
RC25259 (W1201-025) January 16, 2012
Computer Science

IBM Research Report

Hybrid Collective Operations on Power7 IH

Gabriel Tanase, Gheorghe Almasi, Charles Archer, Hanhong Xue
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It  has been issued as a Research
Report for early dissemination of its contents.  In view of the transfer of copyright to the outside publisher, its distribution  outside of IBM prior to publication should be limited to peer communications and specific
requests.  After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties).  Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598  USA  (email:  reports@us.ibm.com).  Some reports are available on the internet at  http://domino.watson.ibm.com/library/CyberDig.nsf/home .



Hybrid Collective Operations on Power7 IH

Gabriel Tanase Gheorghe Almasi Charles Archer Hanhong Xue
IBM TJ Watson Research Center, Yorktown Heights, NY

igtanase@us.ibm.com, gheorghe@us.ibm.com, archerc@us.ibm.com, hanhong@us.ibm.com

Abstract
The Power7 IH (P7IH) is one of IBM’s latest generation of super-
computers. Like most modern leadership class parallel machines,
it has a hierarchical organization consisting of simultaneous multi-
threading (SMT) within a core, multiple cores per processor, mul-
tiple processors per node (SMP), and multiple SMPs per cluster. A
low latency/high bandwidth network with specialized accelerators
is used to interconnect the SMP nodes. System software is tuned to
exploit the hierarchical organization of the machine.

In this paper we present a novel set of collective operations that
take advantage of the P7IH hardware. We discuss non blocking
collective operations implemented using point to point messages,
shared memory and accelerator hardware. We show how collec-
tives can be composed to exploit the hierarchical organization of
the P7IH for providing low latency, high bandwidth operations. We
demonstrate the scalability of the collectives we designed by in-
cluding experimental results on a P7IH system with up to 4096
cores.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]: Parallel Programming

General Terms Languages, Design, Performance

Keywords Hybrid, Collectives, Parallel, Programming, Languages,
Libraries, Messaging

1. Introduction
The need for ever increasing computational power leads major
computer vendors, national labs and academia to continuously
innovate in the area of high performance computer design and
large scale parallel programming. The Defense Advanced Research
Projects Agency (DARPA) recognized the importance of using
massive computational power for accelerating the process of sci-
entific discovery and in 2001 it launched the High-Productivity
Computing Systems (HPCSs) initiative [12]. In response to this
IBM created in 2002 the Productive, Easy-to-use, Reliable Com-
puting System (PERCS) program. Among the notable outcomes
of the project is the novel Power7-IH supercomputer architecture
[6, 23, 24], a powerful programming environment consisting of the
novel X10 language [7, 10] and optimized compilers and runtime
systems for existing parallel programming languages like Unified
Parallel C (UPC) [5, 28] and CoArray Fortran [11].

In this paper we describe a design for providing scalable col-
lective communication primitives on the P7IH system. We argue
that system software must follow the hierarchical organization of
the hardware; efficient parallel algorithms must employ a composi-
tional approach. Thus in our design, algorithms optimized for var-
ious levels of the hierarchy arechained together to obtain scalable
parallel operations.

Another important aspect of a parallel collective operation that
we argue for in this paper is the ability to not block threads upon
invocation but allow them to further proceed until the result (e.g.,
reduce, broadcast) or effect (e.g, barrier) of the invocation is re-
quired. This has been recognized [5, 17] as an important feature for
designing scalable applications on large HPC systems.

We make two different contributions in this paper. First, in Sec-
tion 3 we describe and analyze three different types of collectives
optimized for various components of the P7IH hardware hierarchy:
a novel generic design for achieving non blocking collectives using
only point to point message exchange,shared memory non block-
ing collectives that can achieve very low latency and high band-
width on the large SMP nodes of the P7IH and collectives that use
the novel P7IHaccelerated collective unit (CAU). We describe for
the first time the performance of these collectives on the P7IH ar-
chitecture.

Our second contribution is in Section 4, where we describe
a novel design for composing existing collectives to exploit the
hierarchical organization of the P7IH. We formalize the process
of collective composition and evaluate the performance of a set of
hybrid collectives developed in our framework, on a large P7IH
system with up to 4096 processor cores.

2. Hardware and Software Overview
P7IH [23] systems employ a hierarchical design allowing highly
scalable deployments of up to 512K processor cores. The basic
compute node of the P7IH consists of four Power7 (P7) [24] CPUs
and a HUB chip, all managed by a single OS instance. The HUB
provides the network connectivity between the four P7 Chips par-
ticipating in the cache coherence protocol. Additionally the HUB
acts as a switch supporting communication with other HUBs in the
system. There is no additional communication hardware present in
the system (no switches). As shown in Figure 1, each P7 CPU has
8 cores and each core can run four hardware threads (SMT) thus
leading to a 32 core, 128 threads, and up to 512GB memory com-
putenodes. A large P7IH system is further up organized indrawers
consisting of 8 compute nodes (256 cores) connected in an all2all
fashion (see Figure 1),supernodes consisting of four drawers (1024
cores) and full system consisting of up to 512 super nodes (524288
cores). Additional hardware description and key parameters are in-
cluded elsewhere [6, 19, 23, 24].

In this paper we focus on PAMI [2], the IBM parallel mes-
saging library. PAMI is a component of the IBM core system
software stack for parallel programming that includes products
like PESSL [3], the engineering and scientific subroutine library),
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Figure 1. P7IH drawer. The Power7 is an 8 core, 32 threads CPU.
Four CPUs and one HUB makes a shared memory compute node
(SMP node). Eight compute nodes are connected in an all2all
fashion in a drawer.

GPFS the general parallel file system, the MPI [22] library as well
as the UPC[28] and X10[10] compilers.

The current release of PAMI unifies the functionality of its
predecessors, LAPI[1] and DCMF[20] respectively. Thus PAMI
provides support fornon blocking point to point active messages
and collectives. The library is not targeted at end users, but is rather
intended for system programmers; developers of runtime systems
for programing languages and paradigms like MPI, OpenMP, X10,
UPC, CoArray Fortran, etc. In terms of collectives the PAMI library
supports multiple algorithmic options for a given operation and
higher level run time systems are left with the decision of selecting
the best choice.

3. Collectives
Collectives are parallel algorithms performing certain well defined
operations like barrier, reduce, broadcast, scatter, gather, prefix
sums, all to all exchange, etc., and they are often used as building
blocks in users applications. PAMI library provides an extensive
collection of such operations tuned for different IBM architectures
like BlueGene, Power, x86 clusters. In this section we discuss
requirements for the PAMI collectives and the different strategies
employed to satisfy these requirements.

• Portability : PAMI provides a set of collectives that have mini-
mal assumptions about the underlying architecture, thus ensur-
ing they work on a large spectrum of machines supported by
IBM. It is often the case that portability comes at the cost of
performance as we will see in this paper.

• Efficiency and scalability: collectives have to take advantage
of the underlying hardware to provide the best performance
for a given architecture. Tuning efforts performed on a given
platform not always can be ported to a different one.

• Non blocking: Non blocking collectives have the potential to
improve user applications as they allow for better overlap of
communication and computation. Supporting this feature has
important implications on the collective design as discussed
next.

3.1 The PAMI Non Blocking Collectives Interface

In PAMI, both collectives and point to point operations are non
blocking. This generally translates into an interface that allows
users to start the operation and later on to check for its completion.
Multiple solutions are proposed in the literature to achieve this
functionality:

• handles:One simple solution starts the operation and returns a
handle that the user subsequently checks for completion. Exam-
ples of libraries employing this approach are the libNBC [15]

1 vo id cb done (vo id ∗ c t x t ,
2 vo id ∗ c l i e n t d a t a ,
3 p a m i r e s u l t t e r r ) {
4 i n t ∗ f l a g = ( i n t ∗ ) c l i e n t d a t a ;
5 ∗ f l a g = 1 ;
6 }
7 . . .
8 b r o a d c a s t . cbdone = cb done ;
9 b r o a d c a s t . a l g o r i t h m = a l g oo p t i o n ;

10 b r o a d c a s t . cmd . x f e rb r o a d c a s t . buf=buf ;
11 b r o a d c a s t . cmd . x f e rb r o a d c a s t . r o o t = r o o te p ;
12 f l a g = 0 ;
13 r e s u l t = PAMI Co l lec t i ve ( c o n t e x t , b r o a d c a s t ) ;
14 a s s e r t ( r e s u l t == PAMISUCCESS ) ;
15 . . .
16 whi le ( f l a g )
17 PAMI Context advance ( c o n t e x t , 1 ) ;

Figure 2. PAMI non blocking invocation

discussed more in the related work section, the STAPL li-
brary [26] where data structures have non blocking methods
and others [5, 17]. The problem with this solution is one of
scalability - the number of handles to check grows linearly with
the number of simultaneously outstanding operations.

• counters:Another solution, employed by LAPI, is to increment
designated counters upon completion of non blocking opera-
tions. This solution has the problem that counters have to be
incremented atomically, causing a very high locking overhead.

• callbacks: In this case a callback function is invoked by the
library upon completion. This approach is favored by PAMI
because of its relative flexibility and scalability. In fact all
other solutions can be trivially implemented with appropriately
chosen callbacks. Within the callback function, flags can be set
to mark the completion of the operation or as we will see later
on in Section 4, other non blocking operations can be started to
create composed operations.

Figure 2 shows a simple example of a broadcast invocation. We
notice the callback (Line 1) as a standalone function where the
second argument is the user data that can be modified inside the
call. Lines 8-11 prepare the arguments for a broadcast operation,
including the callback function, the broadcast buffer, the root, and
a particular broadcast algorithm to be used. Line 12 marks a flag
variable with zero. The variable subsequently will be assigned a
value of one by the callback. Line 13 starts the broadcast and re-
turns immediately. The callback will be invoked when the operation
locally finishes. Lines 16, 17 show a possible way to wait for the
broadcast’s completion. This example is important for understand-
ing hybrid collections described in Section 4.

3.2 Execution Model

The execution model under which a PAMI program executes is
similar to MPI with the following differences. A program consist of
a set oftasks and not threads or processes. A task can be mapped on
a process or a thread and multiple tasks can be advanced by a thread
or process. In the example included in Figure 2 thecontext variable
is used to distinguish among various tasks of a computation. In this
paper a collective operation is invoked from a set of tasks for which
the collective is defined. Similar to MPI ranks or thread identifiers
a task has an unique identifier and communication or data transfer
happens between tasks. Another important aspect about the PAMI
library is the progress model. Because collectives are non blocking
it is user responsability to ensure progress is made by calling
PAMI ContextAdvance from all the tasks of a computation [2].



1 s t r u c t p 2 p s t a t e {
2 i n t d e s t ;
3 vo id∗ s e n d b u f ;
4 i n t s o u r c e ;
5 vo id∗ r e c v b u f ;
6 . . .
7 }
8 c l a s s p 2 p c o l l e c t i v e{
9 p 2 p s t a t e∗ phases ;

10 i n t phase ;
11 i n t num phases ;
12 c a l l b a c k f u n c t i o n ∗cb ;
13 pub l i c :
14 vo id r e s e t ( d a t a b u f f e r s , c a l l b a c k f u n c t i o n ) ;
15 vo id s t a r t ( ) ;
16 } ;

Figure 3. P2P State machine and non blocking interface

3.3 Generic Non-blocking Collectives

In this section we describe a framework for generic and portable
non-blocking collective communication primitives that rely solely
on the point-to-point active message primitive [13] provided by
PAMI.

One of the key requirements of the collective subsystem is scal-
ability, both in number of participating tasks and in number of si-
multaneously executing collectives. Any single executing collec-
tive cannot tie down or block execution threads or processes. This
imposes a state machine based implementation. There is a separate
state machine for every instance of an executing collective opera-
tion on each executing task, and it runs from the starting state to
the final state during the execution of the collective. Since the col-
lective state machine cannot block or reserve an execution thread,
state changes are always caused by callbacks: completion callbacks
from sent messages as well as callbacks for incoming messages.
For more details on active message programing models please con-
sult [1, 2, 13].

All our state machines are organized around a number of phases.
In each phase the state machine sends and/or receives one active
message. When these are complete, the state machine advances to
the next phase. The number of required phases for typical algo-
rithms like barriers, reductions, broadcasts, prefix sums is logarith-
mic in the number of tasks, which ensures that our state machines
are scalable with respect to memory use.

Figure 3 shows the main data structure we maintain for each
of the phases of a collective for the current implementation. This
structure, at minimum, contains the destination where to send the
data for a phase, the send data buffer, the source from where it will
receive data and the receive buffer. We employ a simple convention
that requires data buffers to be NULL when no message is sent or
expected in any one phase.

We implement all collectives as individual classes, each class
holding variables describing their internal state. The interface
of such a class is shown in Figure 3. It includes two methods:
reset() andstart(), and a completion callback.

• The reset() method sets the state machine into the start
state and initializes input and output buffers for the collective.
This method is completely local (that is, it is not allowed to
communicate).

• The state machine starts executing when thestart() method
is invoked. Thestart() method is guaranteed by the system
to be non blocking: it returns to the user within a finite amount
of time, independent of other tasks’ progress. The method is
allowed to start an arbitrary number of communication opera-
tions.

1 nphases = c e i l ( l og (T ) ) ;
2 f o r ( i n t i =0 ; i<nphases ; i ++){
3 i n t d i s t = 1<<(nhases−1− i ) ;
4 i n t sendmask = (1<<( nphases−i ) ) −1;
5 d e s t r a n k [ i ] = myrank + d i s t ;
6 i f ( ( myrank&sendmask ) | |
7 d e s t r a n k [ i ]>= nprocs ) d e s t r a n k [ i ]=NULL;
8 }

Figure 4. Initializing state machine for binomial tree broadcast

• The completion callback (which is passed in as an argument to
the reset() method) is invoked when the state machine reaches
the final state (i.e. when the collective is complete). The API
contract requires the completion callback to be non blocking as
well, but does not prevent it from starting other communication
primitives.

Note that completion semantics arelocal, i.e. completion of the
state machine on one task does not intrinsically mean that the same
instance has completed on any other task. This is completely in
line with expected non-blocking collective semantics, e.g. a non-
blocking barrier maycomplete on any task as soon as all other tasks
havestarted executing it.

Figure 4 illustrates the calculations for building a state machine
implementing a binomial tree broadcast from rank 0 to T tasks.
In a binomial tree the senders are 0 in the first phase, 0 and T/2
in the second, 0, T/4, T/2 and 3T/4 in the third phase and so on;
the destination ranks are T/2 in the first phase, T/4 and 3T/4 in
the second phase, and so on. This simple rule is encoded by the
dist andsendmask variables, which are calculated with simple
shifts and masks. Similar calculations can be made for most well
known generic collective algorithms, including butterflies, Bruck’s
algorithm [9] and others, giving us sufficient coverage for single-
ported network algorithms.

3.4 Shared Memory Collectives

Modern processors employ an increasing number of cores (SMP)
and support for simultaneous multithreading (SMT). Additionally,
multiple processors are often packed in a shared memory node. In
this section we describe the methodology employed by PAMI that
allows collectives to exploit the shared memory address space.

For higher level languages and libraries like MPI, UPC, X10,
etc., tasks running in a shared memory node may or may not be
in the same process. In order to facilitate communication between
tasks sharing a node, but not in the same address space, the PAMI li-
brary reserves a shared memory region that is accessible from every
task on the node. This is done by using standard UNIX primitives
such as theshmctl() or mmap() functions. In the remainder of
this section we describe reduction and broadcast algorithms based
on the assumption that a pre-allocated shared memory region is
shared by all tasks running in an SMP node.

Shared Memory Reduction: We sketch out the code for re-
duction in Figure 5. Note that the code is incomplete due to space
restrictions. TheP tasks invoking the collective are logically or-
ganized as an n-ary tree,{2 ≤ n < P}. Every node in the tree
reads and reduces values from its children, and then posts its own
value. The data dependency between children and parents imposes
two synchronization operations: (a) children’s contributions should
not be read before they are posted and (b) a node’s calculated value
should not be updated before the parent has read it. The depen-
dency is implemented by monotonically incremented counters, one
per task, that are being read by other tasks to assess whether data is
available.

Each task busy-waits for data to become available from chil-
dren.This is accomplished using the WAIT macro in line 18 which
blocks the incoming thread until the associated condition becomes
true. Once the data arrives, the children’s values are reduced (Line



1 / / S t a t e machines ( one per t a s k )
2 s t r u c t {
3 i n t c t r ;
4 TYPE buf ;
5 } ∗ s t a t e ; / / s t a t e machines
6

7 / / S t a t i c s e t u p ( l o c a l t o t a s k )
8 i n t me ; / / my i n d e x
9 i n t n c h i l d r e n ; / / # o f my c h i l d r e n

10 i n t ch ld [ ] ; / / l i s t o f my c h i l d r e n
11 i n t p a r e n t ; / / i d x o f my p a r e n t
12

13 r educe (me , op ){
14 / / 1 . w a i t f o r c h i l d r e n da ta & re d u c e
15 v a l = s t a t e [me ] . buf ;
16 f o r ( i n t c =0; c<n c h i l d r e n ; c ++) {
17 WAIT ( s t a t e [ ch ld [ c ] ] . c t r>s t a t e [me ] . c t r ) ;
18 r educe op ( va l , s t a t e [ ch ld [ c ] ] . buf , op ) ;
19 }
20 / / 2 . w a i t p a r e n t t o have read prev v a l u e
21 WAIT ( s t a t e [ p a r e n t ] . c t r>=s t a t e [me ] . c t r ) ;
22 / / 3 . Pos t my v a l u e
23 s t a t e [me ] . buf= v a l ;
24 lwsy n c ( ) ; / / w r i t e b a r r i e r
25 / / 4 . u p d a t e my s t a t e c o u n t e r
26 s t a t e [me ] . c t r ++;
27 re turn v a l ;
28 }

Figure 5. Shared memory blocking reduce

1 bool r ed u ce wo r k e r (me , op ) {
2 / / 1 . t e s t c h i l d r e n da ta r e a d i n e s s .
3 / / B a i l i f n o t ready .
4 f o r ( i n t c =0; c<n c h i l d r e n && f i n i s h e d ; c ++)
5 i f (WAIT NB( s t a t e [ ch ld [ c ] ] . c t r<=s t a t e [me ] . c t r ) )
6 re turn f a l s e ;
7 / / 2 . t e s t p a r e n t s t a t u s .
8 / / B a i l i f n o t ready .
9 i f (WAIT NB( s t a t e [ p a r e n t ] . c t r<s t a t e [me ] . c t r ) ) )

10 re turn f a l s e ;
11 / / 3 . per fo rm r e d u c t i o n
12 v a l = s t a t e [me ] . buf ;
13 f o r ( i n t c =0; c<n c h i l d r e n ; c ++)
14 r educe op ( va l , s t a t e [ ch ld [ c ] ] . buf , op ) ;
15 / / 4 . p o s t r e s u l t , n o t i f y .
16 s t a t e [me ] . buf= v a l ;
17 lwsy n c ( ) ;
18 s t a t e [me ] . c t r ++;
19 re turn t rue ;
20 }

Figure 6. Non blocking reduce

19). Next, the task waits for the parent to announce having read
its previous posted value (Line 23). Thenew result can now be
posted (Line 26) and announced (Line 30) to parent and children
alike. Note the memory sync instruction in line 27. The instruction
ensures that data is visible to other tasks before the “data ready”
notification.

The algorithm, as depicted here, is blocking. Tasks will not exit
the collective until their are done with their contribution. While this
in general leads to good performance for the collective considered
in isolation, it blocks the task from doing other available work.

We mentioned in Section 3 that all PAMI collectives are non
blocking. To transform the algorithm in Figure 5 into a non block-
ing one we need to replace the busy-waiting-based dependency
mechanism.

In one potential solution children notify their parents of data
readiness by sending an active message. Upon receiving the mes-

sage the parent increments a (local) counter and when all children
are accounted for it performs the reduction and in turn notifies its
own parent.

In the second approach, depicted in Figure 6, notification is,
as before, by means of incrementing a variable. However, we do
not busy-wait indefinitely on these variables. TheWAIT NB macro
waits a predefined amount of time for its associated condition
to become true. If the condition is still false when the allowed
time expires, thenWAIT NB returns false. The reduction operation
only takes place if all preconditions are met within a set amount
of time. Otherwise the function execution is simply aborted and
retried later by the underlying layers of PAMI. In this situation
the operation is retried several times until the preconditions are
met. This is accomplished by employing the PAMI work queue
feature: Arbitrary functions can be queued up here for subsequent
execution. A simple mechanism allows us to re-queue the reduction
function as long as it keeps returning FALSE [2].

We found the second approach to havemuch higher perfor-
mance than the first, due to the lower overhead of dependency
mechanism. Active messages, even in shared memory, tend to have
high overhead, whereas the PAMI task queue is relatively fast. By
suitably adjusting the busy-wait time we can ensure that many non-
blocking operations can be outstanding at the same time without
impacting system performance. For this second approach, individ-
ual reduce performance is on par with the blocking version.

Shared Memory Broadcast:Similar with the reduce algorithm
presented above we implemented various broadcast algorithms to
accommodate both short and large messages. As before, dependen-
cies are handled by monotonically increasing counters. We imple-
mented a binary tree broadcast for small messages and a flat al-
gorithm based on a star topology for large messages. In the flat
algorithm the root writes the data and increments a counter while
everybody else waits for the counter to be incremented before they
start copying data. The advantage of the flat algorithm is that we
can accommodate arbitrary large buffers with a minimum number
of memory copy operations. A third algorithm we deployed is a
variant of the flat broadcast where two buffers are used in an al-
ternated manner. This improves overall performance by a factor of
two due to pipelining reads and writes.

Like the reduce algorithm, broadcasts are made non blocking
by allowing synchronization phases to abort the operation after a
certain amount of busy-waiting; the broadcast is then posted into
the PAMI task queue for subsequent retry.

Shared Memory Allreduce: A simple allreduce operation can
be implemented as a reduction followed by a broadcast. This can
be easily achieved using the callback mechanism supported by our
collectives. The allreduce will instantiate first a reduce operation
whose callback function invokes the broadcast operation. More
details on composition are provided in Section 4 as we describe
hybrid collectives.

3.5 Evaluation of shared memory algorithms

In this section we analyze the performance of the non blocking
shared memory collectives on the P7IH system and compare their
performance relative to the generic P2P implementation as de-
scribed in Section 3.3. We focus the analysis on allreduce and
broadcast for which experimental results are included in Figure 7.

To evaluate the performance we employed a simple kernel that
repeats the same operation in a loop. A task does not advance
to the next iteration until the current one is locally completed.
The corresponding code is a while loop around the code included
in Figure 2, Lines 12-17. This same kernel has been used for
all experiments included in this paper. The PAMI library code
is compiled with gcc 4.1.2 and O3 optimization level. Individual
kernels for performance evaluation were compiled with xlC 11.1
and O3 optimization level.

The performance of shared memory collectives in the context
of a multithreaded machine is highly dependent on the mapping



 0.1

 1

 10

 100

 20  40  60  80  100  120

E
xe

cu
tio

n 
T

im
es

(u
se

c)

Num Hardware Threads

allreduce p2p core
allreduce p2p cpu

allreduce shmem core
allreduce shmem cpu

(a) Allreduce (integer, SUM)

 0.1

 1

 10

 100

 20  40  60  80  100  120

E
xe

cu
tio

n 
T

im
es

(u
se

c)

Num Hardware Threads

broadcast p2p core
broadcast p2p cpu
broadcast 1lb core
broadcast 2lb core

(b) Broadcast Latency (64bit data).1lb - one buffer, 2lb-two alternated buffers

Figure 7. Execution times for shared memory allreduce and broadcast for two different mappings on the machine. Execution time in
microseconds for various number of hardware threads

 0.1

 1

 10

 100

 0  20  40  60  80  100  120

E
xe

cu
tio

n 
T

im
es

(u
se

cs
)

Num Hardware Threads

broadcast p2p core
broadcast p2p cpu
broadcast 1lb core
broadcast 2lb core

(a) Broadcast Latency (64 bit data)

 1e+07

 1e+08

 1e+09

 1e+10

 0  20  40  60  80  100  120

B
an

dw
id

th
(M

B
/s

ec
 p

er
 ta

sk
)

Num Hardware Threads

broadcast p2p 1024
broadcast 2lb 1024

broadcast p2p 131072
broadcast 2lb 131072

(b) Broadcast Bandwidth. Two buffer sizes

Figure 8. Broadcast execution time and bandwidth when different roots are used. Each iteration uses as rootiteration id%num tasks The
reported bandwidth is per task.

between software tasks and hardware threads. On P7IH, for both
Linux and AIX, system software provides support to explicitly
perform this mapping. In the experiments included in Figures 7, 8,
we consider a P7IH shared memory node with 32 cores configured
in a 4-way SMT; thus, 128 hardware threads.

We evaluate two different mappings, calledcore andCPU re-
spectively. Thecore mapping allocates first 32 application tasks
one per core, on physical thread zero of each of the 32 cores. The
next 32 tasks are mapped on physical thread 1 and so on. TheCPU
mapping maps the first four tasks on core zero, the next four tasks
on core one and so on.

Figure 7(a) shows the execution time for the shared memory
allreduce operation described in the previous section and the corre-
sponding point to point implementation, for two different mappings
of the tasks on the machine. We observe that both collectives scale
well across a large number of tasks with the CPU mapping being
less susceptible to noise due to cache sharing. Please note that the
shared memory allreduce is an operation that performs mainly syn-
chronizations with minimal computation. For compute intensive
application running a task per core may be the preferred way. With
128 tasks the shared memory achieves 9µs in average while the
P2P performance is around 12µs. As a reference point the POSIX
threads barrier is 169µs on 32 threads.

In Figure 7 (b) and 8 (a) we show the broadcast performance on
8 bytes long messages thus describing the latency characteristics

of our algorithm. For P2P we use a binomial tree while for shared
memory we use a flat tree using one (broadcast 1lb) or two al-
ternate buffers (broadcast 2lb). We considered too strategies
for selecting the root. In Figure 7 (b) we average the execution
times for 100000 iterations using the same root zero. The shared
memory algorithm with two buffers and core mapping has the low-
est latency with 2.23µs when using 32 tasks. For core mapping the
single buffer option achieves 2.65µs and the P2P is 14µs, a much
higher overhead in this case relative to the allreduce we previously
analyzed. We notice the two buffers algorithm benefiting from the
pipelining effects that takes place when multiple broadcasts are in-
voked in succession. In Figure 8 (a), every new iteration uses as
root iteration id%number of tasks to avoid the pipelining ef-
fects. In this situation the two buffers version of broadcast doesn’t
have additional benefits over the single buffer. On 32 cores, using
the core mapping the P2P achieves 14.3µs, the shared memory
version using one buffer 4.14µs and the two buffers version 5.06
µs. The impact of the core mapping versus CPU is included only
for the P2P broadcast the other two algorithms considered being
less impacted by the mapping. For example on 32 threads the P2P
core is 14.3µs while the cpu is 26.9µs, for one buffer the core
mapping is 4.14µs and cpu is 3.58µs, and for two buffers ver-
sion the core mapping is 5.06µs while cpu is 3.41µs. The shared
memory version performs better with cpu mapping as the tasks are
mapped on fewer cores thus benefiting from the L2 shared caches.
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Figure 9. Execution times for CAU allreduce and broadcast. Execution time in microseconds for various number of nodes; One task per
core per node

In Figure 8 (b) we look at the bandwidth performance of the
broadcast for two buffer sizes in the situation where every iteration
uses a different root. The performance of the shared memory ver-
sion outperforms the P2P in terms of bandwidth for all range of
buffer sizes considered. In Figure 8 we exemplify for two buffer
sizes but additional results are available in Section 5. The interest-
ing aspect of this experiment is to point out the good scalability
of the algorithms on P7IH when scaling across all 128 hardware
threads in a node. For a message size of 130K the bandwidth per
core with 32 tasks is 1GB/sec and with 128 tasks is 800MB/sec.

3.6 Collective Accelerated Unit (CAU)

The CAU unit integrated in the IBM P7IH HUB provides offload
and acceleration for broadcast and reduce up to 64 bytes of data.
For reduce, it supports NO-OP, SUM, MIN, MAX, AND, OR
and XOR operations with 32-bit/64-bit signed/unsigned fixed-point
operands or single/double precision floating-point operands. The
CAU device must be correctly initialized before deployment. Once
a collective topology (set of nodes) is decided on, PAMI builds a
tree of CAU devices. The maximum fan-out of the tree is 8. CAU
hardware provides one unit per SMP node. That is, when multiple
tasks on a node are in the topology they need to elect a leader task
to operate the CAU. Up to 64 different CAU trees can co-exist in
the same device, and they can be used simultaneously. Each CAU
packet carries an identifier of the virtual topology it belongs to.
Once a CAU tree is established, any of the tasks attached to the tree
can issue a broadcast as the root of the operation. Other tasks in the
tree will receive the data without any other software involvement.
Reductions operate in exactly the opposite manner: all tasks but the
root send in data which is combined by the CAU tree and delivered
to the root. Obviously, all participants have to agree on the identity
of the root.

To implement operations like barriers and all-reduce the CAU
tree must be deployed twice in succession, i.e. a reduction followed
by a broadcast. This doubles the operation’s latency, but as we
will see this method still handily outperforms any software-based
algorithm we are capable of devising.

In Figure 9 we show the performance for allreduce (a) and
broadcast (b) and compare them with P2P implementations. Results
are included for up to 128 P7IH nodes, using only one task per
node. We observe overall good scalability for both P2P and the
CAU collectives, but the CAU outperforms the P2P solution even at
this (relatively small) node count. For P2P allreduce the execution
time increases from 1.83µs on two nodes to 11.39µs on 128, while
for CAU allreduce the time increases from 3.78µs on 2 to 7.66µs
on 128. For all but the smallest number of nodes, the factor of 2

loss in performance of the CAU (reduce followed by broadcast) is
more than compensated for by the lower node-to-node latency.

Figure 9 (b) evaluates short broadcast performance for P2P
versus CAU. Note that since CAU broadcasts do not require the
two deployments of the CAU per operation, results are much better
relative to P2P. We evaluate short broadcasts in two situations:
using the same root (task=0) in every iteration vs. using rotating
roots (a different broadcast root in every iteration). In the case of
the CAU algorithm the fixed root test yields better latency than the
rotating root test (2.24 vs. 3.6µs latency on 128 nodes). The reason
for this is very simple - in the CAU broadcast packets get pipelined.
The P2P algorithm cannot benefit from pipelining because in this
case software, not hardware, has to guarantee correct ordering of
packets. Thus the P2P algorithm actually includes a set of message
exchanges with barrier semantics, preventing any sort of pipelining.
The scaling of the P2P algorithm is still logarithmic, but with a
much higher constant factor, 20µs to 24µs per broadcast on 128
nodes.

4. Hybrid Collectives
In this section we present aframework that allows us to compose
highly tuned hardware-specific algorithms to obtain proper general
purpose collective implementations and yet retain the performance
characteristics of their components.

We have so far presented three sets of collective implementa-
tions on IBM P7IH: point-to-point messages, shared memory and
CAU based. P2P collectives are general and are useful on almost
any system. However, they come with built-in efficiency compro-
mises. Shared memory and CAU collectives are designed for proper
subsets of the P7IH system hierarchy. In PAMI terminology these
are calledlocal topologies (for shared memory) andleader topolo-
gies (one representative task per node), respectively. Topology spe-
cific collectives are very efficient, but do not provide a general pur-
pose solution.1

To illustrate our approach, consider Figure 10, in which we use
a composition of local and leader topologies to execute broad-
cast across a hybrid system. An initial (shared memory) broad-
cast within the local topology containing the root is followed by
a broadcast across leaders in each node and concluded by a sec-

1 In this paper we restrict ourselves to local and leader topologies. How-
ever, PAMI represents many other topologies that carry built-in advantages:
for example, on the Blue Gene machines, with its various torus shaped net-
works, multidimensional rectangular shapes are considered advantageous
because of the “broadcast bit” feature of the network [20].
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Figure 11. Collective composition

ond shared memory broadcast within the nodes whose leaders just
received the data.

Our compositional approach rests on the following design fea-
tures:

• Optimized components:Optimized implementations for var-
ious subsets of the system hierarchy where high performance
can be obtained via hardware support and/or optimized algo-
rithms. In this paper we will consider the shared memory and
CAU collectives described in previous sections.

• Chaining: The ability to seamlessly compose collective com-
ponents without sacrificing performance characteristics.

• Composition: The ability to decompose a collective to execute
on a chained sequence of optimized topologies defined by hard-
ware constraints. This allows us to break down the general prob-
lem into pieces that already have optimized solutions.

4.1 Chaining non blocking collectives

The Figure 3 in Section 3.3 shows the proposed application pro-
gramming interface (API) for non blocking collectives in our
framework. The interface includes thereset andstart meth-
ods, as well as a callback to be invoked when the collective has
terminated. To summarize:reset() is guaranteed to be local,
start() is guaranteed to be non blocking, and the completion
callback, provided by the user, isrequired by the API to be non
blocking.

The API is carefully crafted to stay invariant under chaining.
Our idea of chaining collectives is to use the completion callback
of an already executingprimary collective to start one or moresec-
ondary collectives. We call such completion callbackcontinuation
functions, since they don’t actually complete the chained collective.
Starting a secondary collective involves calls to itsstart() and
reset() methods. Since these are guaranteed to be non blocking
and local respectively, we can satisfy the API contract requirement
that our primary completion callback be non-blocking.

4.2 Collective Decomposition Formalism

In this Section we formalize the compositional process to show its
further generality as a methodology for deploying efficient parallel

algorithms. As we mentioned already a collective is invoked simul-
taneously by a set of tasks that we refer in this paper as topology
and we use the following notationT = {t1, ..., tn}.

For a given topologyT we can compute the local topolo-
gies Local(T ) = {Local1(T ), ..., Locals(T )} where s is the
number of SMP nodes in the system andLocalj(T ) = {t|t ∈
T and t mapped on the same SMP node j} (e.g., the subset of
tasks mapped on the same SMP node).

The leader topology of a given topologyT , Leader(T ) is sim-
ilarly defined as a set of leader tasks fromT , one from each SMP
node. Yet more topologies can be defined on other architectures.

A collectiveC then will be instantiated with a given topology
T and has an associated callback function to be invoked on all
members ofT when the collective locally completes. We denote
this asC(T, CB).

A composed collective thenCComposed(T, CB) is defined
based on a set of existing collectives and rules on how the col-
lectives are chained together using continuation functions (inter-
mediary callbacks).

Hierarchical chaining: One particularly useful approach to
tackle physical hierarchies in the P7IH system is the hierarchical
decomposition pattern. In this approach (shown in Figure 11) a
composed collective is conceptually organized as a number of
levels{L1, L2, ...Ll}. One or more collective instances, executing
on different tasks, exist in each level; they are all instances of
the same collective, although operating on different topologies and
possibly with different callback functions. Thus a levelLk of the
composition,Lk = {Ck1

(Tk1
, CBk1

), Ck2
(Tk2

, CBk2
)...}

consists of a set of collectives with their associated topologies and
completion callbacks.

Successive levels in the hierarchy are started by continuations
of previous levels. In the example included in Figure 11 we have
collectives at level1 employing different continuation functions for
different tasks. We see that upon local completion of the collective
at level one certain tasks will start the collectives at level two while
other tasks may start collectives at levelK. The only requirement
is that lower levels can not be re-invoked. The last continuation
function invoked by each task invokes the user completion callback.

The performance of such a hierarchically decomposed collec-
tive is ultimately determined by itscritical path, i.e. the maximum
number of distinct levels traversed by any of the tasks involved in
the collective.

Pipeline chaining: another useful pattern that emerged during
our experiments is pipeline composition. Pipelining allows us to
chain together multiple instances of a collective.

Specifically, System V shared memory is a precious resource.
We cannot internally allocate shared memory chunks to accommo-
date e.g. arbitrarily large broadcasts. Pipeline chaining allows us
to allocate a single instance of broadcast with a limited amount
of shared memory, and allow it to restart itself in the continuation
function, jumping forward in the user buffer with every new started
instance. This can go on until there is no more user buffer to send,
in which case the continuation function can revert to calling the
next level in a hierarchy.

4.3 Composing hybrid collectives for the P7IH

In this section we present the composition of the P7IH hybrid col-
lectives we actually implemented and tested. We start off with a
low latency allreduce for short messages on P7IH consisting of
four levels:

ShortAllReduce(T, CB) = {L1, L2, L3, L4}, where:

• L1 = Initial shared memory reduction :
L1 = {SharedMemReduce(LocalTopologyj(T ), CF1},
wherej scans all local topologies (shared memory nodes) for
this collective.

CF1 startsL2 on all tasks ofLeaderTopology(T )
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Figure 12. Execution times for hybrid allreduce and broadcast. Execution time in microseconds for various number of cores

CF1 startsL4 on all tasks ofT \ LeaderTopology(T ),

• L2 = Leader CAU reduction:
L2 = {CAUReduce(LeaderTopology(T ), CF2}

CF2 startsL3 onLeaderTopology(T )

• L3 = Leader result broadcast:
L3 = {CAUBroadcast(LeaderTopology(T ), CF3}

CF3 startsL4 onLeaderTopology(T )

• L4 = Final shared memory broadcast:
L4 = {SharedMemBroadcast(LocalTopologyj(T ), CB}

CB is the completion callback provided by the user.

In a similar vein, ourlow latency broadcast for P7IH con-
sists of three levels: a shared memory broadcast on the local topol-
ogy containing the root, followed by a CAU accelerated broadcast
across leaders, concluded by shared memory broadcasts on the lo-
cal topologies not owning the root.

For high bandwidth hybrid broadcast optimized for medium
to large messages we use the same three phases as for short broad-
cast, but using a pipelined shared memory broadcast for the first
and third phase, and a point to point broadcast across leaders (CAU
is primarily useful for short messages).

5. Performance evaluation
In this section we evaluate the performance of our composed hybrid
collectives. We compare the latency and bandwidth of our hybrid
allreduce and broadcast against more traditional implementations.

For the experiments in this section we used a different machine
than the one introduced in Section 3.5. The P7IH system we em-
ployed here has four supernodes, in other words 128 nodes of 32
cores each for a total of32 × 128 = 4096 cores. For the shared
memory experiment in Section 3.5 we used a single node machine
configured in SMT 4 (each core had all four threads enabled) and
using an older network hardware (HFI 2.0). For this section the ma-
chine used was configured in SMT 2 (only two hardware threads
enabled) and the latest network interconnect (HFI 2.1).

For all experiments on hybrid collective performance we map
one application task per process and use the core mapping as de-
scribed in Section 3.5. All times are averaged over 100000 iter-
ations. For all broadcast experiments included in this section we
use as rotating roots (every iteration has a different root) in order
to guarantee that latency is measured correctly without pipelining
broadcasts.

5.1 Latency study

In Figure 12 we show the performance of the allreduce (a) and short
broadcast (b). The short allreduce is of a particular importance to
us because it is used by the implementation of the barrier primitive
in the UPC language.2

Figure 12 (a) shows the scalability of our composed hybrid
allreduce. As explained in Section 4.3 the composed allreduce has
two shared memory and CAU components each, and we expect to
measure the four components’ latencies. Thus we expect

T ≈ TCAUreduce + TCAUbcast + Tshmreduce + Tshmbcast

Drawing on numbers presented earlier in the paper - shared
memory reduction on 32 threads is in the 6µs range; shared
memory broadcast in the 2µs range; and CAU allreduce on 128
nodes is in the 7-8µs range. Thus we expect 16µs or so on
2048 tasks. We are actually measuring 18µs close to the expected
value. Thus the effect of factors like implementation overhead,
system noise etc. can be capped at 15% or less. The point to
point alternative of short allreduce (a non-hybrid, standard butterfly
based algorithm) also scales well, but is about 50% behind the
optimized algorithm, 24µs on 4096 cores.

Results for short (8 byte word) broadcast are in Figure 12 (b).
Here we compare three versions against each other: a standard
binomial algorithm, a composite algorithm with optimized shared
memory communication (shmem+P2P) and finally a shmem+CAU
algorithm as described in Section 4.3.

All three algorithms show logarithmic scaling behavior. Pre-
dictably, the shmem+P2P algorithm has better latency than pure
P2P (26µs vs 40 µs on 4096 cores). Just as unsurprisingly the
shmem+CAU combination beats them both (2.8µs on 4096 cores).

5.2 Bandwidth study

Figure 13 compares the pure P2P binomial tree broadcast with a
hybrid shmem+P2P algorithm. We consider both scaling behavior
(number of cores from 32 to 4096) and message size (1 KByte to
8 MBytes). We report broadcast bandwidth in MBytes/s/task (not
the aggregate number).

We observe that the hybrid algorithm (gray background columns)
performs better than its P2P counterpart for all buffer sizes and all
number of cores considered. However, the difference varies with
scale and message size. With 32 tasks the hybrid algorithm is re-
duced to shared memory only, and hence outperforms the P2P ver-

2 UPC barriers have an optional integer argument. The UPC runtime checks
expressions supplied by various UPC participants in the samebarrier for
equality. This helps UPC programmers to ensure code correctness. A UPC
barrier is therefore actually implemented as a PAMI allreducewith a MAX
operator rather than an actual barrier.



Algo P2P Hyb P2P Hyb P2P Hyb P2P Hyb P2P Hyb P2P Hyb P2P Hyb P2P Hyb
Size/Cores 32 32 64 64 128 128 256 256 512 512 1024 1024 2048 2048 4096 4096

1KB 60 210 47 164 39 97 34 71 25 54 24 43 22 32 19 31
16KB 278 637 158 620 139 486 122 347 112 249 102 208 98 183 80 143
65KB 237 766 164 712 140 643 121 545 107 427 95 372 127 315 79 275

128KB 281 1573 219 1209 191 727 172 575 154 491 140 412 143 359 117 315
512KB 431 1791 392 995 348 675 313 561 284 488 257 413 190 370 210 330

1MB 421 1860 400 1146 360 719 329 602 302 520 278 445 208 391 228 344
2MB 490 1756 470 1162 418 726 382 599 348 516 321 450 284 396 260 348
4MB 628 1612 567 1049 503 696 455 577 411 504 374 440 323 386 298 343
8MB 734 1507 642 1008 564 691 507 574 455 499 418 434 360 382 321 340

Figure 13. Broadcast bandwidth for various buffer sizes and number of cores. The reported bandwidth is in MB/second per task
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Algo P2P Hyb P2P Hyb P2P Hyb P2P Hyb
Size/HThreads 64 64 128 128 4096 4096 8192 8192

1KB 37 152 29 106 12 30 12 23
65KB 151 922 86 800 39 262 38 227
128KB 184 1223 114 657 61 155 58 157
512KB 202 1554 192 815 125 290 114 238
1MB 236 1537 255 914 160 359 146 319
2MB 272 1180 312 937 189 372 167 330
4MB 301 663 340 589 211 374 177 317
8MB 315 619 359 615 212 355 201 271

(b) bandwidth for various buffer sizes and number of hardware threads

Figure 14. Hybrid broadcast performance for SMT2: Latency and Bandwidth

sion by a factor between 2 and 5. As the number of nodes increases
the relative advantage of the hybrid algorithm diminishes, since the
shared memory broadcast contributes a declining proportion of the
total execution time as the number of cores is scaled up.

We observe a similar effect for message sizes. Since the chief
advantage of the shared memory implementation is lower overhead,
larger message sizes tend to wash out the difference between hy-
brid and P2P only; on 4096 cores with 8MB buffers, the hybrid
algorithm only holds a 5% advantage.

5.3 SMT impact on hybrid collectives

In this section we analyze the latency and bandwidth for broadcast
operation when using two hardware threads per core. We include in
Figure 14 results for the broadcast algorithms discussed previously
in this section. In the absence of other user computation we observe
very good scalability for both latency and bandwidth. In terms of
latency (Figure 14(a)), when using 4096 cores and 8192 hardware
threads the binomial P2P achieves 68µs, the hybrid (Shared Mem-
ory local and P2P on leaders) is 33µs and the hybrid version em-
ploying CAU is 3.9µs.

For the broadcast bandwidth, we include experimental results
for various buffer sizes and number of cores in the table in Figure
14 (b). The core mapping has been used for the included results.
Similar with the single thread per core results, we observe good
scalability for both algorithms, with the hybrid algorithm leading
the P2P on all buffer sizes considered. For 64 tasks mapped on
64 hardware threads the hybrid algorithm employs only the shared
memory part. In this situation the hybrid algorithm is between
7 (512K buffer) and 2 (8MB) times faster than the P2P version.
When using 8192 tasks mapped on as many hardware threads the
hybrid algorithm provides 34% more bandwidth relative to P2P.
Recall that when not using SMT the hybrid version had only 5%

advantage over P2P. Thus when using multiple hardware threads
the advantages of shared memory are even bigger.

6. Related Work
Specializing collectives to take advantage of the underlying hard-
ware and specialized networks is a common approach for obtain-
ing the best performance on modern high performance systems
[4, 18, 21, 25, 27]. In [4] the authors describe optimization for
BlueGene/L. Other major vendors like Cray, Infiniband also pro-
vide support for collective acceleration and various academic pa-
pers describe optimizations of the MPI library to obtain good per-
formance. For example, in [21, 25] the authors describe a hybrid
solution for broadcast using shared memory and Infiniband multi-
cast support. Similar the authors of [16] show how Infiniband can
be used to accelerate non blocking collectives.

In [15, 17] the authors present the Non Blocking Collective
library (libNBC) as an extension to MPI collectives to provide
non blocking functionality. In their model a collective maintains
an internal schedule consisting of rounds with operations in a
round proceeding only when the previous round completed. Our
multi phase mechanism described in Section 3.3 is similar with
this approach. The main difference between our approach and this
one is the fact that we provide the call back mechanism to signal
completion. In libNBC, upon a collective invocation, a handle is
initialized and later on the handle can be queried if the collective
has finished. We showed in Section 4 that the callback mechanism
is essential for us to efficiently compose non blocking collectives
to achieve new ones. We can’t envision an elegant composition
mechanism using the libNBC approach.

Existing parallel programming languages and libraries [8, 14]
already exploits shared memory nodes to improve the performance



of both point to point and collective operations. In [8] the authors
describe performance improvements for point to point operations
for the UPC language when optimizing for shared memory intra
node communication. However they have only a minimal section
on collectives optimizations.

In [19] the authors perform an in depth performance study
of the P7IH various intra and inter node communication links
describing achievable latencies and bandwidths. They measure the
performance using simple point to point kernels and discuss it
relative to the maximum specified values. In this paper we discuss
for the first time the performance of the collective operations on
P7IH, including the novel CAU not presented elsewhere.

In [25], the authors discuss composing collective communica-
tion algorithms from primitives. The authors focus there on spe-
cific optimization enabled by Infiniband hardware. Our description
of collective composition however is more general and establishes
the bases under which arbitrary algorithms can be combined to ex-
ploit the various levels of a hardware architecture

7. Conclusion and Future Work
In this paper we have presented an experimental evaluation of
collective communication primitives on the IBM P7IH architecture.
We presented initial measurements of the collective acceleration
unit (CAU) running reduction and broadcast collectives. We also
presented collective communication algorithms optimized for the
rather large SMP nodes of the P7IH.

Our second contribution in this paper is a novel framework and a
formalism that allows us to chain together non blocking collectives
optimized for different subsets of the system hierarchy. We demon-
strated that the combined hybrid algorithms in our framework offer
the best chance to achieve good performance and scalability on the
IBM P7IH system.

In the future we will extend our work to other modern leadership
class systems. Since large scale SMPs and deeply hierarchical
systems are here to stay we expect that our work will be relevant
on many other architectures.
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