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Abstract— This paper describes our implementation of an
Intelligent Transportation System, built for the road adminis-
tration authority at Dublin City Council. The system is able
to ingest data from different sources, while providing updated
speed and traffic flow measurements, travel time estimates and
statistical aggregations of current traffic conditions in real-time
to the user. The application is powered by IBM Infosphere
Streams, which enables it to easily scale to hundreds of thou-
sands of data points processed per second, while maintaining
sub-second delay from data acquisition to delivery. In this work
we provide an overview of the analytics and the application
architecture used to deliver the required capabilities.

I. INTRODUCTION

The first decade of this millennium marks a watershed in
the history of urban expansion, when the human population
grew more urban than rural. The proportion of human
population rose from 13 percent in the 1900s to 49 percent
in 2005, and is projected to reach 60 percent by 2030.
By 2030 the urban population is expected to approach 5
billions dwellers, a 43% increases from today’s 3.5 billions.
The rapid growth of demand for transportation and high
levels of car dependency caused by urban sprawl has re-
sulted in severe traffic congestion, associated productivity
loss, and environmental degradation in many areas. Adding
capacity through construction of new facilities within the
city landscape is a very difficult endeavor due to space
constraints and prohibitive costs. The general consensus is
that congestion reduction is instead better addressed through
Intelligence Transportation Systems (ITS) that leverage sen-
sor networks, communications and computing technologies
to manage existing infrastructure and transportation systems
more efficiently. Intelligent Transport Systems are used to
gain an insight about why and how people and goods flow
across the city. They are also used to assist road operators
with incident detection and help them to quickly react to
resulting traffic pattern changes and minimize their impacts.
An important development within ITS is the emergence
and installation of sensor technologies for collecting data
on the state of the transport system [1]. Examples of this
are Automated Vehicle Location (AVL) systems or other
opportunistic sources of trajectory data including smart-
phones, CCTV systems with license plate recognition capa-
bility, and induction loops at traffic intersections such as the
ones used in Sydney Coordinated Adaptive Traffic Systems
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(SCATS R©), or Split Cycle Offset Optimization Technique
(SCOOT). Intelligent Transportation Systems can make use
of such data collected from a variety of sources to enable real
time traffic monitoring and management. They also offer a
mean to increase the public awareness about more energy
efficient and sustainable modes of transportation e.g. public
transit. Awareness which when combined with real-time
information, such as expected arrival times, contribute to
minimize user uncertainties about their travel plans, improve
user experience, foster adoption of sustainable modes of
transport, and as a whole a more efficient usage of the
infrastructure.

There are, however, major challenges in building systems
that are flexible and powerful enough to handle diverse
demands from a large user base. The first challenge is one of
scalability. As various kinds of sensor technologies become
ubiquitous, the massive amount of data they produce must be
fused and analyzed, often in real-time. The processing rate of
such data for a city wide system can easily exceed millions
of measurement points per second. In addition, data must be
integrated in large system states (e.g., road networks) that can
potentially contain millions of elements. A second challenge
is the quality of the data. As the sensor technologies grow
larger so does the risks of receiving invalid data from faulty
sensors, or noisy data from less accurate sensors, such as
GPS sensors. Data sparsity is another challenge. Even though
the volume of data can be extremely large, because of the
equally large dimension space of the system, the volume
is usually insufficient for deriving accurate traffic models.
A final challenge is the development of the computing
infrastructure required to support the needed functionality of
ITS, especially given the large volumes and variety of data
available and the diverse set of parties involved in providing
this data, such as government agencies, commercial enter-
prises, legacy systems, and end-user commuters. Studies have
shown that developing and integrating the various compo-
nents of an ITS infrastructure constitute a significant portion
of the capital cost and complexity of such systems. These
systems access a broad spectrum of data source types, that
produce a heterogeneous mix of content with varying degrees
of quality. The different types may necessitate different
kinds of software components to process the data. Also, the
systems developed by the different parties are not necessarily
developed with interoperability in mind. These factors add
to the complexity of the system. Furthermore, different kinds
of end-users have different needs for the traffic-data. These
end-users include commuters, highway patrols, emergency



vehicles, departments of transportation, urban planners, com-
mercial fleet operators, etc. These users not only pose large
numbers of simultaneous analysis requests, but also require
analyses of significantly different natures. For example, the
department of transportation requires real time processing of
detailed traffic data across the urban area to perform dynamic
traffic management, whereas, the analysis performed by
urban planners rely on high level aggregation of the data from
historical databases. This further increases the complexity of
the system.

In this paper, we propose a generic framework upon which
an Intelligent Transport System can be built that tackles
the challenge mentioned above. The framework is based on
the IBM InfoSphere Streams platform [2], a scalable stream
processing platform. We describe a case study demonstrating
the use of our framework and InfoSphere Streams for In-
telligent Transportation Systems with an actual application
implemented for the road administration authority at the
Dublin City Council to manage the public transport.

The paper is structured as follows: In the rest of the
paper, we describe the InfoSphere Streams platform and our
case study in the Intelligent Transportation Systems space.
In section 2 we review existing work in public transit ITS.
In section 3 we provide our vision of the platform and the
core elements that constitute it. In section 4 we introduces
InfoSphere Streams platform and its features. Section 5
describes the implementation of the case study for the Dublin
City Council and Section 6 provides some experimental
results for our system. We then describe future work in
Section 7 and finally conclude.

II. STATE OF THE ART

Systems for monitoring and managing public transporta-
tion have been one of the first applications of ITS. They have
been used to plan public transportation routes and schedules,
and are increasingly used to allow for real time management
of the fleet by collecting data about the real time position of
vehicles.

They can for instance be used for planning bus routes
and schedules, in order to evaluate and equalize accessibility
levels or different areas of the city [3]. By monitoring the real
time position of vehicles and comparing it with the scheduled
ones, supervision strategies can be implemented to improve
service reliability [4], including holding strategy to keep
headway in bus networks [5]. To this end, several research
has been developed for the prediction of arrival times of
vehicles (see [6]–[8] and references therein) as function of
current and historical traffic conditions.

On the other hand, information about functioning of the
public transport system is increasingly seen as key element
for citizens to decide whether to use public transit. For this
reason, department of transportations have started to provide
public transportation schedules information to be used for
end-users applications. To facilitate this, Google defined a
specification for data format called General Transit Feed
Specification (GTFS) which is now well adopted as common
format for public transportation schedules and associated

geographic information, used as input in many web based
and mobile phone applications. Recently, this information is
being complemented with real time passenger information
(RTPI) such as predicted arrival times of buses at a bus
stop, to further improve public transit functioning awareness
[9]. This information is being provided using several user
interfaces such as displays at bus stops as well as mobile
phone applications, which have shown a concrete impact
on how users perceive the reliability of the public transport
system [10]. Of crucial important for this new information
to be effective is the reliability of the predictions.

In this paper we present a system we are developing that
allows supporting both public transit management as well
as RTPI applications. It is based on the assimilation and
processing of real time vehicle locations to

• Estimate traffic condition on the street network by
fusing measurements from fixed (e.g. loop detectors)
and mobile (e.g. vehicles) sensors;

• Evaluate anomalies in the public transportation system;
• Predict time of arrival of vehicles from the analysis of

traffic conditions as measured by all available sensors.

III. THE VISION

We envision a system that is able to process real-time
Automatic Vehicle Location data, generate different kinds of
real-time traffic statistics, and perform customized analyses
to answer a variety of user requests such us anomalies detec-
tion. Examples of customized analyses include continuously
updated speed and traffic flow measurements for all the
different bus lines in the city, estimate travel times between
points along the public transport routes, statistical aggrega-
tions of current traffic conditions and real time prediction of
arrival times of public transport vehicles at their next stops
along their route.

The system we are developing adopts a streaming comput-
ing platform [2] which is able to perform complex analytics
on extremely high volumes of heterogeneous data with
very low latency performances. This enables services that
would otherwise be thought hardly possible with affordable
computational power, such as multimodal dynamic journey
advisors that assist travelers before and during their journey.
Instead of basing their decision on static or semi-static infor-
mation, dynamic journey advisors continuously update their
decisions as new data is received from a variety of sources,
and keep the traveller informed on their GPS equipped
smartphone during their journey. Examples of notifications
include arrival at their destination or a connection (assuming
they opt to be tracked), or incidents that could impact their
trip, such as a missed connection if the system predicts a
delay on their current route. The update can include reports
about the incident, possibly illustrated with crowd-sourcing
information, and alternate routes if available.

Figure 1 depicts the main constituents of our Intelligent
Transport System application. The application consists of
two main processing components. The first is an offline
process, shown at the top of the figure. This process extracts
a profile of the transport infrastructure from historical AVL



trace data, such as the physical topology of the public
transport network and a predictive model of travel times. The
offline profile is in turn used by the other component of the
application, which ingests live AVL data, and possibly other
data sources supported by the predictive model, to compute:

• for the road administrator, the key performance indi-
cators needed to monitor the health of the transport
system, and

• for the end-user the estimated waiting times as well as
suggested routes to reach their destination, which can
be updated as more information becomes available.

The next subsections describe both components in details.
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Fig. 1. Intelligent Transport Systems application flow graph.

A. Offline processing

The offline process serves a number of purposes, one of
which is topology extraction of the transportation network.
We consider here both the logical and the physical graph
representations commonly used to describe transport net-
work topologies. In a logical graph representation, nodes
correspond to bus-stops (or train-stations) and edges are
used to indicate pairs of consecutive stops traversed by bus
lines. This representation is often used in offline journey
planning. However, dynamic journey planners that base their
decision on realtime traffic observations must complement
this view with a physical view that describes the geographical
features of the logical edges. Knowledge of the physical
infrastructure is important because it can capture traffic
condition dependencies that may not appear in the logical
view, such as road segments shared between bus lines that
do not share bus-stops. Most systems make use of the logical
view, while the physical view is either absent or outdated.
This is often because this information is not always provided
by the operator. In the offline process we thus include
a component which uses historical GPS data to compute
this view automatically. This component includes a stop-
localization feature which measures the density distributions
of the GPS measurements to locate the scheduled stops
along their respective routes. The feature extraction operator
measures the time of departure of the kth bus since the start
of the day at every stop, and individual travel times between

consecutive stops. The offline process then aggregates the
extracted features by time of day and day of weeks and
computes their Probability Distribution Functions (PDF).
Because the data is usually sparse it further smooths the
PDFs using either a Max Likelihood Estimation, or Kernel
Density Estimation. Finally we classify the PDFs depending
on the time of day or day of week, or type of day and
weather using clustering or decision methods. The results
of this classification is our predictive model for the time of
arrivals at the bus stops. Note that the application flow-graph
could be augmented to include other sources of the data in
the classification, such as induction loop data.

B. Online processing
The predictive model is in turn used by the other compo-

nent of the application, which ingests live AVL data, and pos-
sibly data from other sources used by the travel-time model
classifier. The online component uses the live observation
data to predict arrival times. For the road administrator it
computes the key performance indicators needed to monitor
the health of the transport system. For the end-user it uses the
predicted arrival time information from the various modes
of transport which it combines with other forms of static
data (such as walking or biking distances), into a stochastic
optimization process. The optimization provides the traveller
with a list of possible choices and level of confidence to
reach a desired destination from their current location within
specified constraints, such as maximum time of arrival, or
maximum waiting time at connections.

IV. THE STREAM PROCESSING PLATFORM

Applications in IBM InfoSphere Streams take the form
of graphs of modular, reusable software components (called
operators) interconnected by data streams. Each operator
ingests fine-grained data of certain content and format and
performs various analysis, the result of which can be used in
downstream operators. These applications are deployed on
a distributed runtime infrastructure to allow scalability via
pipelining and parallelization. InfoSphere Streams provides
various services to manage the infrastructure and the ap-
plications deployed on it so as to support high-throughput,
low-latency stream processing. One of the key features of
InfoSphere Streams is its component-based programming
model. This allows composing and reconfiguring individual
components to create different application flow-graphs that
perform different kinds of analysis. In addition, it enables
the creation and deployment of new applications without
disrupting existing ones. Furthermore, it allows the new
applications to reuse intermediate derived streams produced
by existing applications in order to minimize duplicate or
redundant processing of data. This facilitates the growth
and incremental incorporation of new analytics, and help in
tackling the challenges of dealing with diverse data sources
and diverse end-user needs.

V. APPLICATION IMPLEMENTATION

The implementation of the public transit monitoring ap-
plication is based on a modular design, with two different



modules handling different aspects of the problem. At the
lower level, an InfoSphere Streams instance provides all the
analytics used by our application, illustrated in Figure 2,
and handles the interaction with the data sources; on the
other end, a Java-based web server is used to deliver the
information up to the user (public transit operator), in the
form of both HTML pages and KML data. The real-time
bus location data is provided to our application using the
SIRI protocol (Service Interface for Real Time Information),
a CEN standard widely used throughout Europe. A specific
adapter component is used to subscribe to the SIRI server
and collect data from all the vehicles equipped with GPS
receivers. The component (green in Figure 2), consists of
a light weight HTTP service operator paired with a XML
parser to convert an infinite stream of HTTP POST chunks
into a continuous stream of GPS probe records. Once inside
the system, the data passes through different processing
blocks that take care of:

• Mediation and de-noise the GPS signals (blue in Figure
2); This component removes expired records and out-
of-bound records. It maps the vehicles on a route with
a confidence interval that increases with the number
of GPS observations. The component estimates the
vehicle’s speed and direction along the route, smoothed
in space and time in order to remove noise. This
information is used to identify vehicles that advertise
an inconsistent route number or destination (typically
while the vehicle is out of service) so that they are
removed from the estimation of arrival times;

• Estimate the average speed and travel time for every
segment of the network; This component (light-red in
Figure 2) computes the travel time per distance units
δt/δx (in s/m) along the displacement δx = xi+1 − xi
between two positions xi and xi+1 of a vehicle along its
assigned route, as shown in Figure 3. The metrics is then
used to update the travel time tuv of every intermediate
segment (u, v) traversed by the vehicle from xi to xi+1.
We use the Exponentially Weighted Moving Average
tuv,j+1 = (1 − αt)duvδt/δx + αttuv,j , where duv is
the length of the segment, and αt is a decay factor that
decreases from 0.5 to 0 as the time interval between two
samples j and j+1 affecting segment (u, v) increases.
The decay of parameter α ensures that the effect of
the observations are weighted according to their actual
age rather than order of arrival only. When travel times
are updated on route segments, the estimated times of
arrival at stops along the routes that share the segments
are also updated.

• Predict the arrival time of the vehicles on the different
bus stops; The vehicle positions and the travel times
along the segments of their respective routes are used to
estimate the times of arrival of the vehicles at their stops
ahead. The estimated times of arrivals are immediately
updated when the travel times tuv on the route segments
or the position of the vehicles are updated. If a vehicle
position is not received by the time it is expected to

arrive at a stop, it is automatically removed from the
list of vehicle scheduled for that stop by assuming that
it has maintained its last known averaged speed.

Other components in the application compute the system
level key performance indicators, such as number of received
valid and invalid records per second (black in Figure 2), and
per-vehicle measurements, such as vehicle bearing, averaged
speed, and frequency of updates (dark-red in Figure 2).

The information is then sent to the Java web server
that handles the presentation. Our application makes use of
KML 2.2 to represent geographical information, which could
be in turn rendered by any compatible client (tests were
conducted using Google Earth 5.2). Since KML does not
define a way to capture user input, we had to find a viable
way to handle this type of interaction. Our solution is then
represented in 4: we maintain a server-side replica of the
elements displayed on the client, that the user can alter by
interacting on a specifically crafted web site; this replica is
then synced back to the client using KML NetworkLinks and
NetworkLinkControls, in a way that only the actual updates
relevant to the visible region will be transmitted.

Fig. 3. Estimation of average speed for every segment of road network.

Fig. 4. Application architecture.

In Figure 5 we show a screenshot of the running applica-
tion. On the web interface, it is possible to note the search
field, the selected elements list and the controls to add or
show on the map elements related to the current one; the
routes, stops and buses are instead shown on the map. A
video of the running application is available at [11]

VI. EXPERIMENTAL RESULTS

We deployed the application at the Dublin City Council
and tested it with live SIRI data from the Dublin Bus opera-
tor. The hosting server consists of 8 Intel(R) Xeon(R) X5650
2.67GHz cores and 6GBytes of memory running RHEL 5.3
64bits in a virtualized ESX VMware(R) environment. The
bus network consists of 4691 stops, interconnected by 631
bus routes (including route variations on the same bus line).



Fig. 2. Stream processing application flowgraph screenshot.

Fig. 5. Application screenshot.

The geographical features of the road map data used to
represent the bus routes consist of about 725 thousands map
elements. The fleet managed by the operator consists of about
1000 vehicles. Each vehicle sends its GPS position every 20
second on the average. This rate does not include inaccurate,
expired, or incomplete records, and records from vehicles not
assigned to a bus line, all of which are ignored by our appli-
cation. Figures 6 and 7 show the respective distributions of
time intervals and travelled distances between GPS records.
Note that the bus are at a stop and not traveling (i.e. distance
is 0m) for a good part of the time. The application receives
on the average a total of 50 records per second during the
peak time of the day, when most of the fleet is in circulation.
After removing vehicles that are not in service early-on in the
application the flow thins down to about 25 data points per
second, as illustrated in Figure 8. The application achieves
sub-second latencies from the time a record is received to
the moment the state is updated. The application analytics
use 2.5% of CPU on the average and 33% of memory.
This distribution of resource consumption is emblematic of
the underlying streams programming paradigm used in our
application. This is because the application state is stored
in memory and thus the analytics avoid the overhead of
accessing this information from a database. The statistical
observations of the performance metrics measured in real-

time for each vehicle and along every sections of the bus
routes account for 90% of the memory footprint. Note that
the runtime environment can easily distribute this state across
multiple servers if needed.

Fig. 6. Distribution of time intervals between two consecutive position
records per vehicle (active vehicles only).

VII. FUTURE WORK

The choice of aggregating data primarily at road network
link level, instead of at bus route level, enables the system to
react to a number of different data sources, some of which
are not yet explored. The first and most important additional
source comes from SCATS data, produced by a series of
induction loops positioned beneath the road surface, and able
to estimate the vehicle rate and the distance between them;
the loops are generally deployed in the main intersections of
the city, and in the specific case of Dublin are present in more
than 600 intersections. This data could be used to identify
congestion situations, as well as validating the information
received from the GPS sensors. Weather historical data and
forecasts could be used as well to correct incoming records;
these are in fact biased by road and visibility conditions, and
being able to offset this bias may lead to non-trivial improve-
ment in the travel time estimates. Another possible source
of data comes from mobile phones, that are now pervasive



Fig. 7. Distribution of travelled distances between two consecutive position
records per vehicle (active vehicle only).

Fig. 8. Number of records (active vehicle only) received during the day,
averaged at 5mins intervals.

throughout the population [12]. However, the effective use
of this information is made difficult by issues like accuracy,
privacy and delay needed for the data to reach the server.
While the use of more diverse data may possibly lead to
improvements in prediction accuracy, directly improving the
prediction algorithm is another viable and promising path.
In particular, we are looking forward to build a continuous
model of the travel speed during the day for each link on the
network; this model will contain information about expected
value and variability of the travel speeds in different hours
of the day, for every class of weekday (festive, pre-festive
and working day). We will then be able to use it to better
average the speed recorded on the field, and to predict the
travel times that are likely to be seen in the future.

VIII. CONCLUSIONS

In this work we presented our framework to implement
an Intelligent Transport System, currently deployed at the
road administration authority of Dublin City Council. The
system is able to ingest data from different sources, while

providing updated speed and traffic flow measurements,
travel time estimates and statistical aggregations of current
traffic conditions in real-time to the user. The framework
is built on top of IBM Infosphere Streams, an efficient and
scalable environment for building streaming applications. We
presented an overview of the analytics included, which han-
dle all the required processing steps, from data mediation and
de-noising up to customized analyses based on user requests.
With experiments we demonstrated the performances of our
implementation, able to process and display the AVL data of
individual buses from a fleet consisting of over a thousand
vehicles using a single server with four x86 CPU cores used
at less than 1% per core. As a whole, the presented system
permits to overtake the challenges of scalability, complexity
and data diversity that ITS systems face nowadays.
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