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Abstract—Synchronization overhead is a major bottleneck
in scaling parallel applications to a large number of cores.
This continues to be true in spite of various synchronization-
reduction techniques that have been proposed. Previously
studied synchronization-reduction techniques tacitly assume
that all synchronizations specified in a source program are
essential to guarantee quality of the results produced by
the program. In this work we examine the validity of this
assumption by studying the effect of systematically relaxing
synchronization for a wide set of parallel programs.

We consider the class of computations for which the
quality of result can be quantified, and the quality need only
fall within some acceptable range. Several computations from
important benchmark suites such as PARSEC, STAMP, and
NU-MineBench, belong to this class. We propose a technique
which relaxes the programmer-specified synchronization to
reduce, and in some cases completely eliminate, the syn-
chronization overhead. In addition, we also develop model
computations that map to some of the well-known parallel
applications, and analyze the effects of relaxing synchro-
nization. Our results show that relaxing synchronization
can achieve significant speedups; for example, up to 15x
for the Kmeans benchmark and up to 70x for one of the
model computations, with no degradation in the quality of
the results. Our study also provides valuable insight into
the synchronization resilience of parallel applications, thus
paving the way towards the development of more effective
synchronization primitives that can be exploited efficiently
by compilers and parallel runtime systems.

I. INTRODUCTION

Parallel computer systems are gaining in importance
largely because of the need to process the vast amount of
data that is being produced from all types of computing
devices and sensors. These systems are also being called
upon to perform complex analysis of data and to answer
queries from millions of users in real time. As systems get
larger however, they get more complex and hence more
expensive and more power-hungry. Both the acquisition
cost and the running cost of computers can be contained by
recognizing that there is a precision implied by traditional
computing that is not needed in the processing of most
new types of data. This relaxation of precision can help in
the wider exploitation of relatively more energy-efficient
modes of computing like cluster computing. More impor-
tantly, this relaxation of the requirement of deterministic
execution is in tune with the trend in parallel systems
designed for computing results of approximate nature.

1The work presented in this report was performed while Dr. Blundell
was affilitated with IBM Research. The author is currently affliated with
Google.

One source of both hardware complexity and software
overhead in most modern parallel systems is the act
of synchronization between parallel threads. Such syn-
chronization may occur either in order to ensure that
fundamental data structures, e.g. linked lists, do not break
due to simultaneous manipulation of their structure by
different threads, or in order to ensure that threads reach
various points in their execution in a predictable manner,
or in order to ensure that all threads see consistent values
when shared variables are updated. While the first of these
reasons for synchronization cannot typically be relaxed
because it could lead to a fatal crash of the program,
the second, and even more often, the third reason can be
relaxed with no visible effect in many cases and acceptable
effect in other cases.

Traditional synchronization techniques like data priva-
tization [2][11], lock-free synchronization [10][8][1] and
transactional systems [8][14] have helped a lot in reducing
synchronization overheads. These techniques primarily use
careful analysis and identification of situations where
synchronization is not needed, or use hardware or software
structures that are able to detect and correct incorrect
behavior due to relaxed synchronization. However this
has added complexity along other dimensions, while not
fundamentally alleviating the barrier that synchronization
poses to the scaling of parallel applications. We are there-
fore led to ask what the effect would be if synchronization
were omitted in situations where such an omission would
not lead to a catastrophic crash of the system. Would the
program produce results that are acceptable? Furthermore,
if the results are acceptable, would they be produced in
considerably less time?

This is what we set out to explore in this work. We
have taken a wide range of programs from areas that
tolerate some imprecision in the results, and show that
a large percentage of them can tolerate relaxation of
synchronization. Our results are similar in spirit to those
of Rinard et al. [13] who show that there are classes of
problems where the omission of certain operations, or even
of certain loop iterations in their entirety could speed up
programs while producing results that are not accurate but
still acceptable.

Rinard et al. also pioneered the notion of model com-
putations to identify classes of single-threaded applica-
tions that lend themselves to performance speedup while
sacrificing quality of results to an acceptable extent. We
do the same for parallel programs, developing model



computations for such programs, and examining speedup
through relaxation of synchronization. Our results suggest
that even when strict synchronization is not enforced, the
probability of concurrent modification of a shared variable
by more than one thread is low. Even when updates
to shared variables do collide, the updated values are
not different enough to cause the results to deviate too
far from what they would have been in the presence of
synchronization.

We develop a synchronization relaxation technique
which reduces, and in some cases completely eliminate,
synchronization overhead. Our study provides insight into
the characteristics and behavior of various classes of paral-
lel applications when programmer-indicated synchroniza-
tion in these programs is relaxed using our technique. In
addition, we also develop model computations that map to
some of the well-known parallel applications, and analyze
the effects of relaxing synchronization. Understanding
the resilience of applications under such relaxation can
help compiler writers to develop automatic techniques
to reduce synchronization overhead. It can also help
architects design better, and possibly more lightweight,
synchronization primitives.

Our results using relaxed synchronization on a wide
variety of parallel applications and model computations
show that, as we increase the number of threads, and
consequently the contention for shared updates, we are
able to achieve significant speedups, up to 70x for one of
our model computation, and up to 15x for the Kmeans
clustering benchmark. Furthermore, our results show that
in almost all the cases, we do not have to trade-off
the quality of results to improve the execution time,
confirming that the mutual exclusion ensured through syn-
chronization essentially comes for free using our approach.

The rest of the paper is organized as follows: In Section
II we provide a background for our work with a description
of the synchronization problem, and describe the way in
which we relax synchronization for various types of work-
load. Section III describes the experimental methodology
used for our study. In Sections IV and V, we present the
results that we observed along with an analysis. In Section
VI we contrast our approach to related work done by other
researchers. Section VII presents our conclusions from this
work and our ideas for further work.

II. RELAXED SYNCHRONIZATION

Synchronization overhead is often a major performance
limiting factor in parallel applications. For example, Fig-
ure 1 shows the parallel execution time of the Kmeans [12]
benchmark run on a IBM Power P7 machine using the
supplied large input set with the goal of finding 8 clus-
ters. Clearly, the synchronization time dominates the total
execution time and is as high as 90% for 8 threads. We
propose here a technique called relaxed synchronization
that seeks to reduce (and in some cases eliminate) the
synchronization overhead.

We describe relaxed synchronization using an illus-
trative example. Consider the computation of arithmetic
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Figure 1: Synchronization overhead in OpenMP based
Kmeans benchmark from NU-MineBench

double Mean(double *numbers, long n)
{

double sum = 0.0;
long i, num = 0;
#pragma omp parallel for private(i) \
shared(numbers, sum, num, n) schedule(static)

for (i=0; i<n; i++) {
#pragma omp critical
{
sum += numbers[i];
num++;

}
} // end for-i
double mean = sum/num;
return mean;

}

(a) Model computation Mean.

double Mean_Relaxed(double *numbers, long n)
{

double sum = 0.0;
long i, num = 0;
#pragma omp parallel for private(i) \
shared(numbers, sum, num, n) schedule(static)

for (i=0; i<n; i++) {
if (i % RELAX_FACTOR == 0) {

sum += numbers[i];
num++;

} else {
#pragma omp critical
{
sum += numbers[i];
num++;

}
}

} // end for-i
double mean = sum/num;
return mean;

}

(b) Mean computation with relaxed synchronization.

Figure 2: Relaxed mean code

mean of n numbers. The basic parallel version of this
computation is shown in Figure 2(a). The threads synchro-
nize their accesses to the shared variables sum and num
through the critical section. A relaxed version of the code
is shown in Figure 2(b). In the relaxed version, the syn-
chronization is skipped for iterations of the i-loop that are
a multiple of RELAX_FACTOR. By choosing appropriate
values for RELAX_FACTOR, we can control the degree
of relaxation. For example, we can skip synchronization
for every iteration by setting RELAX_FACTOR to 1,
and enforce synchronization for all iterations by setting
RELAX_FACTOR to n + 1. Our quantitative results with
relaxed synchronization, shown in Section IV(A), demon-
strate that we can completely remove the critical section in
this code, and still compute results with negligible error.

In a typical parallel execution different threads that
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Figure 3: Using relaxed synchronization during program
development phase to choose profitable synchronization
points and quality-preserving relax factors.

access a shared variable frequently access and update the
variable at different times. Thus a significant number of
mutual-exclusions are obtained for free even without any
synchronization. There will still be cases though where
multiple threads update a shared variable concurrently and
cause an incorrect update. For some types of computations
these incorrect values in the intermediate results do not
significantly affect the quality of the final results. Our
scheme seeks to exploit the ability of these applications
to tolerate approximate results and to execute parallel
versions of them with relaxed synchronization.

A. Framework for using relaxed synchronization

We envision that the application developer would relax
the synchronizations in the input program and measure
the performance and quality of results for representative
input data sets during the program development phase as
depicted in Figure 3. The goal of this exercise would be
to select the appropriate set of synchronization points at
which relaxation is safe and to select relax factors that
result in faster execution time while producing results with
acceptable quality.

Consider a function f(input) to which we seek to
apply relaxed synchronization. Once a set of profitable
synchronization points and relax factors are determined, it
is possible to create two versions, f_relaxed(input)
and f_original(input), which respectively corre-
spond to the relaxed and original version of f(). As
illustrated in the code snippet below, on a per call basis, the
application can choose to use either one of the versions,
or if needed both.
result = f_relaxed(input);
if (qualityNotAcceptable(result)) {
// fall back option
result = f_original(input);
}

We expect that for most inputs the relaxed version will
produce acceptable results and hence the application will
benefit from improved performance. There could be some
inputs for which the relaxed version may not produce
acceptable results, and in such cases the application can
fall back to the original version to compute the exact
result. It is important to note that this dual version code

allows the application to always compute an acceptable
result. However this could occasionally cause an increase
in execution time if the relaxed version produces unac-
ceptable results. Thus the worst case execution time of
the computation is 2x that of the original. In most cases a
properly designed relaxed version should provide adequate
approximate results and significant speedups.

One can envision automating the iterative selection of
the profitable synchronization points and relax factors,
given a program and set of input data sets. For a given
choice of the synchronization points and relax factors, the
dual version code can be generated automatically. Even-
tually it should also be possible to use the acceptability
criterion dynamically from a running program and adapt
the relax factor. We plan to pursue these as future work.

B. Choosing synchronization points

In general, the use of synchronization in parallel pro-
grams can be classified into three broad categories: (i)
to preserve the integrity of data structures (e.g., malloc(),
and insert/delete of nodes in a tree); (ii) for barrier-style
collective synchronization; (iii) to ensure that threads use
the most recent value of a variable. The first category of
structural integrity preserving synchronizations are abso-
lutely essential and do not lend themselves to relaxation.
We have indeed observed the abnormal termination of
applications when synchronization was relaxed indiscrimi-
nately. The second category of collective synchronizations,
such as barriers, are good candidates for relaxation, and
examples of such relaxation are shown in [9] for the NAS
parallel benchmarks using OpenMP directives. The third
category of synchronizations that ensure the flow of most
recent values to the threads are excellent candidates for
relaxation, and this is the class we explore in this work.

III. METHODOLOGY

We systematically explore the trade-off between execu-
tion time and the quality of results for different classes of
parallel applications. For any given application, we build
the following three versions of the program binary.

• original – The unmodified version of the program.
• relaxed – The version with synchronization relaxation

based on our proposal. The degree of relaxation is
determined using a parameter, called relax factor.

• reduced – The version using loop perforation [13] as
a form of reduced resource computation. As shown
in [13], we implement loop perforation by enabling
execution of only a subset of the original number of
iterations of the parallel loops in an application.

To demonstrate the benefits of relaxing synchronization,
our experiments cover a broad set of computation classes
with two different parallelism models on two major multi-
core systems. Table I summarizes the various attributes
of our exploration. We explore two major shared mem-
ory architecture/platforms: Intel x86 32-way machine and
IBM Power P7 32-way machine. We consider two differ-
ent classes of parallelism / synchronization: explicit via
OpenMP and implicit via transactional memory (STM).



Table I: Dimensions explored in our study
Dimension Attributes

Hardware platforms 32-way Intel (4 8-core Xeon) and
32-way IBM Power P7 (4 8-cores)

Parallel runtimes OpenMP and STM
Synchronization primitives OpenMP: Atomic & Critical

sections and STM: TM_READ,
TM_WRITE

Computation classes Data mining, graph analysis, image
processing, scientific and

non-numeric
Compilers GCC 4.1.2 and IBM XL C 11.1

In addition to using benchmarks from two different
suites (NUMineBench [12], STAMP [6]), we develop
model computations similar to the models in [13]. These
models capture the key computational loops of complex
applications, and allow us to study the impact of relaxing
synchronization on these parallel loops. The model com-
putations help in gaining insights about program structures
which are more amenable to synchronization relaxation,
and about the corresponding trade-off in the quality of
results. The benchmarks and model computations together
cover a variety of computation classes (data mining, graph
analysis, scientific, image processing, and non-numeric).
For the model computations, we study the impact of
reduced resource computation, and compare it with the
trade-offs observed with relaxed synchronization. For the
benchmarks, we present only the impact of relaxed syn-
chronization.

Table II lists the set of benchmarks and model compu-
tations used in our study. Among the benchmarks in the
STAMP [6] suite, we were not able to run Bayes on the
Intel platform. For applications such as Vacation, Genome,
and Intruder, the writes from transactions primarily in-
volved modifying a data structure (for example, adding
or removing an element from a linked list or queue), or
memory allocation/deallocation for pointer. So we did not
consider them as candidates for relaxing synchronization.
The STAMP benchmarks were compiled and run on the
x86 platform due to the availability of STM.

The model computations, Mean, MinSumSet, and Sum
are parallel versions which we developed based on the
corresponding sequential versions in [13]. We have also
developed two additional model computations, Rand-
CondUpdate and RandHistogram which we describe in the
results section. The benchmarks from NUMineBench and
the model computations use OpenMP and were compiled
and run on the IBM Power P7 platform.

IV. RESULTS FOR MODEL COMPUTATIONS

We first present the results for the model computations
adapted from [13], using the same metrics as [13] for
performance and quality. Next we present the results for
the two new model computations that we developed.

A. Model Mean

The model computation Mean calculates the arithmetic
mean of a set of n double values. The parallel code that
implements this model is shown in Figure 2(a). Rinard et
al. [13] also studied arithmetic mean computation as one

Table II: Benchmarks and Model Computations studied
Benchmark/
Model name Benchmark/Model Computation class

Kmeans NUMineBench Data mining
Fuzzy Kmeans NUMineBench Data mining

SSCA2 STAMP Graph processing
YADA STAMP Mesh refinement

Labyrinth STAMP Maze routing
Kmeans STAMP Data mining

Mean Model [13] Scientific
computation

MinSumSet Model [13] H.264 video encoder

Sum Model [13] Scientific
computation

RandHistogram RelSync Model Data mining,
scientific

RandCondUpdate RelSync Model Data mining,
non-numeric

of his models for reduced resource computing. This model
is simple and it provides a good vehicle for exploring the
trade-offs between performance and quality of result when
relaxing synchronization. It also provides insights into
the nature of the relaxed synchronization computations.
As observed in [13] arithmetic mean represents a style
of reduction computation that occurs commonly in many
scientific and data mining computations.

The critical section in the code guards parallel updates
to the shared variables sum and num. The critical sec-
tion is typically realized using a lock and hence the parallel
execution time of this computation is dominated by the
synchronization overhead of this lock. We control the
relaxation of synchronization by not atomically updating
sum and num variables for some iterations of the parallel
i loop. Full relaxation of synchronization is achieved
when all updates to sum and num are unsynchronized.
This is essentially equivalent to removing the critical
section completely. The relaxed version of this code is
shown in Figure 2(b).

Figures 4(a) and 4(b) show respectively the speedup
and quality of the results for a set of input sizes and
thread counts assuming full relaxation of synchronization.
All results are averages over 100 trials. The input size n
ranges from 1 million to 5 million, and the number of
threads varies from 1 through 16 in powers of two. From
Figure 4(a) we see that the speedup increases significantly
with increase in the number of threads. The synchroniza-
tion overhead of the original version increases with the
number of threads and hence the observed speedup with
full relaxation grows as we increase the number of threads
for a given input size. This, of course, is accompanied by
a degradation in the quality of the result. We estimate
the quality by computing the average of the absolute
difference between the values computed by the original
code and the relaxed version of the code. Figure 4(b)
shows the quality of the results for various input sizes
and thread counts. Unsynchronized updates to a single
variable by multiple threads has a higher probability of
causing data races, hence resulting in loss of the effect of
one or more updates from multiple threads.

By comparing the speedup and quality in Figure 4 we
note that for 2 threads up to a factor of 8 speedup can
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(a) Speedup for model computation Mean measured as the ratio of original
to fully relaxed parallel execution times.
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(b) Quality measured as the difference between the mean computed
by the original and fully relaxed versions. The Y axis shows the
mean of the absolute differences between the results computed by
the original and relaxed version. The smaller the mean absolute
error the better the quality.

Figure 4: Speedup and quality of results for the relaxed model computation Mean. Each group of bars corresponds to
a particular input size; the bars within a group correspond to number of threads.

double Sum(double *numbers, long n)
{

double sum = 0.0;
long i;
#pragma omp parallel for private(i) \
shared(numbers, sum, n) schedule(static)

for (i=0; i<n; i++) {
#pragma omp atomic

sum += numbers[i];
}
return sum;

}

Figure 5: Model computation Sum

be obtained with just a negligible error of 0.001 in the
computed result. Higher speedups of up to a factor of 45
can be obtained if the user of the results can tolerate an
error of at most 0.06, which is 12% of the original result.
These results clearly demonstrate the trade-off between
performance and quality that the user can dynamically
exploit to achieve significant performance improvement
with acceptable quality of results. The speedups of 8x for
2 threads and 45x for 4 threads stem from the significant
synchronization overhead present in the original parallel
version and completely absent in the relaxed version.

B. Model Sum

The model computation Sum calculates the sum of n
values. The basic parallel code is shown in Figure 5.
Rinard et al. [13] also studied the sum computation as
one of the models for reduced resource computation. This
style of reduction occurs commonly in many scientific and
data mining computations as observed in [13].

As with the Mean model computation, we experiment
with full relaxation for the Sum model as well. As be-
fore, we observe significant speedup with increase in the
number of threads for a given input size. In this case, the
quality of the result needs to be defined carefully since
the relaxed version may compute a sum with a reduced
number of values. As in [13], we estimate the number of
values contributing to sum variable using a scheme similar
to that in the Mean model computation. Using this, we

long MinSumSet(double **numbers, long numSets,
long numElementsInSet) {

double *sum=(double*)calloc(numSets,sizeof(double));
double min = DBL_MAX;
long index = 0;
#pragma omp parallel for private(i) \
shared(sum,min,index,numbers,numSets,\
numElementsInSet) schedule(static)
for (long i=0; i<numSets; i++) {
// compute sum of a set
sum[i] = 0;
for (long j=0; j<numElementsInSet; j++) {
sum[i] += numbers[i][j];

}
// atomically update global min & index
#pragma omp critical
{
if (sum[i] < min) {
min = sum[i];
index = i;

}
} // end critical

}// end for i
return index;

}

Figure 6: Model computation Minimum Sum Set

compute the approximate sum by adding an estimate of
the lost updates. Our speedup and quality of results show
trends similar to the Mean model computation, and so we
omit showing these figures.

C. Model Minimum Sum Set

The model computation minimum sum set, referred
to as MinSumSet, finds the set with the minimum sum
among a given list of sets. The parallel version is shown
in Figure 6, and is derived from the sequential version
described by Rinard [13]. As pointed out in [13], MinSum-
Set captures the essence of the technique used for finding
similar blocks in an image in the H.264 video encoder in
the PARSEC [5] benchmark suite. As shown in Figure 6,
each thread is assigned a few sets. In parallel, each thread
computes the sum of each set assigned to it, and compares
this sum to a global minimum sum to determine whether
this set should become the current minimum sum set.

Figures 7(a) and (b) respectively show the speedup and
quality of results of the relaxed MinSumSet model. The
original version is the code shown in Figure 6. The fully
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(b) Quality is measured using the relative error of the result computed
by the relaxed version to the original. The smaller the relative error
the better the quality.

Figure 7: Speedup and quality for MinSumSet model. Input size as pairs of number of sets and number of elements
in each set are shown in X axis. Each group of bars correspond to a particular input size and the bars within a group
correspond to number of threads.

void RandHistogram(int *sumArray,
int *indexArray, int n)

{
#pragma omp parallel for private(i) \
shared(sumArray, indexArray, n) schedule(static)

for (int i=0; i<n; i++) {
#pragma omp atomic

sumArray[indexArray[i]] += 1;
}

}

Figure 8: Model computation RandHistogram

relaxed version removes the critical sections altogether.
The quality of the result is computed using the formula

RelativeError = abs(original−relaxed)/(sumRange)

where sumRange is difference between the maximum
and minimum sum value for a given input set of sets.
For example, a relative error value of 0.1 implies that the
value computed by the relaxed version is within 10% of
true minimum sum value. Figure 7(a) shows that we obtain
only modest speedup until the number of threads increases
to 16 or more. With fewer threads, the synchronization
overhead to update the minimum sum set is relatively less
than the time to compute the sum of each set. However,
the relative error is greater than 10% for higher thread
counts. In the application, H.264 video encoder, if the
quality condition for finding similar blocks can be varied
depending on the context in which it is being used, our
results demonstrate that considerable improvement in ex-
ecution time can be achieved by relaxing synchronization.

From Figure 7(a), we observe that the speedup relative
to the original version drops as we increase the number
of elements per set for a given number of sets. As
the number of elements per set increases, the overhead
of synchronization decreases as more time is spent in
computing the sum of the elements of each set.

D. Model Random Histogram

The model computation Random Histogram, referred
to as RandHistogram, computes the histogram of a set
of n values using k bins, where k is also an input to
the model. The parallel version is shown in Figure 8.
RandHistogram represents the computations found in data

mining and scientific computations. For example, the
Kmeans benchmark from NUMineBench [12] has a kernel
similar to the computation in the RandHistogram model,
that computes the number of points assigned to a given
cluster, in which n is the number of points and k is the
number of clusters. The RandHistogram style of reduction
with indirect indexing is also found in many scientific
computations such as N-body methods. We have identified
and developed this model computation to study the effects
of relaxing synchronization for this broad class of data
mining and scientific computations.

For our experiments, we use a set of values for n,
ranging from 1 million to 5 million, and we arbitrarily
set the number of bins, k, to be n/10. The n numbers are
chosen from a uniform random distribution of values from
0 to k − 1. From the parallel code of the RandHistogram
model shown in Figure 8, we can see that the atomic
update of sumArray[indexArray[i]] synchronizes
the concurrent updates of the same bin in sumArray.
Figures 9(a) and 9(b) show speedup and quality of the
relaxed RandHistogram computation. All results are aver-
ages over 100 trials and use full relaxation, i.e. no synchro-
nization of updates to sumArray[indexArray[i]].
We see a range of speedup values from 3x to 15x with
the speedup decreasing with increased input size. We
quantify the quality of the results based on the error
in the values computed for each bin. The error in the
values computed for each bin is the absolute difference
between the values in the original and relaxed versions.
For purposes of illustration, we have chosen to show the
number of bins whose error is greater than 10% of the
original. Figure 9(b) shows the quality of the results for
range of input sizes and thread counts. We observe that
less than 0.1% of the bins have an error greater than 10%
for all input sizes and thread counts. So, essentially we can
gain all the performance speedups shown in Figure 9(a)
without sacrificing quality in the results.

The speedup comes from the reduced (or eliminated)
synchronization overhead in the relaxed version. The neg-
ligible loss of quality is due to the following property
of the relaxed execution. During a parallel execution a
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(b) Quality is measured by comparing the values of bins between
original and the relaxed versions. The Y axis shows the number of
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than 10% of the original.

Figure 9: Speedup and quality for the model computation RandHistogram. The group of bars in the X axis correspond
to different input sizes; bars within a group correspond to different thread counts used in the parallel execution.

void RandCondUpdate(int *flagArray,
int *indexArray, int n) {

int i;
#pragma omp parallel for private(i) \
shared(flagArray, indexArray, n) schedule(static)
for (i=0; i<n; i++) {
#pragma omp critical
{

if(flagArray[indexArray[i]] == NOT_TAKEN) {
// mark element flagArray[indexArray[i]]
// as taken by current thread
flagArray[indexArray[i]]=omp_get_thread_num();
}

}// end omp critical
} // end for i

}

Figure 10: Model computation Random Conditional Up-
date

significant number of synchronization enforced mutual-
exclusions are achieved by the non-overlapping order in
which threads access the shared bins. Hence, even when
the synchronization is relaxed we still get a good number
of mutual-exclusions for free.

E. Model Random Conditional Update

The random conditional update model, referred to as
RandCondUpdate, implements a computation that condi-
tionally sets a global array of flags. The parallel code is
shown in Figure 10. This model represents computations
found in data mining and in non-numeric applications
like Labyrinth benchmark from the STAMP [6] suite.
The Labyrinth benchmark has a kernel that computes a
set of routes through a maze with no two routes being
allowed to intersect at a node. Essentially, if a node
is taken by one of the routes then it cannot be taken
by any other route. This model also serves as a useful
vehicle for studying a fundamental question in relaxing
synchronization, viz., in a relaxed parallel execution, how
many of the synchronization-enforced mutual exclusions
were achieved for free and how many of them were
violated.
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Figure 11: Speedup for the model computation Rand-
CondUpdate. Speedup measured as the ratio of original
to relaxed parallel execution times.

The RandCondUpdate model as described in Figure 10
uses the indexArray to induce conflicting accesses
among different iterations of the parallel i loop. In
our experiments, we generate random values for the
indexArray in such a way that it has a given percent-
age of repetitions. For illustration we have chosen 20%
repetitions. Hence, in a parallel execution of input size n
there are 0.2n potential concurrent updates to a given ele-
ment of flagArray. Without synchronization there are
potentially 0.2n incorrect updates of the flagArray.

We use full relaxation, i.e., all parallel updates to
flagArray are unsynchronized. Figure 11 shows the
speedup obtained for relaxed parallel execution. All results
are averages over 100 trials. The speedup is measured
as the ratio of the original to relaxed execution times.
For smaller input sizes, we see modest performance im-
provement and as the input size grows we see good to
excellent (up to 75x) speedups. To measure the quality
we used an additional array to record the elements of



flagArray set by each thread. With this information, we
later compare the elements of flagArray set by each
thread to find conflicts – elements that are incorrectly set
by more than one thread. Our results show that the actual
number of conflicts is negligible. For example, we observe
just one conflict out of the 200, 000 potential conflicts for
an input of size 1 million. We observed a similar number
of conflicts for larger values of n. This result clearly
demonstrates that in a typical parallel execution of models
such as RandCondUpdate, we can get a large number of
the synchronizations for free, i.e., without sacrificing the
quality of results.

F. Comparison of relaxed synchronization with Rinard’s
reduced resource computation

Rinard et al. [13] proposed reduced-resource compu-
tation as a technique for computing approximate results
and evaluated it using a set of model computations (three
of which are used in this paper, viz., Mean, Sum, and
MinSumSet). The particular reduced-resource computation
technique applicable to the models we consider is called
loop perforation. For a perforated loop only a subset of
the iterations of a loop are executed. The perforation factor
determines the fraction of iterations executed. For exam-
ple, a perforation factor of 2 would result in executing
only half of the iterations. In this section we compare
the potential of our relaxed synchronization technique
with that of the loop-perforation technique in terms of
performance improvement and quality of results.

Figures 13 shows a comparison for the four models
Mean, MinSumSet, RandHistogram and RandCondUpdate.
The experiments use a parallel version with fully relaxed
synchronization and a perforation factor of 4 for loop
perforation. It is important to note that the quality of
results for loop perforation remains unaffected by the
increase in the number of threads because an iteration,
if executed, is done with synchronization in place.

For the Mean and MinSumSet models, the speedup
with loop perforation is modest, but with a strong quality
of results. On the other hand, for relaxed synchroniza-
tion there is a spectrum of performance potential and
quality of results, giving the user more opportunities to
trade quality for performance. For the RandHistogram
and RandCondUpdate models, we see that the relaxed
synchronization scheme provides excellent speedup po-
tential and quality of results. On the other hand, the
loop perforation technique provides modest performance
speedup and results in significant loss of quality.

The comparison results presented in this section cover
only one set of input values for the relaxation and loop
perforation factors, and is intended to serve as a motivation
for further exploration.

V. EXPERIMENTAL RESULTS FOR THE BENCHMARKS

In this section we study the performance potential
of relaxing synchronization in benchmarks from the
STAMP [6] and NU-MineBench [12] suite. For all bench-
marks we use the large input data sets supplied with the
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Figure 12: Kmeans from STAMP benchmark suite.
Speedup computed as the ratio of the original to relaxed
execution times.

benchmarks and use the quality criteria specified in the
benchmark code.

We relax the transactional memory (TM) bench-
marks from STAMP by replacing one or more of the
TM_SHARED_READ and TM_SHARED_WRITE with
normal unsynchronized reads and writes. We relax the
OpenMP benchmarks from NU-MineBench by removing
one or more of the atomic or critical sections and allowing
unsynchronized read and writes to shared variables.

All the synchronization primitives which were relaxed
in these benchmarks use full relaxation, i.e., all dynamic
instances of synchronized updates for that primitive are
now performed without synchronization.

A. Kmeans (STAMP)

The Kmeans benchmark is a software-TM-based imple-
mentation of the Kmeans clustering algorithm widely used
in data mining. Given a set of n objects, it clusters them
into a set of k clusters. A transaction is used to protect the
update of cluster centers and is a source for conflicts. The
number of conflicts is related to the number of clusters k,
the smaller the number of clusters, the greater the number
of conflicts.

Figure 12 shows the speedup computed as the ratio of
the original to relaxed execution times. We observe up to
15x speedups for the large input data set. The code region
for which we have relaxed the synchronization is similar to
the RandHistogram model and a similar analysis applies.
The benchmark has an explicit condition for the quality
of the result (cluster centers) produced. For the relaxed
version we used the same quality condition and all the
runs produced results that passed the quality condition. In
summary, the results demonstrate that we can obtain large
speedups through relaxed synchronization for the Kmeans
benchmark with virtually no effect on the quality of the
results.

B. Kmeans (NUMineBench)

Having seen excellent performance speedup and quality
of results for the STAMP TM-based Kmeans computation,
we wondered whether the achieved speedup stems from
the TM-based synchronization, or whether the Kmeans
computation itself is resilient to relaxing synchronization.
To explore this, we applied relaxed synchronization to the
OpenMP version of the Kmeans computation available in
the NU-MineBench. Like the TM version, the Kmeans
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(a) Speedup comparison: Mean and RandCondUpdate
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(b) Speedup comparison: MinSumSet and RandHistogram
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(c) Quality comparison: Mean and MinSumSet
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(d) Quality comparison: RandHistogram and RandCondUpdate

Figure 13: Speedup and quality comparison of the relaxed synchronization and reduced resource computation techniques.
Due to the difference in the scales of the results, the grouping of the models in the speedup graphs is different than the
grouping in the quality graphs.
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Figure 14: Speedup of relaxed versus original versions of Kmeans. Each group of bars in the X axis shows the number
of clusters considered in each run of the Kmeans computation; the bars within a group represent the number of OpenMP
threads used in the parallel execution. The Y axis shows the speedup of the relaxed version computed as the ratio of
the original to the relaxed execution times. All the runs converged to solutions with the same quality as original.

code has a test that checks for the quality of the produced
results (cluster centers). We used the same test.

Figure 14 shows the speedup computed as the ratio of
the original to relaxed execution times. As with the TM
version, we can see significant, up to 13x, speedups with
no degradation in the quality of the results – the produced
cluster centers were of the same quality as the original.
The results demonstrate that the Kmeans computation
has an inherent resilience under relaxed synchronization,
and it can be exploited to obtain significant performance
speedups.
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Figure 15: SSCA2 from STAMP benchmark suite.
Speedup of relaxed over original computed as the ratio
of the original to relaxed execution times. Quality:
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Figure 16: Labyrinth from STAMP benchmark suite.
Speedup computed as the ratio of the original to relaxed
execution times.

C. SSCA2

The STAMP SSCA2 benchmark is derived from the
Scalable Synthetic Compact Applications 2 (SSCA2),
which comprises four kernels that operate on a large, di-
rected, weighted multi-graph. The STAMP SSCA2 bench-
mark performs Kernel 1, which constructs an efficient
graph data structure using adjacency arrays and auxiliary
arrays. Transactions are used to protect accesses to the
adjacency arrays when different threads add nodes to the
graph. With a large number of graph nodes, the concurrent
updates to the same adjacency list is infrequent, and hence
the contention in the application is relatively low.

Figure 15 shows the speedup measured as the ratio of
the original to relaxed execution times. We used the large
input data set and used 1 through 16 threads.

Infrequent concurrent updates to the adjacency list
makes SSCA2 an ideal candidate for synchronization
relaxation. However, the concurrent update operation is
relatively small, and so not much time is spent in transac-
tions. Therefore, the benefits of relaxing synchronization
will be significant only with large thread counts as seen
in Figure 15. These results once again demonstrate that
significant performance improvements can be obtained
with no degradation in the quality of the result.

D. Labyrinth

This benchmark implements a maze-routing algorithm
where the maze is represented as a uniform 3D grid. In the
parallel version, each thread grabs a start and end point,
which it must connect by a path of adjacent maze grid
points. The calculation of the path and its addition to the
global maze grid are enclosed by a single transaction. A
conflict occurs when two threads pick paths that overlap.
To reduce the chance of conflicts, a per-thread copy of the
grid is created and used for the route calculation. Finally,
when a thread wants to add a path to the global grid, it
re-validates by re-reading all the grid points along the new
path.

Figure 16 shows the speedup computed as the ratio of
the original to the relaxed execution times. We observe
modest speedups increasing with the number of threads.

For the given input data set, there are 512 paths to be
routed. The original version routes 512 or fewer paths on
each run. The relaxed version and the original version
route all 512 paths for 1, 2, and 4 threads. For 8, 16
and 32 threads, the original version routes 511 paths
and the relaxed version routes 509, 505, and 491 paths,
respectively. These results illustrate the basic trade-off
between performance and quality of results.
E. YADA

The YADA (Yet Another Delaunay Application) bench-
mark in the STAMP suite implements Ruppert’s algorithm
for Delaunay mesh refinement. Almost all the execution
time is spent calculating the re-triangulation of skinny
triangles. This benchmark has relatively long transactions
and spends almost all of its execution time in transactions.
During re-triangulation several triangles neighboring the
skinny triangle are visited and modified, leading to large
read and write sets. For this benchmark, we were able
to relax only a few synchronizations which did not in-
clude memory allocation or deallocation. Consequently,
the relaxation did not yield any significant performance
improvement. However, in our experiments, we did not
investigate the possibility of sacrificing the quality of
the result. It is possible that in the context where this
benchmark is used, there may be opportunities to relax
the quality of the results, and hence further improvement
in the speedup may be obtained using relaxed synchro-
nization. The exploration of this dimension is part of our
future work.
F. Fuzzy Kmeans

The Fuzzy K-means algorithm in the NU-MineBench
allows a data object to have a degree of membership in
each cluster. It is formulated in a more statistical manner
compared to the original K-means formulation with a
given point allowed to belong to more than one cluster
with certain probability. Thus, rather than disjoint clusters,
the algorithm discovers soft clusters.

Our analysis of this algorithm shows that there was a
high degree of contention in updating clusters, and that
this contention increases with increase in the number of
threads. Consequently, relaxing the synchronization led to
the algorithm failing to converge within the allocated max-
imum number of iterations. However, if the convergence
criteria is changed, then we observe that synchronization
relaxation leads to similar speedups as those observed for
the original Kmeans algorithm. We omit the figures be-
cause the quality test had to be changed for this benchmark
to show speedups with relaxed synchronization.

VI. RELATED WORK

In our work, we have aimed at reducing the execu-
tion time of parallel applications using a combination of
two techniques, reducing the synchronization overhead
and reducing the quality of the results while keeping it
acceptable. We now survey previous work in these two
areas which we broadly classify as Memory Dependence
Reduction techniques and Approximate Computing tech-
niques.



A. Memory Dependence Reduction techniques

Lock-free Data Structures. Programs running on
shared-memory multiprocessors typically ensure consis-
tency of shared data by protecting critical sections with
locks supported in hardware. When a thread holding the
lock encounters a long-latency event, such as a page fault,
other threads in the system cannot operate on the locked
object and hence are unable to make forward progress.
Lock-free synchronization, as described in [10], allows
parallel threads to ensure consistency of a shared object
while avoiding the problems of locks. A specific method-
ology for implementing non-blocking sharing of objects
is presented in [8]. The costs of unneeded parallelism and
unnecessary data copying associated with non-blocking
synchronization are addressed in [1] using protocols that
rely on the operating system to take corrective action
whenever a thread trying to do a non-blocking update en-
counters a long-latency event. In contrast to this approach,
our work allows lock-free updates without continually
verifying the validity of concurrent updates to shared
objects, relying instead on an output quality estimator to
determine if the results are acceptable.

Asynchronous Iterative Methods. In [4], Baudet de-
fines asynchronous iterative methods as those that con-
verge even when implemented on a parallel processor
without the synchronization that is normally needed be-
tween cooperating processes. He identifies sufficient con-
ditions to guarantee the convergence of such asynchronous
iterative programs.

Data Privatization. Privatization [2][11] is another
important technique used to eliminate storage-based de-
pendences in parallel loops. Variable privatization [2] is
used by parallelizing compilers to improve exploitation
of parallelism in the program. For example, scalar pri-
vatization removes access conflicts for a scalar variable
modified in different iterations of a parallel loop by
allocating a private storage for that variable in each
thread. Array privatization [11], an extension of scalar
privatization, creates a private copy of the array in each
thread when it can be determined that such privatization is
safe. Privatization eliminates the synchronization overhead
incurred if atomic updates were used instead to share
variables. However it comes at the cost of memory for
data duplication and possibly communication overhead
between threads as discussed in [7]. We attempt instead to
allow updates to occur non-atomically without privatizing,
risking a possible degradation in the quality of the eventual
results.

Transactional Memory. Transactional memory is an
alternative to lock-based synchronization. A transaction
is an atomicity unit; reads and writes within a trans-
action are not visible to other transactions until the
transaction is committed. Hardware Transactional Memory
(HTM) [8] supplements multiprocessor cache-coherence
protocols with a transactional cache which holds versions
of updates that are made visible to other transactions
only when the transaction commits. If the transaction
cannot commit due to a conflict in update of values, it

is aborted and needs to be re-executed. This is a source of
performance overhead for transactional memory systems.

Software Transactional Memory (STM) [14] is a soft-
ware method for supporting transactional programming us-
ing the Load.Linked/Store.Conditional construct common
on existing machines. Optimization to support practical
implementations of STM continues to be an active re-
search area.

In this paper we show how the performance of even
transactional memory systems can be improved by relax-
ing atomic updates that may exist in transactions. We could
potentially get even greater benefit in some applications
by relaxing the abort-and-restart of selected conflicting
transactions at commit time.

Implicit End-of-Loop Barrier Elimination. Paral-
lel loop implementations in programming languages like
OpenMP typically force a barrier synchronization at the
end of the loop. Such barriers incur performance penalty
due to (a) the hardware implementation of synchroniza-
tion, (b) the load imbalance between threads, and (c) the
inability of the compiler to optimize across the barrier.
In [9], the effectiveness of OpenMP directives is studied
on NAS Parallel Benchmarks (NPB). These benchmarks
are representative of computational fluid dynamics al-
gorithms. In two of the applications, SP and BT, the
outermost loops are parallelized with the PARALLEL_DO
directive. The parallelization overhead is reduced by re-
moving several end-of-loop synchronizations using the
OMP_END_DO_NOWAIT directive. Although the paral-
lelization explicitly reduces the synchronization overhead
by eliminating the implicit barrier at the end of the loop,
such optimizations are applied in [9] only when it is known
that there are no storage-induced dependencies. Our work
takes the overhead reduction one step further by relaxing
the synchronization (atomic updates) within the parallel
loop body, and by allowing non-atomic updates to the data.

B. Approximate Computing
Green. A system called Green is described in [3] which

proposes a simple and flexible framework that allows
programmers to take advantage of opportunities to trade-
off quality of service (QoS) of a solution for improvements
in performance and reduction in energy consumption in
a systematic manner. The approximation occurs in two
phases: a calibration phase, which builds a model of
the QoS loss produced by the approximation, and an
operational phase, which makes approximation decisions
based on the QoS constraints specified by the programmer.
To provide strong statistical QoS guarantees, the oper-
ational phase also includes an adaptation function that
occasionally monitors the runtime behavior and changes
the approximation decisions and QoS model. Although the
goals of Green are primarily energy efficiency, the nature
of the solution is similar to our approach where we rely
on an estimate of the quality to enable focused relaxation
of synchronization.

Freshener. A recent work [15] achieves scalability
on massively-parallel low-latency systems by introduc-
ing non-determinism in place of synchronization and by



correcting for the resulting inconsistency. The idea is to
use some fraction of the parallel threads available in the
system to check on the staleness of cached values and to
freshen possibly stale values by recomputing the values
from their inputs. This allows certain type of applications
that could tolerate some degree of staleness of data to
respond to queries and to update requests without having
to perform expensive locking of the data involved.

Reduced Resource Computation. Another recent
work [13], describes mechanisms that enable computations
to execute with reduced resources allowing a loss in
accuracy of the results. The paper lists several general
computational patterns that are amenable to resource re-
duction mechanisms and describes them as simple model
programs. The algorithms studied in [13] are limited to
sequential implementations, but in our work we have
implemented parallel versions of these model computa-
tions and quantify the impact of reducing synchronization
overhead on the overall reduction in the accuracy of
the results. In the spirit of [13], we further map well-
known problems in data-mining and clustering to simple
computational models, and analyze their amenability to
relaxed synchronization.

VII. CONCLUSION

Synchronization overhead is a major performance limit-
ing factor in parallel applications. In this work, we set out
to understand whether a program will produce acceptable
results if synchronization is omitted by allowing concur-
rent updates to shared data when possible. We have pro-
posed a technique which relaxes the programmer-specified
synchronization and controls the degree of relaxation using
a compile time parameter. Inspired by the work in [13],
we have developed new model computations that lend
themselves to performance improvement without serious
degradation in the quality of results when synchronization
is relaxed.

Our experiments with a wide class of model computa-
tions and benchmarks show that relaxing synchronization
can achieve significant speedups; for example, up to 15x
for the Kmeans benchmark and up to 70x for one of the
model computations, with no degradation in the quality of
the results. As part of our future work we plan to explore
the dimension of sacrificing the quality of the results to
gain further improvements in speedup.

The results and insights from this work suggest that
it may be fruitful to investigate automatic methods to
generate versions of parallel code that trade-off quality
of results for improved latency specifically by relaxing
synchronization. Many Web applications today are capable
of providing continuous feedback about the quality of
the results produced. The synchronization level in such
applications can potentially be dynamically tuned to adapt
to the available resources and acceptability of quality of
results.

This work on relaxed synchronization is a strong indi-
cation of the potential for the general area of approximate
computing, where we sacrifice the determinism and pre-
ciseness of the general computing paradigm as practiced

today for improved latency, reduced energy consumption,
and lower system cost, while providing results acceptably
close to what would otherwise be possible.
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