
RC25278 (WAT1204-035) April 12, 2012
Computer Science

IBM Research Report

Querying Linked Ontological Data through
Distributed Summarization

Achille Fokoue
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598
USA

Felipe Meneguzzi
Carnegie Mellon University

Murat Sensoy, Jeff Z. Pan
University of Aberdeen

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Querying Linked Ontological Data through Distributed Summarization
∗

Achille Fokoue,
IBM Watson Research Center

achille@us.ibm.com

Felipe Meneguzzi,
Carnegie Mellon University
felipe.meneguzzi@gmail.com

Murat Sensoy,
Jeff Z. Pan

University of Aberdeen
m.sensoy,jeff.z.pan@abdn.ac.uk

Abstract

As the semantic web expands, ontological data becomes
distributed over a large network of data sources on the
Web. Consequently, evaluating queries that aim to tap
into this distributed semantic database necessitates the
ability to consult multiple data sources efficiently. In
this paper, we propose methods and heuristics to effi-
ciently query distributed ontological data based on a
series of properties of summarized data. In our ap-
proach, each source summarizes its data as another
RDF graph, and relevant section of these summaries
are merged and analyzed at query evaluation time. We
show how the analysis of these summaries enables more
efficient source selection, query pruning and transfor-
mation of expensive distributed joins into local joins.

Introduction

Linked Data is extending the Web into a global space of
RDF data, with more than 30 billion RDF statements
being online, contributed not only by government enti-
ties (e.g., data.gov) and scientific communities (e.g., the
Bio-medical community), but also by companies (e.g.,
BestBuy) and community driven efforts (e.g., DBpe-
dia). Ontological vocabulary is used to annotate RDF
data; such vocabulary can be defined in an ontology
using the OWL Web Ontology Language. The use of
ontological vocabulary necessitates the use of reasoning.
Query processing over distributed and large num-

bers of data sources becomes one of the key challenges
for the semantic web. Even without reasoning, this is
a challenging task. Querying all sources in the net-
work would be inefficient because only a small num-
ber of sources might be relevant for a given query.

∗Research was sponsored by the U.S. Army Research
Laboratory and the U.K. Ministry of Defence and was ac-
complished under Agreement Number W911NF-06-3-0001.
The views and conclusions contained in this document are
those of the author(s) and should not be interpreted as rep-
resenting the offcial policies, ei- ther expressed or implied, of
the U.S. Army Research Laboratory, the U.S. Government,
the U.K. Ministry of Defence or the U.K. Government. The
U.S. and U.K. Govern- ments are authorised to reproduce
and distribute reprints for Government purposes notwith-
standing any copyright notation hereon.

Furthermore, querying a semantic data network may
amount to querying each relevant source for partial
answers and joining the partial answers over the net-
work. Hartig et al. proposed to leverage the correspon-
dence between source addresses and identifiers used in
the queries (Hartig, Bizer, and Freytag 2009). Kon-
rath et al. used extracted schemas for source selec-
tion (Konrath, Gottron, and Scherp 2011). Harth et al.
proposed a data summarization approach for querying
Linked Data (Harth et al. 2010), without considering
reasoning.
In this paper, we investigate the use of distributed

summarization so as to enable scalable reasoning for
querying linked ontological data. Prior work (Fokoue
et al. 2006) has shown that practical scalable query
answering and reasoning can be achieved on large lo-
cal knowledge bases through the construction of a lo-
cal summary A′ of an ABox A (the data part of an
ontology). The summary A′ captures the patterns of
relationships between individuals in A. However, effi-
cient aggregation of local summaries into a global sum-
mary remains as a significant challenge in distributed
settings.
Our key contributions in this paper are threefold.

First, we propose an alternative summarization tech-
nique which can be efficiently built in a decentralized
fashion. By exploiting the principles of Linked Data,
each source summarizes its data as another RDF graph,
which is significantly smaller in size and hides details of
the actual data by containing only the patterns repeat-
ing in the data. Relevant (w.r.t. input queries) sections
of these summaries are merged and analyzed at query
evaluation time. Second, we show how the analysis of
these summaries enables more efficient source selection,
query pruning and transformation of expensive dis-
tributed joins into local joins. Finally, through exper-
iments over real and synthetic data, we show that our
approach provides significant performance gains over
state-of-the-art federated query engines for distributed
semantic data.

Preliminaries

In the rest of the paper, we use the term ontology
and knowledge base interchangeably. Description Log-

ics (DLs) are the formal underpinning of the OWL
standard. Due to limited space, we refer the reader
to (Baader et al. 2002) for details of DLs.

Conjunctive Query

LetNI be a set of individuals, NR a set of roles, andNC

a set of concepts in knowledge base (i.e., ontology) K =
(A, T), whereA is the ABox and T is the TBox (schema
part of K). Let NV be set of variables. We assume that
these four sets are mutually disjoint. A conjunctive
query q is of the form (x1, ..., xn) ← t1 ∧ ...∧ tm where,
for 1 ≤ i ≤ n, xi ∈ NV and, for 1 ≤ j ≤ m, tj is a query
term. A query term t is of the form C(x) or R(x, y)
where x and y are either variables in NV or individuals
in NI , C is an atomic concept and R is an atomic role.
We consider the evaluation of a conjunctive query w.r.t.
a DL-LiteR T using the standard first order semantics
presented in (Calvanese et al. 2007). A construct
conjunctive query q is of the form construct[c1, ..., cn]←
t1 ∧ ... ∧ tm ∧ filter(α1) ∧ ... ∧ filter(αp) where, ci and ti
have the same form as terms in a conjunctive query and
αi is a boolean expression. Furthermore, variables in ci
are restricted to those appearing in ti or αi. Construct
conjunctive queries are evaluated only w.r.t an empty
T . The semantics is similar to SPARQL construct1

query semantics; that is, the evaluation of q builds the
A obtained by instantiating patterns ci for each variable
binding that satisfies all the constraints t1 ∧ ... ∧ tm ∧
α1 ∧ ... ∧ αp.

Centralized Summary ABox

Prior work (Fokoue et al. 2006) has demonstrated that
practical scalable query answering and reasoning -even
in very expressive description logics- can be achieved
on large knowledge bases through the construction of
a summary ABox A′ corresponding to the ABox A.
Intuitively, an individual in A′ represents a set of in-
dividuals in A which have some common semantically
relevant properties (e.g., they are members of the same
explicit concepts). Formally, an ABox A′ is a summary
ABox of ABox A if there is a mapping function f that
satisfies the following constraints:

(1) if C(a) ∈ A then C(f(a)) ∈ A′

(2) if R(a, b) ∈ A then R(f(a), f(b)) ∈ A′ 2

(3) if a ˙6=b ∈ A then f(a) ˙6=f(b) ∈ A′

For a subset S of a summary ABox A′, we define the
preimage of S, denoted f−1[S], as the following sub-
set of A: f−1[S] = A

⋂
({R(a, b)|R(m,n) ∈ S ∧ m =

f(a) ∧ n = f(b)} ∪ {C(a)|C(m) ∈ S ∧ m = f(a)} ∪

{a ˙6=b|m ˙6=n ∈ S ∧m = f(a) ∧ n = f(b)}).
If the summary ABox A′ obtained by applying the

mapping function f to A is consistent w.r.t. a TBox T ,
then A is consistent w.r.t. T . However, the converse
does not hold. (Dolby et al. 2007) introduced a refine-
ment method to deal with an inconsistent summary.

1http://www.w3.org/TR/rdf-sparql-query/#construct
2This also applies to the equality relation (=)

Let L be a mapping from each individual in A to a
set of concepts, such that C(a) ∈ A iff C ∈ L(a). We
call L(a) the concept set of a. In a centralized setting,
a summary ABox that satisfies properties (1)-(3) can
be effeciently built by (a) mapping individuals with the
same concept set CS to the same summary individual
n whose concept set is CS and (b) adding relations be-
tween n and other summary individuals to satisfy (2)
and (3). In practice, such summary ABox A′ is dra-
matically smaller than the original ABox A. It can be
constructed efficiently from A using conventional rela-
tional database queries. It only needs to be computed
once, persisted, and then reused in subsequent queries.
It is easily updated incrementally and is thus resilient
to changes in A. Unfortunately, this simple summariza-
tion technique is impractical in a decentralized setting
since it requires complete explicit information for each
individual.

Distributed Summary

In a decentralized setting, an abox A is spread to n
sources s1 to sn, with Ai denoting the portion of the
abox A located in si, and A =

⋃
1≤i≤nAi. Concep-

tually, the construction of the global summary ABox
A′ of a distributed ABox A consists of two steps: (a)
construction of local summaries and (b) the merge of
the local summaries. In what follows, we assume the
existence of a global hash function h which maps an in-
dividual a in a source si to its hash value h(a), as well
as an owner function Ow that maps a hash value hv
computed by h to a source si considered as the unique
‘owner’ of individuals whose hash value is hv. Specific
implementations of h and Ow are defined on Page 4.

Constructing Local Summaries At each source si,
a local summary ABox A′

i of Ai is built by mapping
individuals with the same concept set CS in Ai and the
same hash value hv to the same local summary node n
in A′

i whose concept set L(n) = CS and hash value
h(n) = hv (if such a node n does not exist in A′

i, a
new node n is first created in A′

i with L(n) = CS and
hash value h(n) = hv). As in the traditional summary
construction described in the previous section, n is then
related to other summary nodes in A′

i to preserve role,
equality and different-from assertions (i.e., satisfy prop-
erties (2) and (3) of a summary ABox). Let fi denote
the summary function of the summary ABox A′

i.

Merging Local Summaries The main challenge of
the merger phase is illustrated by a simple example: if
an individual a is present in the ABox A1 of source
s1, where it is mapped to the node n1 in the local
summary A′

1, and in the ABox A2 of the source s2,
where it is mapped to the node n2 in A′

2, the merger
phase must ensure that, in the final merged summary,
a is mapped to a single summary node which has the
same role, concept, equality and different-from asser-
tions as both n1 and n2. To achieve this goal, we rely
on the hash function h to identify summary nodes in

Algorithm 1 Building the global summary.

1: procedure buildGlobalSummary(S)
2: N ← ∅
3: for all si ∈ S do
4: A′

i ← buildLocalSummary(si)
5: for all n ∈ A′

i|Ow(h(n)) 6= si do
6: sow ← A

′
ow|sow = Ow(h(n))

7: N ← N ∪ 〈n, si, sow〉

8: for all 〈n, si, sow〉 ∈ N do
9: M ← {m|m ∈ A′

ow ∧ h(n) = h(m)}
10: for all (α ∈ A′

i|n appears in α) ∧m ∈M do
11: A′

i ← (A′
i/{α}) ∪ {α[n→ m]}

α[n→ m] is the assertion obtained after
replacing n by m in α

12: return
⋃

1≤i≤n
A′

i

different local summaries whose set of corresponding
ABox individuals might overlap (e.g.,, n1 and n2 in the
previous example, which, by construction of local sum-
maries, will have the same hash value). Moreover, we
use the Ow function to ensure a unique representative
of each ABox individual in the final merged summary.
Although an individual a may be mentioned in various
sources, the intuition is that its most authoritative de-
scription is provided by the source which owns it (i.e.,
Ow(h(a)). The distributed global summary ABox A′

is built from the local summaries according to Algo-
rithm 1. This algorithm takes as a parameter the set
of individual sources S, and assumes a function that
builds local summaries according to the previous sec-
tion. Informally, the distributed summary ABox A′ is
built from retrieved local summaries A′

i by replacing,
in each A′

i, a ‘foreign’ summary node n (i.e., a node
such that Ow(h(n)) 6= si) by all summary nodes m in
the local summary of the source Ow(h(n)) having the
same hash value as n (i.e., m is a node in the local
summary of Ow(h(n)) and h(n) = h(m) 3).

Distributed Summary Function For a source si,
let A′′

i denote the summary obtained after replacing all
“foreign” nodes in the local summary retrieved from si
(i.e., A′′

i is the value of A′
i at line 12 in Algorithm 1).

The summary function f of A′ maps an individual a in
A to a node n in A′′

i such that a is owned by source
si (i.e., si = Ow(h(a))) and h(n) = h(a) (by construc-
tion, at least one such n exists. In case of multiple n,
if a is in Ai, then fi(a) is chosen; otherwise, any such n
can be chosen). In practice, f is not computed as it is
not needed for any optimization technique described in
the paper. It can easily be shown that this summariza-
tion scheme satisfies the three fundamental properties
of a summary ABox.

Summary Filtering

For a given query or reasoning task, only a small frac-
tion of the distributed summary is typically relevant.

3if no such m exists in Ow(h(n)), a new one is created
with h(m) set to h(n)

As a result, in practice, we never perform the merger
step of the distributed summarization directly on the
local summaries, but rather on their relevant subsets.
In the remainder of this section, we consider filter-
ing w.r.t. conjunctive query answering with a shared
aligned DL-LiteR TBox. Since conjunctive query an-
swering w.r.t. a DL-LiteR TBox can be reduced to an-
swering a union of conjunctive queries w.r.t. an empty
TBox, we present only summary filering w.r.t. a con-
junctive query and an empty TBox.
We assume that all the local summaries have been

pulled in a central location. For a conjunctive query
q, the filtering is done by relaxing q to account for the
fact that joins in q are not necessarily local to each
local summary. For instance, the query q = (x) ←
R(x, y)∧ S(x, a)∧C(x) (where R and S are roles, C is
a concept, a is an individual, and x and y are variables)
is transformed into the relaxed construct query [q]r:

construct[R(x1, y1) , S(x2, vala1
) , C(x3)]←

R(x1, y1) ∧ S(x2, vala1
) ∧ C(x3)∧

hr(x1, hvx) ∧ hr(x2, hvx) ∧ hr(x3, hvx) ∧ hr(vala1
,h(a))∧

src(x1, sx1
) ∧ src(x2, sx2

) ∧ src(x3, sx3
) ∧ src(y1, sy1)∧

filter(sx1
6= sx2

∨ x1 = x2) ∧ filter(sx2
6= sx3

∨ x2 = x3)∧

filter(sx1
6= sx3

∨ x1 = x3)

Evaluating [q]r on the union of local summaries re-
trieves only relevant statements from each local sum-
mary. We make three important observations about
[q]r in this example. First, each join variable x in q
(i.e., a variable that occurs at least twice in the body
of the query) is replaced by new variables xi for each
occurrence of x. Second, these new variables xi must
have the same hash value hvx to allow joins across lo-
cal summaries as long as the summary nodes share the
same hash value (as they potentially represent the same
ABox individual). These constraints appear in the sec-
ond line of the body of the query. hr in hr(x1, hvx)
corresponds to a role that indicates the hash value of
an individual. However, if xi and xj come from the
same source, then they must also be identical since an
individual in a local ABox cannot be mapped to two
distinct nodes in the local summary. This constraint
is enforced by the boolean filter tests in [q]r (src is a
role that indicates the source of a node). Finally, each
occurrence of a constant (e.g., a) is replaced by a new
variable (e.g., vala1

), referred to as a constant variable.
This new variable is then constrained to have the same
hash value as the constant (e.g., hr(vala1

,h(a))).
Formally, the relaxation operator [.]r is defined in-

ductively as follows (we use the auxillary function con
to specify constraints on the hash value of nodes bound
to variables in [q]r):

• For the kth occurrence of a variable x, denoted xk

(hereafter referred to as an occurrence-annotated
variable): [xk]r = xk and con(xk) = {hr(xk, hvx)}.
hvx is a variable whose values represent the hash val-
ues of summary nodes bound to the variable x.

• For the kth occurrence of a constant a, denoted ak
[ak]r = valak

and con(ak) = {hr([ak]r,h(a))}. valak

is a variable, called constant variable, representing
the kth occurrence of a.

• For a term t of the form R(v, w) where R is a role,
v and w are occurrence-annotated variables or con-
stants, we define auxillary functions: [t]br to represent
its contribution to the body clause of the final query,
and [t]cr for its contribution to the construct clause:

– [R(v, w)]br = {R([v]r, [w]r)} ∪ con(v) ∪ con(w) ∪
{src([v]r, s[v]r), src([w]r, s[w]r)}

– [R(v, w)]cr = [R(v, w)]br ∪
{var([v]r, “[v]r”),var([w]r, “[w]r”) }. src is a
role that indicates the source of a summary node.
It is specified for each summary node at summary
construction. s[v]r (e.g., sx1

) is a new variable
for the source of the summary node bound to
the new variable [v]r (e.g., x1). Finally, var
is a role in the filtered summary that indicates
the occurrence-annotated or constant variable to
which each filtered summary node is bound. It
plays a key role in the subsequent analysis of the
filtered summary (see page 5).

• For a term t of the form C(v), it is handled in a
similar fashion as the previous case (i.e., R(u, v)).

• Finally, for a conjunctive query q of the form
x1, ..., xn ← t1 ∧ ...∧ tm , the relaxed query [q]r used
to construct the filtered local summaries is :

construct[c1. ... cp.] ← b1 ∧ ... ∧ bq ∧ fl1 ∧ ... ∧ flr

where ci ∈
⋃

1≤j≤m[t′j]
c
r, bi ∈

⋃
1≤j≤m[t′j]

b
r (t′j is

the term obtained after replacing variables occurring
in ti by their corresponding occurrence-annotated
variable), and fli ∈

⋃
x∈joinVar(q){filter(sxj

6=

sxk
∨ xj = xk)|1 ≤ j < k ≤ occ(x, q)} or

fli ∈
⋃

c∈joinConst(q){filter(svalcj 6= svalck ∨ valcj =

valck)|1 ≤ j < k ≤ occ(c, q)} (joinVar(q) is the set
of join variables in q, joinConst(q) is the set of con-
stants appearing at least twice in q, and occ(u, q) is
the number of occurrence of u in the body of q) .

The correctness of filtering relies on the following The-
orem whose proof is provided in the appendix:

Theorem 1 Let A′
i be the local summary of a local

ABox Ai located at source si with summary function
fi, for 1 ≤ i ≤ n and n > 0. For a conjunctive query
q, let filter(A′

i, q) denote the largest subset of A′
i con-

tained in the result of evaluating [q]r on
⋃

1≤i≤nA
′
i.

Then, the evaluation of q w.r.t. an empty TBox pro-
duces the same results on A =

⋃
1≤i≤nAi and on

⋃
1≤i≤n fi

−1[filter(A′
i, q)]

Furthermore, if q is minimal w.r.t. the number of its
terms (i.e., if a conjunctive query q′ is equivalent to q
w.r.t. the empty TBox, then either q′ has more terms
than q or there are syntactically identical after variable

renaming and term reordering), then the filtering per-
formed by evaluating [q]r is optimal. This is formalized
by the Theorem 2 whose proof is in Appendix.

Notation 1 For a summary ABox S, S denotes the
subset of S obtained after removing relations involving
metadata roles (i.e., src, hr, var).

Theorem 2 Let A′
i be the local summary ABox located

at source si, for 1 ≤ i ≤ n and n > 0. Let S ′ be a strict
subset of

⋃
1≤i≤n filter(A

′
i, q). If q is minimal w.r.t.

the number of its terms, then there exists n ABoxes Si
(1 ≤ i ≤ n) such that (1) A′

i is a valid summary ABox
for Si with summary function gi and (2) the evaluation
of q w.r.t. an empty TBox returns different set of results
on

⋃
1≤i≤n gi

−1[S ′ ∩ A′
i] and on

⋃
1≤i≤n Si

In practice, for performance reasons and since access
to some remote local summaries may be restricted to
a SPARQL end point, before issuing the query [q]r
against

⋃
1≤i≤nA

′
i, we start by retrieving, for each

term t in q, the relevant portion of each local summary
A′

i. This is achieved by evaluating [()← t′]r against
A′

i, where t′ is the term obtained after replacing vari-
ables occurring in t by their corresponding occurrence-
annotated variable.

A Meaningful Global Hash for Linked Data

The global hash function h and the owner function
Ow play a key role in the distributed summary. We
first briefly describe some important desiderata on h
and Ow. The number of buckets created by the hash-
ing obviously controls the trade-off between precision
of the global distributed summary and its size. How-
ever, the decision on the number of buckets should not
be made upfront and at a global level (Desideratum-1).
Instead, this decision should be made, without coordi-
nation, by local sources as they build their local sum-
mary. For example, one source with a large and very
complex data set might require a more aggressive hash-
ing (fewer buckets), while another source might choose
a less aggressive hashing because it still produces a rel-
atively small summary of its ABox. On the other hand,
a normalization mechanism is needed when merging the
relevant sections of the local summaries to compen-
sate for the difference in “aggressiveness” of hashing
between sources (Desideratum-2). Finally, the owner
function Ow should be able to interpret hash value of
an individual a to identify the source which is more
likely to have the most authoritative information about
a (Desideratum-3).
If the identifiers of individuals and the distribution

of data in the network of sources are completely ran-
dom, it is unclear how such h and Ow can be de-
signed to satisfy the previous three desirata. Fortu-
nately, this is not how the Linked Open Data is or-
ganized. The first three of its four principles out-
lined by Tim Berners-Lee4 can be exploited to design

4http://www.w3.org/DesignIssues/LinkedData

h and Ow: “(i) Use URIs to identify things; (ii) Use
HTTP URIs so that these things can be referred to and
looked up by people and user agents; (iii) Provide use-
ful information about the thing when its URI is deref-
erenced”. These principles clearly entail a notion of
ownership of each individual; namely, the domain (or
host name) of the HTTP URI of the individual is its
owner. A HTTP URI has syntax http://P0/. . ./Pn/name
where P0 is domain, {P1, . . . , Pn} are path elements,
and name is local name. We can leverage URI syn-
tax to create desirable h and Ow functions. Func-
tion h can be defined by removing some elements
of URIs. That is, given the level of abstraction
l, h(http://P0/. . ./Pn/name) = http://P0/. . ./Px, where
x = max(n − l, 0). Here, the hash value of a URI
serves as a bucket of URIs with common domain
and path elements. The size of the bucket increases
and hashing becomes more aggressive as l increases.
For instance, h(http://dbpedia.org/resource/Bill Clinton)
is http://dbpedia.org/resource when l = 0, but it be-
comes http://dbpedia.org when l = 1. Similarly, follow-
ing Linked Open Data principles, Ow can be defined
as Ow(http://P0/. . ./Px)= P0.

To hash URIs in a specific domain, two different
sources si and sj may select different l values, such
as li and lj . This means that the same URI will
be represented by different hash values in their lo-
cal summaries. Therefore, in the meta-data of each
local summary, sources state l values they used for
each domain. While aggregating local summaries, hash
values are normalised easily by taking the maximum
level of abstraction. For instance, if li = 0 and
lj = 1 for dbpedia.org domain, then normalized value
for h(http://dbpedia.org/resource/Bill Clinton) would be
http://dbpedia.org in the global summary.

Summary-based Optimizations

The filtered and annotated (with src, hr, var) local
summaries enable three important types of optimiza-
tions: query pruning, efficient source selection, and
transformation of distributed joins into local joins (even
when multiple sources are selected).

Query Pruning

For a conjunctive query q, if the evaluation of [q]r on
the local summaries A′

i of Ai (1 ≤ i ≤ n) results in an
empty summary, then, by Theorem 1, the evaluation of
q w.r.t. the empty Tbox on A =

⋃
1≤i≤nAi is guaran-

teed to also return an empty result set. Query pruning
is particularly important for conjunctive queries evalu-
ated w.r.t. to a DL-LiteR Tbox because, as shown in the
experimental evaluation, many generated conjunctive
queries can be discarded - including queries that can-
not be pruned based only on the unsatisfiability of one
of their terms. Furthermore, the optimality of the fil-
tering (see Theorem 2) makes our approach more likely
to detect queries with empty result set.

Source Selection

Source selection consists in assigning to each term t in
a query q, the set of sources, denoted srcsel(t), that
need to be contacted in order to answer t. Assuming
that t is of the form R(v, w) (C(v) is treated in a similar
fashion), by definition of [.]r, [v]r is always a variable x
(of the form valv if v is a constant; otherwise, it is of
the form xk). In our approach, source selection is per-
formed by simply evaluating the following conjunctive
query on the filtered summary:

(s)← var(u, “x”) ∧ src(u, s)

This query selects the sources of all the filtered sum-
mary nodes which have a variable annotation (var)
to the variable x (x = [v]r). The correctness of our
source selection stems from the fact that the construct
query used to build the filtered summary adds the triple
var(n, “x”) for all constructed nodes n bound to x.

Distributed Join Elimination

We now present two techniques to transform distributed
joins into local joins. The first technique is applicable
to any system with some source selection capability,
whereas the second is unique to our approach.

Exclusive source-based technique Given a con-
junctive query q and a join variable x appearing in
n terms of q (n > 1) such that m (1 < m ≤ n) of
these terms have the same unique source s, an expen-
sive distributed join can be avoided by performing the
m join locally on the source s. This simple technique
works fairly well as discussed in (Schwarte et al. 2011)
when the sources use different vocabularies or ontolo-
gies. However, it is less effective when they have the
same ontology and most subjects and objects in terms
of q are variables. In such situations, as illustrated on
the UOBM 30 dataset in the experimental evaluation,
almost all sources are selected.

Variable Locality-based technique In distributed
settings where a common vocabulary or ontology is
shared by many sources, some roles exhibit a lo-
cal behavior; that is, in each source s, they are
only involved in statements where the subject a (or
the object a) is an individual owned by s (i.e.,
Ow(h(a)) = s)). For example, in the distributed
data network of a multinational coorporation where
each data source contains information for each coun-
try, the role “salary” and “position” would appear in
each source. However, in each source s, the subject of a
statement with such a role is always an employee (e.g.,
http : //xyz.com/France/HR/Jean Dupond) work-
ing in the country corresponding to s . Therefore,
the conjunctive query q = (x , p , s) ← salary(x, s) ∧
position(x, p)∧ s > 200K can more efficiently be eval-
uated by computing it locally at each source and re-
turning the union of the local results - thus avoiding an
expensive distributed join.

Annotations in the filtered summary allow us to de-
tect this locality. Let x be a join variable which ap-
pears in n (n > 1) terms of a query q. For a subset
S = {t1, ..., tm} (with 1 < m ≤ n), x can be identified
as local for the join (t1, ..., tm) if all filtered summary
nodes with the same hash value bound to any occur-
rence of x in a ti come from the same source. For-
mally, for 1 ≤ i ≤ m, if terms ti satisfy the following
property (Var-Locality), then the join on x for the all
the terms ti (1 ≤ i ≤ m) can safely be performed lo-
cally in each source: (Var-Locality) If two distinct
nodes α and β in the filtered summary are such that
var(α, “xi”), var(β, “xj”), hr(α, hv) and hr(β, hv) are
statements in the filtered summary (where xi and xj are
any occurrence-annotated variables corresponding to
occurrences of x in {t1, ..., tm}, and hv denotes the com-
mon hash value of α and β), then α and β must come
from the same source (i.e., src(α, sc) and var(β, sc)
must be in the filtered summary, where sc is the value
of the common source).

Experimental Evaluation

To evaluate the effectiveness of our approach, we de-
veloped two experiments to assess the efficiency gains
over existing state-of-the-art distributed query answer-
ing engines, such as Alibaba and FedX (Schwarte et al.
2011), using our summary-based optimizations. 5

The first set of experiments consists of a subset of
the FedBench (Schmidt et al. 2011) benchmark and
aims to compare our approach to the FedX and Al-
ibaba. FedBench benchmarks consist of sets of queries
issued to a variety of collections of data sources, with
queries spanning multiple individual sources to require
a federated query answering mechanism. For example,
the “Cross Domain” collection of datasets includes DB-
pedia (Bizer et al. 2009), the New York Times ontology,
LinkedMDB (Consens 2008), Jamendo, Geonames and
the SW Dog ontology (an ontology describing academic
conferences). In our experiments, we use only the con-
junctive queries from FedBench for both the “Life Sci-
ences” dataset (LifeSci), as well as a modified version
of the Cross Domain dataset called “Open Domain”
(OpenDom). Within OpenDom the SW Dog ontol-
ogy’s ABox is broken down into multiple sources, one
for each individual conference, resulting in 36 differ-
ent sources rather than the six sources from FedBench.
Moreover, the set of queries for OpenDom is divided
into cross-domain and linked data (OpenDom-LD).

The second set of experiments consists of a series of
federated queries over the UOBM benchmark (Ma et
al. 2006).UOBM is an improvement over the popular
LUBM (Guo, Pan, and Heflin 2005) adding the ability
to scale the size of the benchmark almost indefinitely,
but critically, it adds multiple links between universi-
ties. Since we use one data source per university, inter-
university links lead to some federated queries requiring

5See (Schmidt et al. 2011; Dolby et al. 2007) for addi-
tional information on the datasets used.

Table 1: Number of assertions in summary and number
of sources by domain — ‡ indicates small-sized sources.

Domain LifeSci OpenDom UOBM5 UOBM30

Summary Size 33506 60041 97956 702206
Number of Sources 4 6+30‡ 5 30
Summary Size

Source Data Size
0.063 % 0.037% 8.8% 9.2 %

joins across data sources. In our benchmark, we have
transformed theUOBM ontology into DL-LiteR expres-
sivity, and generated two datasets with, respectively,
five (UOBM5) and 30 universities (UOBM30). Using
the DL-LiteR query compilation described in (Rosati
and Almatelli 2010) 6, the UOBM queries were trans-
lated into 483 conjunctive queries w.r.t an empty TBox
(the compilation step also prunes out generated queries
with concept or role not present in the sources).
The federation engines were run on a laptop with a

dual-core 2.4Ghz Intel CPU and 3GB of RAM (1GB
maximum heap size for the Java Virtual Machine) run-
ning Windows XP. The federation engines connected to
a remote HTTP Sesame RDF server with four 2.33GHz
64-bit Intel CPUs and 25 GB of RAM running Linux.
The size ratio of summary to data sources varied sig-
nificantly, depending on the number of similar concepts
in each source, ranging from 0.037% for OpenDom to
9.2% for UOBM30. The size of the summaries and the
number of sources for each dataset is shown in Table 1.
The results of these experiments are summarized in

Table 2, which shows runtime statistics for each com-
bination of dataset and federation engine (with and
without our summary-based optimizations (SO)). The
results show that the cost of analyzing the summary
is amortized by the gains obtained from more efficient
query plans in all datasets and engines, except for FedX
on LifeSci, which has the smallest number of sources.
Moreover, the improvements forUOBM are much more
dramatic as the number of sources increases due to
our unique “variable locality-based technique” to elimi-
nate expensive distributed joins, a more efficient source
selection and query pruning (13% of the queries are
pruned without contacting any source). For UOBM30,
we observe a four times average speed gain on FedX (Al-
ibaba without our optimizations on UOBM30 did not
complete after 2.5 days).

Conclusions

In this paper, we developed a novel distributed summa-
rization approach for efficiently querying Linked Open
Data. Our approach exploits the main principles of
Linked Data for indexing distributed data. We per-
formed extensive experiments over real and synthetic
data and show that our approach improves state-of-
the-art query engines for distributed semantic data in
DL-LiteR ontologies. In future work, we will extend our
approach for more expressive ontology languages.

6This compilation technique produces a non recursive
datalog which we translate into a set a conjunctive queries

Table 2: Querying Times (sec) — † did not fully com-
plete.
Engine Dataset Average St. Dev Range

FedX UOBM5 8.362 10.67 0-179.89

FedX+SO UOBM5 5.11 7.06 0.02-51.14

Alibaba † UOBM30 days - -

Alibaba+SO UOBM30 51.30 141.82 0-943.80

FedX UOBM30 114.22 120.84 0-679.97

FedX+SO UOBM30 25.39 57.11 0-603.13

Alibaba † OpenDom 213.50 205.43 44.89-510.92

Alibaba+SO OpenDom 76.36 73.29 18.73-186.58

FedX OpenDom 26.70 14.80 9.17-44.67

FedX+SO OpenDom 10.08 8.34 3.45-25.84

Alibaba † OpenDom-LD 520.99 351.96 37.69-940.72

Alibaba+SO OpenDom-LD 420.47 441.48 12.38-930.19

FedX OpenDom-LD 18.34 13.12 7.74-46.72

FedX+SO OpenDom-LD 15.08 13.24 0.02-45.28

Alibaba LifeSci 1040.73 99.38 882.84-1125.08

Alibaba+SO LifeSci 576.66 367.14 125.53-930.64

FedX LifeSci 17.64 16.91 2.97-45.81

FedX+SO LifeSci 19.23 23.03 3.67-59.23

References

Aroyo, L.; Welty, C.; Alani, H.; Taylor, J.; Bernstein,
A.; Kagal, L.; Noy, N. F.; and Blomqvist, E., eds. 2011.
The Semantic Web - ISWC 2011 - 10th International
Semantic Web Conference, Bonn, Germany, October
23-27, 2011, Proceedings, Part I, volume 7031 of Lec-
ture Notes in Computer Science. Springer.

Baader, F.; McGuiness, D. L.; Nardi, D.; and Patel-
Schneider, P., eds. 2002. Description Logic Handbook:
Theory, implementation and applications. Cambridge
University Press.

Bizer, C.; Lehmann, J.; Kobilarov, G.; Auer, S.; Becker,
C.; Cyganiak, R.; and Hellmann, S. 2009. Dbpedia - a
crystallization point for the web of data. Web Semant.
7:154–165.

Calvanese, D.; Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2007. Tractable reasoning and efficient
query answering in description logics: The dl-lite fam-
ily. J. Autom. Reason. 39:385–429.

Consens, M. P. 2008. Managing linked data on the
web: The linkedmdb showcase. In Baeza-Yates, R. A.;
Jr., W. M.; and Santos, L. A. O., eds., LA-WEB, 1–2.
IEEE Computer Society.

Dolby, J.; Fokoue, A.; Kalyanpur, A.; Kershenbaum,
A.; Schonberg, E.; Srinivas, K.; and Ma, L. 2007. Scal-
able semantic retrieval through summarization and re-
finement. In Proceedings of the 22nd AAAI Conference
on Artificial intelligence.

Fokoue, A.; Kershenbaum, A.; Ma, L.; Schonberg, E.;
and Srinivas, K. 2006. The summary abox: Cutting
ontologies down to size. In Proceedings of the Interna-
tional Semantic Web Conference (ISWC), 343–356.

Guo, Y.; Pan, Z.; and Heflin, J. 2005. Lubm: A bench-
mark for owl knowledge base systems. Web Semant.
3:158–182.

Harth, A.; Hose, K.; Karnstedt, M.; Polleres, A.; Sat-
tler, K.-U.; and Umbrich, J. 2010. Data summaries for
on-demand queries over linked data. In Proceedings of

the 19th international conference on World wide web,
411–420.

Hartig, O.; Bizer, C.; and Freytag, J.-C. 2009. Exe-
cuting sparql queries over the web of linked data. In
Proceedings of the International Semantic Web Confer-
ence (ISWC), 293–309.

Konrath, M.; Gottron, T.; and Scherp, A. 2011.
Schemexweb-scale indexed schema extraction. In Pro-
ceedings of the International Semantic Web Conference
(ISWC) - Winner of the Billion Triple Challenge.

Ma, L.; Yang, Y.; Qiu, Z.; Xie, G.; and Pan, Y. 2006.
Towards a complete owl ontology benchmark. In Proc.
of the third European Semantic Web Conf.(ESWC
2006), 124–139.

Rosati, R., and Almatelli, A. 2010. Improving query
answering over dl-lite ontologies. In KR.

Schmidt, M.; Görlitz, O.; Haase, P.; Ladwig, G.;
Schwarte, A.; and Tran, T. 2011. Fedbench: A bench-
mark suite for federated semantic data query process-
ing. In Aroyo et al. (2011), 585–600.

Schwarte, A.; Haase, P.; Hose, K.; Schenkel, R.; and
Schmidt, M. 2011. Fedx: Optimization techniques for
federated query processing on linked data. In Aroyo
et al. (2011), 601–616.

Appendix

Preliminaries

Let q be a conjunctive query of the form

q = (x1, ..., xr)← t1 ∧ ... ∧ tm

Let X = (x1, ..., xr) denote the r-vector made of result
variables of q. Let Y = (y1, ..., yp) denote the p-vector
of non-result variables (i.e., variables occuring in the
body of q and different from all xi). By definition (see
(Calvanese et al. 2007)), an answer π to q w.r.t. the
empty TBox on an ABox A is a mapping from variables
xi (1 ≤ i ≤ r) to individuals in A such that there
exists a mapping π′ from variables yj (1 ≤ j ≤ p) to
individuals in A such that {π[π′[tj]]|1 ≤ j ≤ m} ⊆ A,
where π[α] (resp. π′[α]) denotes the term obtained from
α after replacing each variable xi (resp. yj) by π(xi)
(resp. π′(yj)).

Proof of Theorem 1

LetA′
i be the local summary of a local ABoxAi located

at source si with summary function fi, for 1 ≤ i ≤ n
and n > 0.
By definition of the preimage (see preliminaries sec-

tion on page 2) and filter(A′
i, q) (see Theorem 1),

S =
⋃

1≤i≤n fi
−1[filter(A′

i, q)] is a subset of A =
⋃

1≤i≤nAi. Therefore, if a mapping π is an answer
to q w.r.t. the empty TBox on the ABox S, then it is
obviously also an answer to q w.r.t. the empty TBox on
A. Thus, to prove Theorem 1, we only need to establish
that if a mapping π is an answer to q on A, then it is
also an answer to q on S.

Notation 2 Let A′ be the summary ABox of an ABox
A with summary function f . Let U be a subset of an
ABox A. The image of U in A′, denoted f [U], is defined
as the following set:

f [U] = {R(f(a), f(b))|R(a, b) ∈ U}∪{C(f(a))|C(a) ∈ U}

∪{f(a) ˙6=f(b)|a ˙6=b ∈ U}

It follows directly from the three key properties of a
summary Abox that f [U] ⊆ A′. From the definition of
preimage, it follows that U ⊆ f−1[f [U]] .

Let π be an answer to q on A. Since π is an answer,
there exists π′ a mapping from yi (1 ≤ i ≤ p) to indi-
viduals in A such that J = {π[π′[tj]]|1 ≤ j ≤ m} ⊆ A.
We define by induction n subsets of J which constitues
a partition of J as follows:

• J1 = J ∩ A1

• for 1 < i ≤ n, Ji = (J ∩ Ai)−
⋃

1≤j<i Jj

We now show that, for 1 ≤ i ≤ n, fi[Ji] ⊆
filter(A′

i, q). This is enough to prove Theorem 1 be-
cause it implies Ji ⊆ fi

−1[filter(A′
i, q)] as a result of

(a) fi
−1[fi[Ji]] ⊆ fi

−1[filter(A′
i, q)] (by monotonicity of

the preimage), and (b) Ji ⊆ fi
−1[fi[Ji]] (by definition

of image and preimage).
Let q′ be the conjunctive query whose set of result

variables are all variables occurring in [q]r and whose
body is made of terms in the body of [q]r except filter
tests. The proof proceeds with the following steps:

1. We construct a mapping Π from variables of q′ to
individuals in Y =

⋃
1≤i≤n Yi

Yi = fi[Ji] ∪ {src(n, si)|n ∈ indSet(fi[Ji])}

∪{hr(n,h(n))|n ∈ indSet(fi[Ji])}

indSet(U) denotes the set of individuals in a subset U
of an ABox or a summary Abox . Yi adds to fi[Ji]
metadata relations (src and hr) for each individual
in fi[Ji].

2. We show that Π is an answer to q′ on Y (i.e.,⋃
t∈body(q′) Π[t] ⊆ Y, where body(q′) denotes the set

of terms in the body of the query q′). Furthermore, Π
also satisfies all the filter test conditions in the body
of [q]r.

3. We show that
⋃

t∈body(q′) Π[t] = Y

4. Finally, assuming the previous three results have
been established, we conclude the proof as follows.
Since Y is clearly a subset of A′ =

⋃
1≤i≤nA

′
i

and Π also satisfies all the filter tests in the body
of [q]r, it follows that the result of the evalua-
tion of [q]r on A′ contains Y (because the con-
struct part of [q]r is a super set of body(q′) and
body([q]r) = body(q′) ∪ filters in [q]r) , which im-
plies

⋃
1≤i≤n fi[Ji] ⊆

⋃
1≤i≤n filter(A

′
i, q). This re-

sult combines with the fact that, for 1 ≤ i ≤ n,
fi(Ji) (resp. filter(A

′
i, q)) are mutually disjoint and

fi(Ji) ⊆ A
′
i (resp. filter(A′

i, q) ⊆ A
′
i) establishes

fi[Ji] ⊆ filter(A′
i, q).

Step 1: Specification of Π Variables in q′ are in
one of five forms;

• xl
k for the kth occurrence of the result variable xl in

the body of original query q, or

• ylk for the kth occurrence of the non-result variable yl

in the body of original query q, or

• valcl
k
for the kth occurrence of the constant cl in the

body the original query q

• su for the source of the nodes bound to variable u
(where u is in one of the first three forms).

• hvu for the hash value of a variable u. u is either a
result variable u = xl of q or a non result variable
u = yl of q.

Let z be a variable in q′. If z is in one of the first three
forms (i.e., xl

k, y
l
k or valcl

k
), then there exists a single

term tj (1 ≤ j ≤ m) in the original query q such that z
appears in the term t′j obtained from tj after replacing
variables by their corresponding occurrence-annotated
variables and constants by their corresponding constant
variables. By construction of (Jv)1≤v≤n, there is a
unique i (1 ≤ i ≤ n) such that of π[π′[tj]] ∈ Ji.

• If z is of the form xl
k, then Π(z) = fi(π(x

l))

• If z is of the form ylk, then Π(z) = fi(π
′(yl))

• If z is of the form valcl
k
, then Π(z) = fi(c

l)

• If z is of the form su (where u is a variable in one of
the previous 3 forms with Π(u) = fi(a) and a is an
individual in Ai), Π(z) = si (i.e., the source of the
variable u is the ith source si)

• If z is of the hvxl (resp. hvyl) with xl a result variable

in q (resp. yl a non-result variable in q), Π(z) =
h(π(xl)) (resp. Π(z) = h(π′(yl)))

Π is obviously a mapping from variables in q′ to in-
dividuals in Y.

Step 2: Π is an answer to q′ on Y and satisfies fil-
ter tests in [q]r We now show that Π is an answer to
q′ on Y by establishing that for each term t ∈ body(q′),
Π[t] ∈ Y. Let t be term in the body of q′. We consider
all the forms in which t can be:

• Case 1: There exists j (1 ≤ j ≤ m) such that
t = t′j where t′j is the term obtained from the jth

term in the body of the original query q after re-
placing variables and constants by their correspond-
ing occurrence-annotated variables and constant vari-
ables. By construction of (Jv)1≤v≤n , there exists a
unique i (1 ≤ i ≤ n) such that π[π′[tj]] ∈ Ji. By
definition of Π, the following holds:

Π[t′j] ∈ fi[{π[π
′[tj]]}] (I)

(i.e., Π[t′j] is the single element in fi[{π[π′[tj]]}]).
This implies that Π[t′j] ∈ fi[Ji]. So, Π[t] ∈ Y.

• Case 2: t = hr(xl
k, hvxl). By definition of Π,

Π(hvxl) = h(π(xl)) and there exists i (1 ≤ i ≤ n)
such that Π(xl

k) = fi(π(x
l)) with π(xl) ∈ Ji. Hence,

Π[t] = hr(fi(π(x
l)),h(π(xl))). Since π(xl) ∈ Ji

and h(π(xl)) = h(fi(π(x
l))) (by construction of local

summaries), it follows that Π[t] ∈ {hr(n,h(n))|n ∈
indSet(fi[Ji])}, which directly implies Π[t] ∈ Y

• Case 3: t = hr(ylk, hvyl). Same proof as Case 2.

• Case 4: t = hr(valcl
k
,h(cl)). Similar to Case 2

• Case 5: t = src(xl
k, sxl

k
). By definition of Π, there

exists i (1 ≤ i ≤ n) such that Π(xl
k) = fi(π(x

l))
with π(xl) ∈ Ji and Π(sxl

k
)) = si. Hence, Π[t] =

src(fi(π(x
l)), si), which implies Π[t] ∈ Y

• Case 6: t = src(ylk, syl
k
). Similar to Case 5

• Case 7: t = src(valcl
k
, sval

cl
k

). Similar to Case 5

Now, we show that Π satisfies all filter tests in [q]r.
Let fl be a filter test in [q]r.

• Case 1: fl = filter(sxl
j
6= sxl

k
∨ xl

j = xl
k) for 1 ≤

j < k ≤ occ(xl, q). By definition of Π, there exists i0
and i1 between 1 and n such that Π(xl

j) = fi0(π(x
l)),

Π(xl
k) = fi1(π(x

l)), Π(sxl
j
)) = si0 , and Π(sxl

k
)) = si1 .

Hence, Π[t] = filter(si0 6= si1 ∨fi0(π(x
l)) = fi1(π(x

l)),
which is trivially true as i0 = i1 implies fi0(π(x

l)) =
fi1(π(x

l))

• Case 2: fl = filter(syl
j
6= syl

k
∨ ylj = ylk) for 1 ≤ j <

k ≤ occ(yl, q). Same as Case 1

• Case 3: fl = filter(sval
cl
j

6= sval
cl
k

∨ valcl
j
= valcl

k
) for

1 ≤ j < k ≤ occ(cl, q) . Same as Case 1

Step 3:
⋃

t∈body(q′) Π[t] = Y We have already shown
⋃

t∈body(q′) Π[t] ⊆ Y. Y ⊆
⋃

t∈body(q′) Π[t] is a direct

consequence of the definition of Π and Y (in particular
of the fact (I) established in Case 1 of the proof that
the proposition “Π is an answer to q′ on Y” in Step 2).

Proof of Theorem 2

Let A′
i be the local summary ABox located at source

si, for 1 ≤ i ≤ n and n > 0. Let S ′ be a strict subset
of

⋃
1≤i≤n filter(A

′
i, q). Let q be a conjunctive query

that is minimal w.r.t. its number of terms.
We consider the ABox S whose individuals are vari-

ables and constants in q and whose assertions are terms
in the body of q. Formally, S = {t|t ∈ body(q)}. Now,
we construct a distribution of of S in n distributed
ABoxes Si that satisfies the conditions (1) and (2) of
Theorem 2.
Since S ′ is a strict subset of

⋃
1≤i≤n filter(A

′
i, q),

there exists α and i0 (1 ≤ i0 ≤ n) such that α ∈

filter(A′
i0 , q) and α /∈ S ′ (note: (filter(A′

i, q))1≤i≤n

are mutually disjoint) .

As in the proof of Theorem 1, we introduce q′ the
conjunctive query whose set of result variables are all
variables occurring in [q]r and whose body is made of
terms in the body of [q]r except filter tests. Since

α ∈ filter(A′
i0 , q) , there must exist (a) an answer

Π to q′ on A′ that satisfies all the filter tests in the
body to [q]r, and (b) a term tj0 in the body of q such
that Π[t′j0] = α (t′j0 denotes the term obtained from tj0
after replacing variables and constants by their corre-
sponding occurrence-annotated variables and constant
variables).
Informally, Si is defined as the subset of S made of

terms t such that Π[t′] is in the summary A′
i of source

si (as usual, t
′ denotes the term obtained from t after re-

placing variables and constants by their corresponding
occurrence-annotated variables and constant variables).
Formally, for 1 ≤ i ≤ n, Si is defined as follows:

Si = {t|t ∈ body(q) ∧ u appears in t′ ∧Π(su) = si}

(Si)1≤i≤n are mutually disjoint because if a term t′

has two variables u and v (either occurrence annotated
variables (e.g., xl

k) or constant variables (e.g., valcl
k
)),

then Π(su) = Π(sv) (by construction, a local summary
contains assertions involving only its nodes). Hence is
(Si)1≤i≤n is a partition of S.

Now, we define the summary function gi which maps
individual in Si to a node in their summary A′

i. Let
z be an individual in Si. We consider all the forms in
which z can be:

• Case 1: z = xl . By definition of Si, there exists a
term t in the body of q and k (1 ≤ k ≤ occ(xl, q))
such that xl

k appears in t′ and Π(sxl
k
) = si, which

implies that Π(xl
k) ∈ A

′
i. gi(x

l) = Π(xl
k). Note that

this is a proper definition of gi(x
l) because if there

is another qualifying k, say k’, since Π(sxl

k′

) = si

and Π satisfies all filter tests in [q]r, we must have
Π(xl

k) = Π(xl
k′) .

• Case 2: z = yl. Same as case 1.

• Case 3: z = cl. Same as case 1. Important note: In
the submitted version of the paper, we forgot to also
include filter tests for constant variables representing
the same constant. Their inclusion (as presented in
this technical report) is key to ensure optimality of
the filtering.

By construction of S (which is made of terms in the
body q), the mapping π from result variables of q to
individuals of S defined as follows is an obvious answer
to q on S: for 1 ≤ l ≤ r, π(xl) = xl. Now, we show that
q does not have any answer in

⋃
1≤i≤n gi

−1[S ′ ∩ A′
i].

Since α = Π[t′j0] ∈ filter(A′
i0 , q), by definition of

(Sv)1≤v≤n, if there is i between 1 and n such that tj0 ∈
Si, it must be i = i0. Furthermore, α /∈ S ′ implies tj0 /∈
gi0

−1[S ′ ∩ A′
i0]. Therefore,

⋃
1≤i≤n gi

−1[S ′ ∩ A′
i] ⊆

S-{tj0}. q does not have any answer in S-{tj0} because
q is minimal w.r.t. its number of terms and S is made

of terms of q (including tj0). Therefore, q does not have
any answer in

⋃
1≤i≤n gi

−1[S ′ ∩ A′
i], which concludes

the proof.

