5 = γ9 = γ10 = 0.7 and γ7 = 0.5.
The desired QoI of all tasks are: εm = 0.1, δm = 1, ∀m ∈ M.
Moreover, En = 5 and εn = 1, ∀n ∈ N and the initial energy
reserve of each object is set as 10,000. The service time of
each task follows identical geometric distribution with average
duration 50. The task transition probability matrix is given by:

P =

⎛
⎜⎜⎝

0 1/10 2/5 1/2
1/5 0 3/5 1/5
1/3 1/3 0 1/3
4/5 1/10 1/10 0

⎞
⎟⎟⎠ . (28)

The object-to-task relevancy and the CCSs can therefore be
computed and the result is listed as:

S
1 =

{
{1}, {3, 5}

}
,

S
2 =

{
{2, 4}, {2, 5}, {4, 5}

}
,

S
3 =

{
{6}, {5, 8}, {8, 9}

}
,

S
4 =

{
{5, 8}, {8, 10}, {5, 7, 10}

}
.

We consider the optimization problem in (12) with βn =
1/N, ∀n ∈ N , and use the greedy algorithm we derived in
Section V-B. We run several simulations for different system
setups.

In Fig. 5(a), we plot the generalized duty cycle with different
frame size L. As shown in the simulation result, for fixed
penalty constraint, the duty cycle increases with the frame size
L. This is because every time a task transition happens, more
than eventually necessary objects have to be waken up for the
possible starts of certain group of tasks, though in fact only
one task actually starts. These unnecessary objects will stay

awake until the next decision point when they can be turned
OFF by the gateway. Clearly, the wasted ON times of objects
increase linearly with the frame length. In Fig. 5(b), we plot
the generalized duty cycle with different penalty constraints.
Clearly seen, for fixed frame size, the duty cycle decreases
with the penalty constraint, as higher tolerance in service delay
allows the objects to spend more time in the sleeping mode.

Fig. 5(c) illustrates the energy depletion process correspond-
ing to the illustrative example of task evolution shown in Fig. 6
for ξ = 0, m ∈ M and L = 20. Besides the proposed
greedy algorithm and its revised version, we also plot the result
for a genie-aided case in which the gateway knows exactly
which task succeeds the current one. The (average) slope of a
curve represents the (average) energy depletion rate. From the
simulation result, we can see that the revised greedy algorithm
achieves a better system performance than the basic greedy
algorithm (at the expense of more computation complexity).
We also observe the gap between the greedy algorithm and
the genie-aided optimal scheduling, indicating a potential
improvement in future algorithm design. Also plotted in the
figure are the energy depletion process for two extremes: the
least used object has never been used, while on the other hand,
the most used object has been active almost all the time. This
is to be expected since we are minimizing the average duty
cycle without considering fairness among objects.

VII. RELATED WORK

QoI is proposed recently to judge how the retrieved infor-
mation is fit-for-use for a particular task [8]. Inspired by the
notion of QoI, the authors in [11] propose a QoI satisfaction
index to describe the degree of QoI satisfaction the tasks
received from the wireless sensor network (WSN), as well
as a QoI network capacity to describe the marginal ability
of the whole WSN when a new task with associated QoI
requirements arrives. Based on these, the authors proposed
an adaptive admission control to optimally accommodate the
QoI requirements of all incoming tasks by treating the whole
WSN as a “black box”. Our work in this paper has built upon
and expanded [8], [11], allowing dynamically controlling the
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energy consumption state of each object by explicitly taking
into account the desired QoI in the long run.

The authors in [12] study the attained QoI performance
for object tracking applications with energy constraints. The
work focuses on a duty-cycled network with random wake-
up schedules for different sensor nodes and studies the trade-
off between tracking accuracy and response latency that the
system observe. Our paper, however, focus on information
collection and processing in the presence of energy constraints
as well as desired QoI performance for IoT applications.

In [13], the authors propose a node-scheduling scheme to
reduce the system overall energy consumption by turning off
redundant nodes, while preserving the sensing coverage for
the entire WSN at a given time. To calculate the sponsored
coverage, only the sensing region (i.e., the radius) is taken
into account in [13]. This essentially corresponds to the spatial
requirement of the 5WH QoI requirement structure proposed
in [8]. In this paper, we take every aspect in the desired QoI
into account, which we then reflect in the critical covering set
for each task. Another difference is that the authors in [13]
sought a group of objects that can cover the entire region of
interests at any given time, while we seek the critical covering
set only for the on-going tasks based upon the multi-task
oriented traffic model.

Finally, we note that there has been plenty of work on MAC
layer protocol design for WSNs focusing on minimizing the
energy consumption in order to achieve long system lifetime,
such as S-MAC [14] and T-MAC [15]. In contrast to this
work, our proposal is a system-level management operation
and not a communications protocol; and more importantly,
this proposal can work with systems that engage to MAC level
energy conservation as well.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, an efficient energy management framework
to provide satisfactory QoI experience in IoT sensory envi-
ronments is studied. Contrary to past efforts, our proposal
is transparent and compatible to lower protocols in use, and
preserving energy-efficiency in the long run without sacrificing
any attained QoI levels. Specifically, we first introduce the new
concept of QoI-aware “object-to-task relevancy” to explicitly
consider the sensing capabilities offered by an object to the
IoT sensory environments, and QoI requirements required by a
task. Second, we propose a novel concept of the “critical cov-
ering set” of any given task in selecting the objects to service
a task over time. Third, energy management decision is made
dynamically at runtime, as the optimum for long-term traffic
statistics under the constraint of the service delay. Finally, an
extensive case study based on utilizing the object networks
to perform water level monitoring is given to demonstrate the
ideas and algorithms proposed in this paper, and a simulation
is made to show the performance of the proposed algorithms.

As for the future work, we are interested in more realistic
task models to better describe the relationship between tasks
other than the exclusive task model based on the semi-Markov
process. We would like to study how the system learns and

maintains the task model and how sensitive the corresponding
algorithms are to the accuracy of the model. Meanwhile, this
paper mainly focus on a centralized control framework which
prohibits the scalability as the number of objects increases,
and therefore we are interested in extending the idea to a
distributed control framework. Finally, we are planning to have
a real world deployment of our proposal as a proof-of-concept.
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