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The increasing deliberate and/or ad-hoc deployment of sensor networks and the premeditated and/or oppor-
tunistic use of sensor-derived information provides enhanced visibility to everyday activities and processes
that enables fast-paced decision making in personal, social, civilian, military, and business contexts. The
effectiveness of the decisions made depends on the quality of the information gathered. In this paper, we
highlight and build upon our recent work in the area of quality of information (QoI) for sensor networks. We
present a quality-value layered definition of QoI, where the former relates to context-independent aspects
and the latter to context-dependent aspects of an information product. Then we present a taxonomy of per-
tinent quality and value attributes anchored around a simple ontological relationship between the two. We,
then, introduce a framework for assessing information products across their various attributes and ranking
them based on the value they bring to a task. We close with a summary of the paper and a brief discussion
of future directions for QoI research.
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1. INTRODUCTION
We gather information to gain knowledge and build an understanding of things that
interest us. For example, we gather information about a painter’s life and the cultural
and political situation surrounding it to gain a greater understanding and a deeper ap-
preciation of the situations and events that influenced his or her artwork, or we collect
information about a company’s financial standing and actions to build an understand-
ing of its future prospects. Quite often this knowledge and understanding aids us in
some form of decision making and action taking, such as investing on the company
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(or the painting) or divesting from it. The degree to which we understand the world
and the situations of interest depends on the pertinence of the information that we
have access to, its accuracy, timeliness, completeness, provenance, and so on. In some
broad sense, our understanding of situations depends on the qualities of the available
information regarding the situation at hand.

We use sensor networks, such as wireless sensor networks (WSNs), to collect the
pertinent (hopefully) information. The sensor-derived information (or simply, sensor
information) will feed end-users such as humans, like an information analyst or a deci-
sion maker, or actuators, i.e., computer-controlled processes that act in response of the
information they receive. Sensor information may pertain to the temperature distribu-
tion in a building whose environmental conditions need to be controlled, the vital signs
and location of a patient whose health needs to be remotely monitored, the stress levels
of a bridge whose structural health needs to be monitored, or the position, capabilities,
and intentions of enemy troops, insurgents, etc., so that adequate preparations can
be made. Sensor networks could be deployed purposely for supporting specific sensor-
enabled applications or overlayed on top of existing “general-purpose” data networks
as is the case with participatory sensing supporting crowdsourced-based applications.

The “goodness” of a network in performing its communication tasks is typically de-
scribed by quality of service (QoS) attributes (bandwidth, delay, delay jitter, and loss
probability) and the network’s ability to attain levels for these attributes that are ap-
propriate for a class of applications, such as best effort, constant or variable bit-rate.
Analogously, one would expect that the goodness of a sensor network in performing
its information-delivering tasks will be described through quality of information (QoI)
attributes. Typically though quality for sensor networks has been thought as cross-
layered extension of traditional QoS elements including routing topologies for efficient
data distribution, energy efficiency and network lifetime, deployment coverage, data
aggregation and in-network-processing, power control and bandwidth maximization,
etc. All these are very important aspects of a successfully operating sensor network
and will ultimately relate to its effectiveness as an information source supplying appli-
cations with desired information. However, these introvert, network-oriented quality
aspects of sensor networks cannot capture in their entirety the extrovert, information-
producing, application-oriented quality aspects of the network. For example, in Inter-
net of Things [Gershenfeld et al. 2004] or military related applications rely heavily
on highly heterogenous ad-hoc or planed sensory infrastructures. The primary infor-
mation fusion challenge in these applications is the extraction of relevant information
from the overwhelmingly large pools of data to enable a decision maker to determine
the best course of action in light of the mission objectives. In other words, the challenge
is to best transform data to decisions (D2D) [Blasch et al. 2011]. While several of these
information producing sensor networks are composed of systems engineered for a spe-
cific purpose, e.g., object tracking systems in military networks, the technologies used
in these systems are usually generic, and these systems could be modified as needed
for other applications. Because not all decisions can be anticipated beforehand, it is
desirable that the sensor systems and the networks that transport and transform the
raw data to information are flexible enough to accommodate multiple applications in
order to present the best information possible to the decision maker in context of mis-
sion objectives and operational constraints. To this end, QoI provides the underlying
framework to enable methods to best discover, collect and fuse data sources in light of
the information needs of the decision maker.

Looking into the extrovert quality aspects of sensor networks, this paper is orga-
nized as follows: In Section 2, we present our sensor network high-level model and
terminology that serves as a backdrop for the rest of the paper. In Section 3, we “build”
our quality-value layered definition of QoI and in Section 4 we present a collection of



related quality and value attributes organized according to this definition. In Section 5,
we introduce an information valuation framework based on the value attributes of a
piece of information. We conclude in Section 6 with summary of the paper, some obser-
vations, and a brief discussion of possible research directions regarding QoI. Sections
include background and related work as necessary both to set the stage and contrast
our research pursues from past efforts.

2. THE SYSTEM MODEL
The fusion model proposed by the Joint Directors of Laboratories (JDL) Data Fusion
Working Group comprises a hierarchy of fusion processes spanning from low level fu-
sion of features that are used for object detection, classification, identification, and
tracking, to higher levels of fusion for current situation awareness as well as future
impact assessments [Steinberg et al. 1999; Llinas et al. 2004]. Higher level fusion re-
quires a broad range of information that is disparate over time, space, and spectrum.
This information is derived from lower level fusion of the source data. These differ-
ent levels of information fusion and assessments could happen at different points in
the end-to-end path between the information sources and the end-users, the analysts
and decision makers. Nonetheless, lacking broader context, lower level fusion will typ-
ically occur closer to the sources (e.g., sensor nodes), while higher layer fusion will
occur further away from these sources, either in transit within the networks connect-
ing multiple sensing systems (sensors or sensor networks) or closer to the end-users
where information from many different disparate sources can coalesce to provide the
broadest possible coverage.

Along with the layered information processing fusion architecture afforded by the
JDL model, in Figure 1 we take a systems architecture view of fusion; for most ap-
plications, the JDL model fits within the processing occurring within network nodes
or at a central processor near the user. Specifically, Figure 1 presents two views of a
sensor network deployment: (a) an information flow view is illustrated on the left, and
(b) a layered operations view that is executed on these flows is illustrated on the right.
Both views are applicable to an end-to-end system comprising sensors and sensor data
transport/fusion/application system. On the layered stack, the data acquisition and
application(s)/middleware layer are part of any end-to-end system. On the other hand,
the data transport and system level fusion layers are optional layers that might not
exist in highly integrated sensor-enabled systems, where the sensing system is inte-
grated with its own application (e.g., an autonomous robot). In this case, the entire
stack collapses down to two layers, the data acquisition and the application layers-
where applications themselves may be responsible for any sensor data manipulation
such as fusion. However, for highly distributed, multi-sensor systems feeding informa-
tion to multiple applications, such as the aforementioned sensing tasks, every layer in
the stack shown could be present.

In this set-up, the term measurements applies to the raw (measurable) data col-
lected by the sensors, such as acoustic measurements, temperature measurements,
spectrum measurements. Nevertheless, the information leaving these data sources
and transported through the sensor and other networks are referred to as sensor ob-
servations. A sensor observation leaving a sensor node may not always represent raw
measurements but could be the outcome of a local sensor fusion (made using the sen-
sor measurements), signifying, for example, the presence of an object as detected by a
particular sensor at a particular time instant, or that an object’s color is red. Another
example includes image processing where the raw measurements are the light levels
measured on a focal plane array. The processed observations could be some low level
computer vision enhancement or a processed observation such as a target detected at
pixel (x, y) represent a line of bearing representing (a, e) degrees in azimuth and el-
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Fig. 1. Information flow and functional views of sensory information.

evation respectively. Note that the terminology used is in line with the definitions of
measurements and observations in [Open Geospatial Consortium Inc. 2010], where an
observation refers to the act of assigning a communicable descriptive representation
(e.g., a number, term or other symbol) to a phenomenon, while a measurement relates
to observations that pertain to measurable quantities (i.e., having an amount and a
unit); observations related to categorical entities, such as color, are also referred to as
“category observations” [Fowler 1996].

Sensor observations are processed at “system level” fusion sinks to produce system-
level sensor reports, which are what applications experience coming (or reported) from
the sensor network. For example, a sensor, through its local acoustic measurements,
may observe the presence of a motorized four-wheel vehicle (a category-observation) in
its vicinity, while the sensor network may confirm, at its level, and report to applica-
tions the presence of this vehicle and it may also report additional “objects” observed
by other sensors in the network. It is entirely possible that, depending on the number
of fusion layers between sensors and applications, observations and reports may rep-
resent semantically (and event syntactically) the same information content. For this
reason, we would succinctly refer to these as sensor information products, with sensor
nodes and networks producing information products (in the form of sensor observa-
tions) and applications consuming them (in the form of sensor-originated reports). An
information product could represent a stream of data (e.g., temperature readings) from
a particular source or a collection of sources, or individual event reports, e.g., location
of an explosion, etc.



When a sensing system is designed and deployed in closed-coupled fashion with the
corresponding application, the application designer has adequate (with some caveats,
of course) knowledge and control of the operational context of the sensors, e.g., which
sensors (or types of sensors) may be involved in an observation, what sensors are (or
will be) trained to observe, when to observe, for how long to observe, how to express
their observations syntactically, etc. In other words, the applications know what their
sensors can provide and the sensing system knows what the needs of their applica-
tions are, i.e., the information products produced by the sensors and consumed by the
application implicitly share a common playing field, or, what we refer to as, a com-
mon context of operation (CCO). However, such a naturally shared CCO cannot exist
in loosely-coupled, open deployment environments where sensing systems and sensor-
enabled applications could be designed, deployed, and operated at different times and
by entirely different organizations populated by people of different expertise. Coping
with unknown CCO could become a persistent reality when considering wireless and
mobile senor networks where associations between sensors and applications can be
ad-hoc and transient as well. Thus for the highly dynamic, open, late binding and
rebinding cases, CCO needs to be established on-the-fly and information enrichment
through QoI attributes and associated metadata can play a central role for this.

3. QUALITY OF INFORMATION
Robert M. Pirsing, in his philosophical novel “Zen and the Art of Motorcycle Mainte-
nance: An Inquiry into Values” (William Morrow, 1974), said “. . . Even though quality
cannot be defined, you know what it is . . . ” underscoring the easiness of understand-
ing quality in general, i.e., having a gut feeling about it, but the difficulty in formally
defining it. Such is the case with quality of information as well.

In the computerized world, information quality has been traditionally studied in
the context of enterprise data management systems and processes, managing infor-
mation stored in data warehouses to support business-level processes and decision
making [Wang and Strong 1996]. The term has also been associated with the outcome
of Web searches [Knight 2007], and with information fusion applications of detection,
classification, identification, and tracking for military applications [Blasch et al. 2004;
Blasch et al. 2010]. The most used definition of information quality (IQ) in these cases
refers to information that is fit-to-use (for a purpose) –[Ehikioya 1999] considers a
similar definition of processed data relevant to a user– and quality attributes such as
accuracy, consistency, completeness, timeliness, are frequent terms in the lexicon of IQ.
The terms “dimensions” and “characteristics” were also used in the literature instead
of “attributes;” we will also use the term “metadata” later in the paper as well.

Both the traditional, business-centric and Web-search views of IQ apply to infor-
mation that is consumable by human end-users, e.g., the employees of a company, its
business strategy organization, a computer user submitting a query trough a Web-
search engine, an intelligence analyst, see also [English 1999]. Information in these
cases resides in structured (e.g., database) records or unstructured (e.g., text) docu-
ments, which are put together, retrieved, disseminated, and presented to humans at
time-scales that reflect the human-centric processes. These can range from a few sec-
onds for Web searches to days, weeks, and even more, when it comes to the collection
of business-related information, e.g., the planing and execution of market analysis
through customer interviews and the subsequent tabulation and analysis of the re-
sults. Furthermore, information in this case is considered to be an enterprise asset
in that a business unit can plan and exercise control over the processes of collect-
ing and normalizing information for storage and dissemination. This asset aspect of
information has given rise to management processes for ensuring IQ such as the to-



tal data quality management (TDQM) program at MIT1 and total information quality
management (TIQM) system [English 2009], as well as to industry efforts to establish
good data quality management practices for inter- and intra-business processes [West
2008].

The view that information is an enterprise asset, or more generally an organiza-
tional asset, that the user (or someone in the user’s organization) can exercise a rea-
sonable amount of control to improve its quality before it is delivered to a user is also
implicitly shared by the JDL-related applications. The latter assume ownership of (or,
at least, access privileges to) the sensory sources which allows the user to manage them
to produce information of quality that satisfies the user’s needs. Such applications are
examples of the tightly-coupled systems we mentioned at the end of Section 2 that re-
quire careful planning before deployed in the field. However, the view of information as
an organization asset does not account for cases where information sources are beyond
the users control, such as the case with Web searches. Trust of a sensory source may
not necessarily mean trusting only its sensing capabilities [Blasch et al. 2004], but
also trusting the supplier of the information who also possibly owns the information-
generating sensory source. In particular, with the emergence of loosely-coupled, dy-
namic application paradigms such as the Internet of Things (IoT) [Gershenfeld et al.
2004], crowd-sensing [Burke et al. 2006], mobile ad-hoc wireless networks, etc., gives
rise to multi-modal, highly-distributed, multi-administrative, on-demand, ad-hoc, etc.,
sensor-and-actuator loosely-coupled application paradigms. These also include fast-
paced machine-to-machine (M2M) applications that challenge the time-scales, and op-
erational assumptions that information quality has been traditionally viewed under.
Furthermore, while information may still be used to drive decision making, its end
users may not always involve humans directly, or the decision making may not be a
human-controlled business process.

Thus, we feel the need to broaden the scope of IQ to better reflect the much broader
range of alternatives under which information can assume form, collected, stored,
shared, used, etc. This broader scope does not intend to replace the traditional views of
IQ, but rather augment and complement them. Our point of departure for this broader
scope is the observation that a “fitness for use” view for information quality does not
necessarily lend itself to multiple uses of information within an organization [English
2009] and that quality may exhibit inherent and pragmatic qualities, i.e., accuracy and
value, respectively, to a business [English 1999].

The adherence to enterprise and business processes in the aforementioned IQ trea-
tises is too restrictive in view of the emerging dynamic application paradigms. Instead,
we prefer to consider information first on its own right and then how it relates to a pro-
cess or an application context in general. Thus, we still maintain the notion that the
application context within which information is to be interpreted and used plays a key
role in assessing information quality. However, we recognize that the application space
where a piece of information can be used can be very broad and possibly unknown at
the time of its acquisition. For example, a particular image of a given resolution may,
at present time, be useful for some applications and not useful for others, but this situ-
ation may reverse itself at some future time. Thus, we feel that a definition of quality of
information (QoI)2 needs to explicitly acknowledge this possibility. In particular, while
attributes such as “timeliness,” “completeness,” “relevancy,” etc., will certainly relate to
the quality of an information product, we prefer to consider them as attributes that are

1See, http://mitiq.mit.edu/.
2In the sequel, QoI, instead of IQ, will be our preferred abbreviation as it follows the established “Qo[X]”
template used in networked-related qualities, such as QoS and QoE, for quality of service and experience,
respectively, see also [Stankiewicz et al. 2011].



Table I. Examples of quality and value related statements and questions.

Quality statements (quality facts) Quality-related questions (value judgments)

There are 10% of measurements missing. Is 3%, 25ft, 15 min good enough for my needs?
<accuracy and timeliness>

The sensor measurement(s) has a 3%
margin of error.

Who provides the location information?
<trustworthiness>

The location information is accurate to
within 25ft.

Does the sensor information covers my needs, e.g., content-wise,
spatiotemporally?
<completeness>

This (sensor-derived) information is 15
minutes old.

Do I need this high-resolution image?
<pertinence or relevancy>

This is a 12 (4x3) megapixel image (high
resolution).

Can I “consume” this piece of information, e.g., does it possess
my desired syntactic/presentation form?
<readability>

derived from the inherent quality properties of the product on a per use-case. Hence, a
statement, for example, that an information product is not timely enough, should not
penalize the product in perpetuity but rather only within the scope of a particular use.
For other uses of the product, using again the inherent quality properties, alternative
timeliness statements could be made.

More concretely, let us take a look at Table I–the table should be read a column
at a time. On the left column, we have a collection of quality statements that can be
ascribed to a piece of information, i.e., an information product, permanently as they
describe innate properties of that product. On the right column, we have a collection
of quality-related questions that answering them leads to value judgments regarding
an information product. These value judgments, which are based on quality facts such
as those on the first column, are ascribed to an information product on a case-by-
case basis and only within the scope of the application that uses them and within the
context of a particular use. Hence, a high-resolution image may be deemed relevant in
one case and entirely irrelevant in another. Most importantly, when a judgment of “low
value” is made for an information product, one should not necessarily be precluded
from (or be biased) against ascribing a “high-value” rating to the same product ever
again in the future.

The aforementioned split aspect of quality will carry through to our definition of QoI
shortly. Before presenting the definition, though, we first present a few other quality
definitions from industry standards bodies. ISO 9000 is a family of standards related
to quality management systems. It defines quality (within its context) as:

— ISO 9000: Degree to which a set of inherent characteristics fulfills requirements.

ITU-T Rec. E.800 deals with quality of service in the provision of digital telecommuni-
cation services. It defines quality (within its context) as:

— ITU-T Rec. E.800: Totality of characteristics of a telecommunications service that
bear on its ability to satisfy stated and implied needs of the user of the service.3

The IETF RFC 2386 deals with a framework for quality of service based routing in the
Internet. A glossary entry in the RFC specifies quality (within its context) as:

— IETF RFC 2386: A set of service requirements to be met by the network while trans-
porting a flow.

3This definition is from the 5th edition of Rec. E.800 [International Telecommunication Union 2008]. The
following definition from the previous edition, published in 1994, appears frequently in the literature as
well: “The collective effect of service performances, which determine the degree of satisfaction of a user of
the service.”
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In the above statements, we have highlighted the terms “characteristics” and “re-
quirements” as they point to the use of dimensions along which judgments of quality
(within their respective contexts) are to be made. We adopt the same principle in our
QoI definition. However, since we would like to be able to reconsider an information
product as often as necessary, we do not ascribe a use-context to an information prod-
uct from the outset (as the above definitions implicitly do). Instead, borrowing from
the previous split view of quality, we explicitly separate the ability of judging an infor-
mation product from the outcome of judging. The ability of judging relates to quality
and quality attributes (the inherent characteristics) of an information product that
feed the judging process. The outcome of judging relates to the value that a piece of
information brings to an end-use. Using the quality of the available information, value
judgments are made about this information on case-by-case basis.

One could envision quality and value represented by layers of an abstract stack with
the value layer stacked on top of the quality layer. This is shown in Figure 2, where
an information product, e.g., about the location of a truck, is annotated with QoI at-
tributes, such as location error, time the location refers to, source owner/operator, etc.
This product may be used by a number of applications, such as a surveillance applica-
tion, a mobility modeling tool, or an intelligence analysis application. The information
product with the given QoI may be valued differently in different use cases; this is
indicated by the varying widths of the VoI assessment arrows in the figure.

Figure 3 adds a temporal aspect to the QoI/VoI stack of Figure 2. Specifically, the
figure marks the time tv at which an information product is to be valued within a
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particular use context. All meta-information collected prior to that time (noted as t−v )
that can feed into the valuation process represents the product’s QoI. The QoI and
the specifics of the use case results in the product’s VoI at time t+v (for this particular
case). The figure also draws parallels with a trial process where a verdict is reached by
analyzing the evidence available at judgement time within the context of a particular
trial case; note that a piece of evidence may have different value at different trial cases.

With the above in mind, we define:

— Quality of information (QoI) the body of tangible evidence available (i.e., the innate
information properties) that can be used to make judgments about the fitness-of-use
and utility of information products.

— Value of information (VoI) is an assessment of the utility of an information product
when used in a specific usage context.

Each definition relates to the corresponding layer in Figure 2, and the entire 2-layer
stack represents the scope of the QoI domain. We acknowledge the abusive reuse of
the term QoI that serves as the acronym for both the entire focus area of this paper
as well as for the lower layer of the stack in the figure. Nonetheless, having the above
definitions provides proper context when, say, an intelligence analyst declares that
information products from a particular source are of low quality (or, low value) for
her job. Incidentally, contrast her declaration with that of a digital camera evaluator
declaring that the “superFancyCamera X11” (the source) takes high-quality pictures



(the product), a declaration that is devoid of the use context for these pictures; this
information is of high-value to those seeking to purchase a camera. Looking at the
pictures, the analyst may too marvel the vibrant colors of the breathtaking sunset
scenery captured by the camera. However, she may still ascribe a low value rating to
them if they are taken at an unknown or irrelevant place and time for her job.

In addition to the layering of QoI and VoI in figure 2, [Thornley et al. 2009a] has
provided a further refinement of VoI when considering “hybrid” end-to-end use cases,
such as intelligence gathering, analysis and action taking and military missions. In
these cases, information gathering involves a combination of both fast-paced (hard)
and slower-paced (soft) sources, e.g., sensors and humans, feeding information to a
human-in-the-loop decision maker, e.g., the commander of a mission. According to this
refinement, value (hence, VoI) is perceived by the human decision maker, while the
mission experiences the utility of information (UoI). Specifically, VoI reflects the confi-
dence the decision maker could gain in making a decision by due time, when a particu-
lar information product becomes available, given the decision maker’s cognitive state,
including her current awareness of the situation, the effects of information overload,
work overload, training and past experiences, etc. UoI is the impact that the infor-
mation content of the product would have on the outcome of the mission should it be
utilized. In the absence of the human unpredictability, VoI and UoI are expected to
track each other, however, this may not always be true. For example, given his cogni-
tive state, the decision maker may decide to act upon the availability of a piece of in-
formation that appears to reinforce a prior, biased belief of his and, hence, subjectively
(and possibly unconsciously) perceive it as high value. However, the actions taken may
have less than desired outcome for the mission, in which case, the seemingly high-
valued piece of information for the decision maker had little, or even negative, utility
for the mission. This refined view would be applicable to broader human-to-computer
interactive systems, but our focus is on the automated and computerized portions of
sensor-enabled applications and services and we will consider VoI and UoI indistin-
guishably.

We close this section by noting that sensor observations are used, typically, to pop-
ulate the state of a model (or, abstraction) of the world of interest, e.g., provide for
the location and velocity of a vehicle crossing an area under surveillance. In this case,
information represents an estimate of that state; QoI represents the estimate’s good-
ness measured along quality dimensions such as accuracy and latency, and influenced
by the various processes that produced it, i.e., its provenance; and VoI represents its
importance (with the given QoI) in a specific use-case.

In the next section we will delve further on the description of QoI and VoI though
quality and value attributes.

4. THE 5WH PRINCIPLE AND QOI/VOI ATTRIBUTE ORGANIZATION
QoI represents the body of evidence available about an information product that can
be used to make judgment statements about its value for a particular purpose. In
this respect, the information content itself, e.g., a temperature measurement, or the
scenery in a photograph, is not the only thing of importance. For example, Table II
shows an information product regarding a temperature measurement whose contex-
tual description becomes richer and richer as information about the information, i.e.,
the meta-information (or, metadata) representing the body of evidence, is added at
each row. The added information allows us passing a better judgment regarding the
(application-specific) value that the temperature measurement of 26◦C could have. For
example, after the sixth row in the table has been revealed, we can conclude that this
measurement is of high-value for a historical data analysis of sorts (e.g., of one’s office
location), but of quite low-value for a real-time monitoring application. This value dis-



Table II. Metadata enriching a temperature measurement.

(1) 26◦C
(2) 26◦C (±1◦C)
(3) 26◦C (±1◦C) 3rd floor
(4) 26◦C (±1◦C) 3rd floor South side
(5) 26◦C (±1◦C) 3rd floor South side 19 Skyline Dr.
(6) 26◦C (±1◦C) 3rd floor South side 19 Skyline Dr. July 15 2011
(7) [26]◦C (±[1]◦C) [3rd] [floor] [South] [side] [19] [Skyline Dr.] [July] [15] [2011]

tinction could not have been made with the body of evidence available up and including
the fifth row.

We have repeated the last row of the table and bracketed its column entries to under-
score another very important QoI attribute that of provenance. Provenance describes
how the information at hand, including any related metadata, came to be, for example,
the entries in the last row may have been randomly selected from a set of alternatives.
Associated with provenance are also qualities of the source of information and the pro-
cesses and entities that interacted with it. For example, source qualities may pertain
to when was a sensor last calibrated, and by whom, or what random process was used
to select the entries in the seventh row of Table II and how reliable is that process.
Provenance thus relates, among others, to trust and reputation in the information
source.

The added body of evidence is captured by a collection metadata ascribed to an infor-
mation product instantiating various information attributes. These metadata may be
persistently attached to the information product and “travel” together with it, or may
be stored at metadata repositories and accessed on a per need basis. Since, seeking for
a desired information product involves processing of its metadata, the choice between
persistently attaching to or maintaining the metadata separately from their corre-
sponding information products (or providing some in-between hybrid combinations) is
a design trade-off between storage, bandwidth and responsiveness constraints.

In [Bisdikian et al. 2009a], we introduced the 5WH primitive principle (what, where,
when, why, who, and how) to systematically account for (meta-)information pertinent to
an information product. The what primitive represents everything directly tied to the
information content, like the measurement value, its units, its accuracy, etc., while the
where and when primitives represent its physical context, i.e., the location and time that
the information content relates to. These three primitives, which relate to the proper-
ties of the information content, are in line with the Semantic Sensor Web’s (SSW) effort
to enrich sensor data with spatial, temporal, and thematic annotations [Sheth et al.
2008]. In addition to the content-related primitives, the who and how primitives relate
to the source of information. Specifically, the who primitive represents the information
provider, like the provider’s name, license ID (if one is required), trust level, etc., while
the how primitive represents the specific sources and processes (e.g., the sensors and
fusion algorithms) used to produce the information. In other words, the who and how
primitives relate to the information provenance. Finally, the why primitive represents
the “mission” for which an information product is needed, e.g., for securing a perime-
ter, and it forms the basis for VoI, i.e., of valuing an information product within the
context of a specific use. Figure 4 summarizes the relationship between the 5WH and
the QoI/VoI stack.

In [Bisdikian et al. 2009b], we presented a first attempt to categorize QoI and VoI
attributes and metadata inspired by the 5WH principle. In example cases considered
in [Bisdikian et al. 2009b], we presented QoI and VoI metadata classes expressed in
UML data model abstractions, hence, naturally leaning towards organizing the at-
tributes according to possible structural relationships when instantiating their cor-
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Fig. 4. The 5WH primitive principle for information attributes.

responding metadata. Despite the layered definition of quality and value, our initial
organization had a few inconsistencies in naming, e.g., using timeliness (which is
clearly a use-dependent judgment call) to describe a quality attribute such a latency,
or considering reputation as a value attribute.

More recently, [Rogova and Bosse 2010] considered information quality in interac-
tive computer-aided human decision-making systems and introduced an information
quality ontology centered around the quality of the (a) information source, (b) infor-
mation content, and (c) information presentation. While [Rogova and Bosse 2010] did
not make the distinction between QoI and VoI, its concise ontology of pertinent quality
attributes lent a helpful hand in our effort to refine more consistently our organization
of QoI and VoI attributes that is not tied to the structural relationships in instantia-
tions of the associated metadata. We note that the number of quality attributes con-
sidered has been quite generous at times–over 170 were noted at one point in [Wang
and Strong 1996], before they were trimmed down to 20 representative quality dimen-
sions (representing collections of similar attributes) which they were further grouped
into 4 broad categories (accuracy, relevancy, representation, and accessibility). Fur-
thermore, [Knight 2007] noted of 20 different information quality frameworks each
with its own collection of attributes, dimensions, and categorizations. Hence, the con-
ciseness of the ontology of quality attributes in [Rogova and Bosse 2010] was indeed
quite attractive.

In refining our attribute organization, we started by abstracting the original meta-
data classes in [Bisdikian et al. 2009b] and then placed them in thematically related



categories of attributes by borrowing nomenclature from the ontology in [Rogova and
Bosse 2010] whenever appropriate. We then asked ourselves whether a particular cat-
egory of attributes can be interpreted likewise independently of a use or not. We as-
signed the former categories to the QoI attribute “bucket” and the latter to the VoI
bucket. We have considered only a subset of the categories in [Rogova and Bosse 2010]
as the remaining ones were not relevant to our case or were more specialized versions
of the categories considered, in which case they implicitly have also inherited the QoI
vs. VoI categorization designations of their progenitors. Figure 5 shows the top ontolog-
ical relationship of the refined attribute bucket categorization, where an information
product is qualified by (see has in the figure) a collection of QoI attributes (and associ-
ated metadata) which together with an end-use context determine (computes) its value
described by the VoI attributes (and associated metadata) assigned (ascribed) to the
product for the particular use.

use independent use dependent

information 
product

VoI=fcntx(QoI)QoI

has ascribed

computes

Fig. 5. The root information product/QoI/VoI ontological relationship.

Figure 6 shows the refined organization of QoI attributes in a taxonomy of QoI at-
tribute categories. Having no direct counterpart in [Bisdikian et al. 2009b], the two-
tone attribute categories of content and accessibility have been directly borrowed
from [Rogova and Bosse 2010] and used as appropriate in our refined organization;
also, the yellow-lettered categories of accuracy, latency, and provenance reflect the
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Fig. 6. The QoI attribute taxonomy.

closing comments in Section 3. First of all, the attributes and associated metadata4

are interpreted within a descriptorContext that plays role similar to our original
AppDomainCntx UML class for QoI in [Bisdikian et al. 2009b], and describes the syntac-
tic and semantic rules that the rest of the metadata may follow, e.g., they are encoded
according to SensorML [Open Geospatial Consortium Inc. 2007]. The rest of the QoI
attributes are organized under two broad categories, those applicable to content and
those to provenance. These two broad categories correspond directly to the entries in
the QoI block in Figure 4.

The content category comprises three subcategories pertaining to physicalContext,
integrity, and accessibility. The physicalContext, similar to our original Context
in [Bisdikian et al. 2009b], includes the spatiotemporalContext of the information,
i.e., the time and space horizon over which this information product pertains and is

4In the sequel, we will not distinguish between the terms attributes and (associated) metadata and will use
them interchangeably.



valid for. The integrity relates to imperfections in the reported content values and
has been extensively subdivided in [Rogova and Bosse 2010] under two main cate-
gories: uncertainty and imprecision. For our sensor-derived information, we partic-
ularly consider accuracy, contained under imprecision in [Rogova and Bosse 2010],
expressing any knowledge about error behavior, such as error range, variance, etc.
Thus, while we previously had entirely different (UML) classes for integrity and
accuracy under a superclass for QoI attributes, since these are thematically related
we have (re)categorized their relationship accordingly. The accessibility category
encompasses attributes that relate to the accessing the information product, such as
the cost for accessing it, in both monetary and non-monetary terms, e.g., energy con-
sumption, as well as the time it takes to retrieve the information (latency) includ-
ing the time for tasking sensors and sensing, when new sensor measurements are re-
quired, accessSecurity, and encoding describing how the information is represented
or can be accessed, e.g., a Java serialized object; the latter is analogous to our original
QoIFormatAttr in [Bisdikian et al. 2009b].

The provenance category relates to the entire end-to-end source-to-sink path that
the sensor-derived information followed. Hence, provenance relates not only to infor-
mation sources, as considered in [Rogova and Bosse 2010], but also to any processing,
e.g., fusion, that happened from the moment the information was originally “sensed”
until it arrived to its destination. While one could consider the output of information
processing to represent a new source of information, we prefer considering provenance
as capturing the entire (known) chain of information processing. Within provenance,
we specifically note the reputation of the source (or process) that describes a publicly
held opinion about the source’s competence, truthfulness, etc., in providing content
at the stated quality levels. We contrast this with trust (see in VoI later on) which
results from direct or indirect interactions of information users with sources (or pro-
cesses);5 hence, we categorize trust under VoI. The reputation is one of the categories
whose scores may evolve with time. Such categories may be populated with the latest
available scores just prior to a valuation time, see time t−v in Figure 3.

Figure 7 shows the refined organization of VoI attributes in a taxonomy of VoI
attribute categories. We explicitly mark the end-useContext, similar to our original
AppDomainCntx class for VoI in [Bisdikian et al. 2009b], that forms the basis for the
value judgments passed to the content and provenance of an information product. The
relevance attribute category relates to how “close” (or, complete) the information con-
tent provided is to the one requested. It pertains to the physical and thematic coverage
of the information product, the former represented by the spatiotemporalRelevance
and driven by the spatiotemporalContext QoI attribute and the latter represented
by the thematicRelevance6 and driven by the original query that resulted in the spe-
cific information product. For example, consider a query about “images of public-use
vehicles (buses, taxis) passing intersection X during morning and afternoon rush-
hours,” and an information product in response that only provides images of public-
transportation buses (thematicRelevance) at intersection Y, which precedes intersec-
tion X , during morning rush-hours (spatiotemporalRelevance). Ref. [Tychogiorgos
and Bisdikian 2011] considered the spatial relevancy based on the degree of over-
lapping that there is between the spatial characteristics of the desired and provided
information. The integrity attribute category (including accuracy) relates to judg-
ments made based on the corresponding QoI attribute, i.e., the degree to which the

5Indirection could result from trust transitivity, where one trusts (to a degree) somebody else’s trust level
for a source.
6This corresponds to the completeness typically found in the literature. We prefer using thematicRelevance
instead as it describes what is about more clearly.
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integrity of the information product is satisfactory for the task at hand. Likewise, the
timeliness relates to judgments made regarding the timely availability of the informa-
tion product, hence, it closely relates to and based on the accessibility QoI attribute
category. The presentation category, similar to our original VoIConvenienceAttr class
in [Bisdikian et al. 2009b], pertains to how information is organized and presented to
the user. Finally, under provenance, we specifically note trust which, as discussed ear-
lier, is based on the disposition of information users against (or in favor of) the source
of the information product that may result from past direct or indirect interactions
with the source.

In closing, we note that in [Rogova and Bosse 2010] presentation was, for the pur-
pose of that paper, at par with content and source (the provenance in our case). We
could have placed presentation likewise in the VoI attribute taxonomy, or alterna-
tively associate it with relevance and specifically thematicRelevance; in fact, in [Ro-
gova and Bosse 2010] completeness (our thematicRelevance) was considered under
presentation. However, we prefer to associate presentation directly with content,
since it clearly relates to it and how it is experienced by end-uses. Also, doing so
preserves the same two-prong high level content/provenance structure we have for
the QoI attribute organization. However, we distinguish presentation from relevance
which we consider relating only to the actual information content but not necessarily
its representation.



5. VOI ASSESSMENT AND THE ANALYTIC HIERARCHY PROCESS
Assessing the value of an information products allows one to rate the fitness and util-
ity of an information product to a task. More importantly, it allows determining which
products are useful, ranking the useful products, and selecting those that can best sup-
port the information needs of users, especially in the presence of resource constraints,
monetary or otherwise. The study of value of information has its roots in the theory
of decision making. It has been related to the cost of acquiring an information product
in order to reduce uncertainties due to insufficient knowledge during decision making
and, also, the benefit derived from the ensuing decision and actions taken [Howard
1966; 1968]. Here, decision making will typically refer to business related actions (in-
vest, divest, store raw material, sell in particular market segments, compete for a
contract, initiate an ad campaign, and so on) and, hence, costs and benefits relate to
moneys that are ultimately expected (probabilistically) to be gained or lost as a result
of the decisions taken. More recently, [Hubbard 2007], considering again business ac-
tions, defined the expected value of information (EVI) as the difference in the expected
opportunity loss (EOL)–the average loss in monetary benefit in the chance that the
decision made was wrong–before the information product was available to the decision
maker and after it became available. The implication here is that one should not pay
more for acquire information than the reduction in EOL that it can bring.

The above cases deal with static situations where simple probabilities suffice to de-
scribe the related models. However, with evolving missions where cost and benefits
change over time more, elaborate are more appropriate. Considering an intelligence,
surveillance and reconnaissance (ISR) military mission, [Thornley et al. 2009a; Thorn-
ley et al. 2009b] considers combining stochastic models describing: (a) the mission
physics, including the geography, sensing assets that are deployed, the sensing pro-
cess, friend and foe mobility models, etc; (b) the intelligence service; (c) the situational
awareness; (d) the decision makers; and (e) the actor. Applying performance evalu-
ation process algebra (PEPA) techniques7 a continuous time Markov chain (CTMC)
abstract model of the system is built. The CTMC model together with simulations is
used to estimate the possible mission outcomes along timeliness capturing different
operational realities and initial conditions and capture the value that the availability
of various information product might bring to the decision maker at different times.

The PEPA approach provides an assessment of VoI by stochastically recreating en-
tire mission storylines off-line involving the aforementioned five models. Thus, it can
provide fine-grained analysis of VoI tuned to the specifics of each different mission it
models. For more timely assessment of VoI, especially when considering only the au-
tomated and computerized portions of sensor-enabled applications and services, tech-
niques that consider assessment of VoI across its various attributes have been sug-
gested. As our interest is in such automated systems, we draw inspiration from [Ro-
gova and Bosse 2010] which provides an extensive discussion on “. . . assessing the val-
ues of information quality . . . ” suggesting the possible use of multi-criteria decision-
making techniques for assigning a numerical value to an overall VoI measure.8 Specif-
ically, [Rogova and Bosse 2010] considers relative attribute weights to average as-
sessment scores for the pertinent information attributes, where the weights are to be
determined by experts in various application domains.

Weighted-averages along various attributes is a natural approach and has been used
elsewhere too, for example in [Hossain et al. 2007] in estimating quality for a surveil-

7PEPA is a technique for modeling systems comprising concurrent processes that cooperate to achieve the
behavior of the system [Gilmore and Hillston 1994].
8Ref. [Rogova and Bosse 2010] uses the term “quality measure” instead; however, “VoI measure” is more
appropriate in our work.



Table III. VoI attribute relative scores and weights.

relevance integrity timeliness weight w
relevance 1 2 3 0.5472
integrity 1/2 1 1/2 0.1897
timeliness 1/3 2 1 0.2631

lance application along various quality factors. Likewise, we also consider weighting
VoI attributes to evaluating an overall VoI score for an information product. By our
definition of VoI, VoI attribute weights are use-specific, for example, integrity may
weigh more than timeliness for a historical data analysis application, while for a
real-time monitoring application be the other way around. To facilitate the process of
developing weights, we introduce a repeatable assessment framework which can be
used to systematically derive these weights by the experts in the various application
domains.

5.1. A VoI valuation framework using AHP
Our VoI assessment framework is based upon the well-established multi-criteria
decision-making technique called analytic hierarchy process (AHP) [Saaty 1990; Bodin
et al. 2005]. AHP can be applied to produce attribute valuation weights systematically
based on pair-wise comparisons of valuation criteria (the VoI attributes, in our case)
and to ultimately rank information products. The name implies that it can be applied
hierarchically, which for VoI means we can repeat the attribute valuation process at
successive levels of the taxonomy tree in Figure 7 and in the end compose an overall
VoI value. Next, we present an instance of the framework through a simple, multi-tier
example.

Suppose we need to make VoI decisions based on information content and its three
attribute subcategories relevance, integrity, and timeliness. We (i.e., the domain
expert) start by populating Table III with valuation scores by comparing the attributes
of interest in pairs and noting how the attribute in a row entry is “valued” relative to
the attribute in a column entry for a particular use-case.9 The scores are interpreted
as follows: 1→equal; 3→moderate; 5→strong; 7→very strong; 9→extreme; in-between
integer values are permitted and the inverse values (1/3, 1/5, etc.) imply reversing the
comparison order. For example, based on the scores in the table relevance is somewhat
more valued than integrity (a “2”) and it is moderately more valued than timeliness
(a “3”).

The last column in Table III contains the weight vector w with the weights to be
assigned to each of the attributes. It corresponds to the normalized principle eigen-
vector of the pairwise comparison matrix, i.e., the eigenvector of unit magnitude that
corresponds to the largest eigenvalue. These weights can now be used to weigh the
relevance, integrity, and timeliness scores that experts assign to specific informa-
tion products–these scores are assumed to be normalized as well–hence, providing an
overall VoI value for the products. We have marked with bold the highest ranked at-
tribute, which, for this example, is the relevance.

The AHP-based framework can be used again for ranking products. For example,
suppose that there are three information products, A, B, and C, with pair-wise scores
comparing how each product fares against the others for each of the VoI attributes
of interest. These comparisons can be based on the metadata scores of the various
QoI attributes for each of the information products, e.g., assess, within the particular
use context, how much better the relevance of one product is relative to another us-

9AHP uses relative instead of absolute scores making it easier to accommodate both hard (objec-
tive/measurable) and soft (subjective) criteria.



Table IV. Relative scores of three products along the various VoI attributes and weights.

relevance integrity timeliness
A B C weight w1 A B C weight w2 A B C weight w3

A 1 2 1/3 0.2809 1 2 3 0.5396 1 1/2 2 0.3313
B 1/2 1 1 0.2552 1/2 1 2 0.2970 2 1 1/3 0.2894
C 3 1 1 0.4638 1/3 1/2 1 0.1634 1/2 3 1 0.3793

Table V. Evaluation and rank of the information products.

relevance (0.5472) integrity (0.1897) timeliness (0.2631) rank (r)

A 0.2809 0.5396 0.3313 0.3433
B 0.2552 0.2970 0.2894 0.2722
C 0.4638 0.1634 0.3793 0.3846

ing their QoI spatiotemporalContext attribute. As before, the same importance scale
is used and weights based on the primary eigenvector are derived and summarized
in Table IV. We mark with bold the highest ranked product for each of the three at-
tributes. Finally, in Table V we derive the product rank r by properly combining the
weighs, r = [w1|w2|w3] · w, which marks product C as the one providing the most value
for the use-case at hand.
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Fig. 8. VoI attribute weights for various integrity vs. relevance scores.

We have repeated the above process for various integrity vs. relevance scores while
keeping the rest of the relationships as per Table III. The results are shown in Fig-
ure 8, where, as expected, relevance and integrity go opposite ways as the score



between them changes, while timeliness remains relatively unaffected. Assuming the
same product vs. VoI attribute scores as in Table IV, the corresponding valuations
and ranking for the information products are shown in Figure 9. Since, relevance
and integrity weigh significantly on information products C and A, respectively, the
valuations for these products mirror the behavior of these VoI attributes, while the
valuation of product B remains again relatively unaffected.
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6. CONCLUDING REMARKS
The increasing availability of real-time and/or archived sensor-originated information
is at the heart of the next information revolution where fast-paced decision making
is supported by the enhanced visibility that up-to-the minute access to information
from a diverse set of sensory sources provides. In an environment where applications
may bind to information sources on demand the quality of the available information
(QoI) plays an important role on the effectiveness of the decisions taken. Going beyond
the operational aspects of sensor networks, such as QoS and coverage, QoI relates
to the information characteristics of sensory information, such as accuracy, latency,
and provenance. Building upon past industry definitions for quality, in this paper we
presented a layered definition of quality and value of information, where the latter
depends on the former to assess the potential utility that a particular information
product brings to the task at hand. Then, refining our prior work on QoI metadata,
we presented a taxonomy of QoI and VoI attributes grouping them under two major
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Fig. 10. The QoS/QoI/VoI relationship.

categories in each case, one for attributes related to the information content and one
for attributes related to its provenance. We do not preclude further enrichment of the
QoI and VoI taxonomies, however, we expect these to be in depth extensions main-
taining the two-prong content/provenance structure at the highest level. Finally, we
introduced a value assessment framework based on the analytic hierarchy process for
multi-criteria decision making.

It is expected that, in general, information will be retrieved directly from the sensor
networks or retrieved from sensory-data repositories (on the Web or elsewhere), then
transported over a variety of networks (LANs, MANs, WANs, MANETs, public, pri-
vate, you name it), and (possibly) further processed en route to the end-users. Hence,
it is natural to expect that the QoS delivered by the communication networks could
impact the quality of the information flows they carry, e.g., delay the information, re-
duce the amount of information delivered, and hence increase, say, the uncertainty in
the inferences that can be made with it, which, in turn, may affect the value gained by
the end-user consuming this information.

We summarize these points in Figure 10, where UserNets (the end-uses or end-users)
depend on InfoNets (the information acquisition, storage and processing facilities) to
provide the necessary information which, in turn, depend on ComNets (the information
transport facilities) to deliver this information with some QoS characteristics, which
impacts the information’s QoI, which affects the VoI experienced by the end-users.

We close by briefly highlighting a few example directions that QoI-related research
can pursue to further advance the state-of-the-art in the area. Firstly, there is a need to



succinctly describe an end-user’s information needs that can be easily communicated to
sensory information providers on demand. Secondly, there is a need to investigate the
relationship between the QoI produced by sensory-systems and the operational char-
acteristics of these systems including the impact on QoI of faulty sensor operation,
resource constraints, network performance, etc. Thirdly, there is a need to develop
systematic approaches for evaluating the value to a sensor-dependent end-use that
sensory-information of given quality could provide; these approaches should be eas-
ily reproducible and adaptable to the diverse (and unknown at the moment) variety of
such end-uses. Fourthly, there will be the need to combine the above to develop effective
management techniques for sensor networks that focus not only on improving tradi-
tional QoS but QoI and VoI for the applications they support. We believe that building
upon the QoI/VoI thesis presented in this paper, and pursing additional research direc-
tions such as the ones highlighted above, see also the survey in [Sachidananda et al.
2010]–we have already been investigating aspects along these directions–will result in
a critical and valuable body of art that would significantly advance the usability and
ease of deployment and operation of sensor-based systems such as the ones envisioned
in an internet-of-things world.
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