
RC25280 (WAT1204-062) April 18, 2012
Computer Science

IBM Research Report

A Scalable Algorithm for Placement of Virtual Clusters
in Large Data Centers

Asser N. Tantawi
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598
USA

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

A Scalable Algorithm for Placement of Virtual
Clusters in Large Data Centers

Asser N. Tantawi
IBM T.J. Watson Research Center
Yorktown Heights, NY 10598

tantawi@us.ibm.com

Abstract—We consider the problem of placing virtual clusters,
each consisting of a set of heterogeneous virtual machines (VM)
with some interrelationships due to communication needs and
other dependability-induced constraints, onto physical machines
(PM) in a large data center. The placement of such constrained,
networked virtual clusters, including compute, storage, and
networking resources is challenging. The size of the problem
forces one to resort to approximate and heuristics-based opti-
mization techniques. We introduce a statistical approach based
on importance sampling (also known as cross-entropy) to solve
this placement problem. A straightforward implementation of
such a technique proves inefficient. We considerably enhance
the method by biasing the sampling process to incorporate
communication needs and other constraints of requests to yield
an efficient algorithm that is linear in the size of the data center.
We investigate the quality of the results of using our algorithm
on a simulated system, where we study the effects of various
parameters on the solution and performance of the algorithm.

I. INTRODUCTION

As cloud computing matures, the demand for virtual re-
sources is changing from units of virtual machines (VM)
to a collection of heterogeneous VMs with communication
demand among them as well as availability constraints. Such
a collection forms a virtual cluster where, once deployed
in the physical infrastructure, the requester user launches a
distributed application where components of the applications
run on different reliable VMs with defined communication
needs. The problem for the cloud provider is to efficiently
place such a virtual cluster in the cloud on physical machines
(PM), in such a way that the availability constraints are satis-
fied, the virtual cluster experiences good performance, and the
rejection rate is kept at minimum. Further, the time to obtain
a placement decision should be reasonably small and it should
scale with the size of the cloud. A less constrained problem
than the one considered in this paper was shown to be NP-
Hard [1]. General techniques for solving bin packing and/or
mixed integer programming problems may be applicable, but
are usually inefficient since heuristics specially tailored to
the problem at hand should result in more efficient solutions.
Recently, there were research attempts to address those issues,
though with some limitations. In [1], the authors present
heuristic placement algorithms based on graph decomposition,
but only in the case where one VM is placed on a PM. In [2],
a heuristic algorithm based on clustering is presented and is
shown to work when placing in an empty system.

A similar problem exists in the area of virtual networking.
Notably, a divide-and-conquer approach is presented in [3]
where a collection of connected physical resources is first
identified as the target for placement, instead of the entire sys-
tem. The problem of identifying the best cluster for placement
has been studied in [4]. An alternate separation technique is
described in [5].
Looking at the mapping of a virtual cluster to PMs as a

mapping of a graph representing the interconnected VMs in the
virtual cluster to a graph representing the interconnected PMs
through some communication network is not new. In the area
of parallel processing and grid computing, a similar problem
exists where a task graph is to be mapped onto a system graph.
An approximate algorithm based on ordering the nodes in
the task graph in such a way that communication overhead
is minimized is presented in [6], [7]. A heuristic algorithm
which investigates the traversing of a graph and identifying
potential neighborhoods for placement is described in [8]. A
graph matching technique has also been tried [9], [10]. Further,
the cross entropy technique [11], [12] which is analogous to
importance sampling has also been considered [13]. The only
drawback is that one has to analyze a large number of samples,
hence hindering the possibility of dealing with a large system.
In this paper we are concerned with the problem of placing

patterns of VMs with some networking demands and availabil-
ity constraints onto a large-sized physical infrastructure. We
introduce a placement algorithm that is based on importance
sampling, where we bias the sampling to accommodate the
problem constraints and the communication demand. This
biasing technique is shown to lead to efficient placement
solutions and to exhibit a linear complexity in the system size.
The paper is organized as follows. We describe the physical

and virtual components of the cloud, along with communica-
tion and availability definitions in section II. The performance
measures and objectives are introduced in section III. In
section IV we state the placement optimization problem. Our
placement algorithm is described in section V. Simulation
results are presented in section VI.

II. SYSTEM DESCRIPTION

We consider a cloud system which consists of a set of
physical machines (PM) that are connected through switches
(SW) via links (LK). A PM hosts virtual machines (VM). A
collection of VMs make up a virtual cluster, or pattern, which

is the unit of deployment in the cloud. We proceed to describe
each of the above entities and their relationships in more detail

A. Physical machines

Let PM denote the set of npm physical machines in the
cloud, npm = |PM|. We will refer to an element in the set
as pmi, i = 1, · · · , npm. Each PM provides a set of resources,
R, consisting of resources rk, k = 1, · · · , nr. Examples of
such resources are CPU, memory, and disk storage. The total
capacity of resource rk on pmi is denoted by ci,k. The demand
(also referred to as usage) of such a resource is denoted by
di,k, di,k ≤ ci,k.

B. Physical network

A PM is connected to one or more switches via links.
Switches are interconnected via links. This interconnection
network forms a graph where the vertices are PMs and SWs,
and the edges are LKs. Let SW denote the set of switches.
A particular element in SW is referred to as swi, i =
1, · · · , nsw, where nsw is the number of switches, nsw =
|SW|. Furthermore, let LK denote the set of links. And,
we refer to an element in LK as lki, i = 1, · · · , nlk, where
nlk is the number of links, nlk = |LK|. Each link provides
bandwidth for communication. The total bandwidth capacity
of lki is denoted by bi. The demand (also referred to as usage)
of such a link is denoted by ai, ai ≤ bi. We assume that the
switches are fast and that communication delay is solely due
to link congestion. A path hi,j between pmi and pmj consists
of an ordered set of links {lkπi,j(1), lkπi,j(2), · · · }, with path
length denoted by ηi,j = |hi,j |. For convenience we define
wi(l), i = 1, 2, · · · , npm, and l = 0, · · · , L as the set of PMs
such that for pmj ∈ wi(l) we have ηi,j = l.

C. System availability

We imagine that a data center is partitioned into a hierarchy
of availability zones, where PMs in the same zone have similar
availability characteristics. In such a case, one may model
this hierarchy as a tree, where the leaves are the PMs and
an intermediate node represents a zone of availability. Let
vi,j be the probability that at least one of pmi or pmj is
available, i.e. one minus the probability that both pmi and
pmj are down. (Hence, vi,j = vj,i and vi,i is the probability
that pmi is available.) As such, we associate an availability
level, Vl, l = 0, · · · , L, for a node at level l in the tree, where
l = 0 represents the leaves and l = L represents the root of
the tree with height L. We assume that V0 < V1 < · · · < VL,
since two PMs in distant availability zones have less common
components and hence higher chance of having at least one
of them available. Using this tree model, two PMs pmi

and pmj with the lowest common ancestor at level l have
vi,j = Vl. (Clearly, vi,i = V0). For convenience we define
gi(l), i = 1, 2, · · · , npm, and l = 0, · · · , L as the set of PMs
such that for pmj ∈ gi(l) we have vi,j = Vl.

D. Virtual machines
Each VM is characterized by a set of resource demands, one

per resource type in the set R. These resource demands are
taken into consideration when placing a particular VM onto
a PM, making sure that there is enough available resource
capacity on the PM to satisfy the resource demand of the
VM. We refer to the PM which hosts vmi as pm(vmi).
Furthermore, a pair of VMs, say vmi and vmj may have
bandwidth demand which we denote by λi,j . Again, such
demands need be satisfied by all the links along the path
connecting pm(vmi) and pm(vmj).

E. Virtual clusters (Patterns)
A virtual cluster is a collection of VMs that make up a

deployable unit which we refer to as pattern. Hence, a pattern
is defined as a set of VMs, along with the resource demands
of the VMs and the pairwise bandwidth demand among the
VMs in the pattern. In particular, let’s consider pattern p.
Denote the number of VMs in p by nvm(p). They form
the set VM(p) = {vm1(p), vm2(p), · · · , vmnvm(p)(p)}. The
communication bandwidth demand of p may be represented by
a matrix [λi,j], where 1 ≤ i, j ≤ nvm(p). We assume that this
matrix is symmetrical with zero diagonal, i.e. the bandwidth
requirements among VMs in a pattern may be represented by
an undirected graph where the nodes represent the VMs, the
edges represent pairwise communications, and the weight of
an edge represents the amount of bandwidth demand between
a pair of distinct VMs.
For pattern p, we express availability requirements as fol-

lows. Let S(p) ⊂ VM(p)× VM(p) be a set of distinct pairs
of VMs in p. A pair (vmi, vmj) ∈ S(p) has an availability
constraint specified as vpm(vmi),pm(vmj) = α. This availability
requirement is satisfied if α ≤ Vl and pm(vmj) ∈ gk(l),
where pm(vmi) = pmk for some l, 0 ≤ l ≤ L.
We denote by π(p) a particular placement of pattern p.

In other words, π(p) maps each VM inVM(p) to a PM in
such a way that (1) the resource requirement of the VM is
satisfied by this PM, (2) the communication demand between
this VM and other VMs in p is satisfied by the links of
the communication network, and (3) the pairwise availability
requirements are satisfied. We write such a placement as
π(p) = {(vmi, pmm) | pm(vmi) = pmm, ∀vmi ∈ VM(p)}.

F. An example

Consider pattern p, depicted in Figure 1, which consists of 7
VMs, vm0 through vm6, arranged in three tiers {vm0, vm1},
{vm2, vm3, vm4}, and {vm5, vm6}, respectively. Communi-
cation demands are shown as solid edges. The communication
demand between VMs in tier 1 and VMs in tier 2 is 1 unit
per each pair of VMs. Further, the communication demand
between tier 2 and tier 3 is 2 units per each pair of VMs.
Availability constraints, depicted as dashed lines, are specified
among VMs in the same tier. For a given constraint, its avail-
ability α is represented as a Roman value of the corresponding
level l, 0 ≤ l ≤ L, where α ≤ Vl.

Fig. 1. An example multi-tier pattern.

Fig. 2. Placement of the multi-tier pattern.

Consider a system with 9 PMs and a tree network of degree
3, hence a 2-level tree, as shown in Figure 2. The PMs
are partitioned into three blade centers: {pm0, pm1, pm2},
{pm3, pm4, pm5}, and {pm6, pm7, pm8}, respectively. Thus,
vm0 and vm1 need to be placed in two different
PMs. Similarly, vm2, vm3, and vm4 need to be placed
on separate PMs. However, vm5 and vm6 need to be
placed in two different PMs in different blade centers. A
valid placement of this pattern is depicted in Figure 2,
where π(p) = {(vm0, pm0), (vm1, pm3), (vm2, pm0),
(vm3, pm5), (vm4, pm3), (vm5, pm0), (vm6, pm3)}. This
placement results in a certain network load. For example,
the core link connecting blade center 1 and blade center 2
will carry the sum of network demand between {(vm0, vm3),
(vm0, vm4), (vm1, vm2)}, each of 1 unit, and between
{(vm2, vm6), (vm3, vm5), (vm4, vm5)}, each of 2 units,

resulting in a total of 9 units.
III. PERFORMANCE EVALUATION

A. System performance
System performance is characterized by resource utilization

and delay measures. We define the utilization, ρi,k, of resource
rk on pmi as ρi,k = ui,k/ci,k. Further, let ρk be the random
variable representing the utilization of resource rk among all
PMs. Moreover, let ρ denote the vector of ρk.
For link lki in the interconnection network, we define the

utilization, νi, as νi = ai/bi. Further, let ν be the random
variable representing the utilization of links in the network.
We divide links into broadly two types: edge links and core
links. We define edge links to be the links directly connected
to a PM, whereas all other links are core links. The utilization
of edge links and core links are denoted by νedge and νcore,
respectively. The state of the cloud is represented by C =
{ρ, ν}.
The utilization of a path consists of the set of utilization of

the links constituting the path. The path bottleneck utilization
is defined as the utilization of the most utilized link in the
path, which we denote by γi,j . Hence, we have

γi,j = max{νhi,j(1), νhi,j(2), · · · , νhi,j(ηi,j)}.

The network delay between pmi and pmj is the sum of the
link delays along the path hi,j . We are not concerned about
absolute delay, rather delay factor as provided by a series
of M/M/1 queues, each representing a link along the path.
Denoting the delay factor between pmi and pmj by Ti,j , we
write

Ti,j =

ηi,j∑

k=1

1

1 − νhi,j(k)
.

The above expression gives a nominal value of delay assuming
a unit service time. In comparing delay among pairs of PMs,
we use a delay index metric denoted by δ. The delay index
δi,j between pmi and pmj along path hi,j is given by

δi,j = 1 −
ηi,j
Ti,j

,

which is a value in [0, 1], where δi,j = 0 represents no delay
and δi,j = 1 represents infinite delay. A higher value of δi,j
signifies more relative network congestion along the path hi,j .
Thus far, we have defined performance measures such as

resource utilization, ρi,k, link utilization, νi, path bottleneck
utilization, γi,j , path delay factor, Ti,j , path length, ηi,j , and
path delay index, δi,j . Such measures were defined on a
resource, link, or path between a pair of PMs. For a given
pattern, we provide measures defined on the pattern.
B. Pattern performance
We express the performance of a pattern by taking the

normalized weighted sum of a particular performance measure
of the pattern. For example, we define a weighted path length
(distance) for pattern p, denoted by η(p), as

η(p) =

∑
vmi,vmj

λi,j ∗ ηpm(vmi),pm(vmj)∑
vmi,vmj

λi,j
,

where vmi and vmj go over the set VM(p). Similarly, we
define the weighted delay index for pattern p, denoted by δ(p),
as

δ(p) =

∑
vmi,vmj

λi,j ∗ δpm(vmi),pm(vmj)∑
vmi,vmj

λi,j
.

Further, let η and δ denote the random variable representing
the weighted path length and the weighted delay index among
all patterns in the system.

C. Performance objective

The question here is: when deciding on the placement of
a pattern, p, what should the performance objective be? The
overall performance objective comprises two components: (1)
system performance expressed as the average and skew of the
utilization of the various system resources and (2) pattern
performance expressed as the average and skew of pattern
related measures such as communication path length, commu-
nication delay, and deviation from availability requirements.
Now, we define a combined overall performance objective for
the cloud using the above-mentioned performance metrics.
As for the first component, we consider PM and network
link resources. Thus, system performance is characterized
by ρk, k = 1, 2, · · · , nr, νedge and νcore. For the second
component, we have η(p) and δ(p), representing representing
the weighted path length and the weighted delay index of
pattern p, respectively.
In general, let X be the random variable representing a

performance metric. We denote the average and standard
deviation of X by µ(X) and σ(X), respectively.
The objective function is defined as

F (π(p)|C) =
∑nr

k=1 ω2resk
σ(ρk)

+ω1edge µ(νedge) + ω2edge σ(νedge)

+ω1core µ(νcore) + ω2core σ(νcore)

+ωpath η(p) + ωdelay δ(p),

where ωiresk
,ωiedge,ωicore, i = 1, 2, are weights for the

average and standard deviation of the utilization of PM
resources, edge and core links, respectively, and ωpath and
ωdelay are weights for the pattern weighted path length and
delay index, respectively. As far as the PM resources are
concerned, we care about the imbalance through the standard
deviation, whereas the average is not included in the objective
function since the pattern to be placed imposes some given
demand independently (ω1resk

= 0). As for the network,
we seek to lower both the average amount of traffic as well
as any imbalance among the links. It is desirable to have
ω1edge > ω1core while ω2edge < ω2core. This is due to the
more damaging impact from the imbalance in the core network
than the edge links.
Note that, in addition to system performance measures,

the objective function includes performance measures of the
pattern to be placed. As such our objective function targets
both social optimization, reflected in the health of the system,

including PMs and network links, as well as individual op-
timization, reflected in the specific performance that a given
pattern is experiencing.

IV. OPTIMIZATION PROBLEM

Given a cloud in state C, we are concerned with the
placement π(p) of pattern p so as to minimize the objective
function F (π(p)|C). In particular, consider an arrival process
of patterns which are to be placed in the cloud. A placed
(deployed) pattern remains in the cloud for some lifetime after
which the pattern departs and releases all of its resources. In
this paper we focus on the handling of an arriving pattern
rather than studying queueing and occupancy characteristics.
As such, we are dealing with a loss system where an arriving
pattern request p may be lost in case the placement algorithm
fails to find a mapping π(p) to place the pattern. In other
words, we state our optimization as follows.

Given C, find π(p) | min{F (π(p)|C)}.

An optimal placement algorithm attempts to find PMs in the
cloud that have enough capacity to host the VMs in the pattern,
while making sure that there is enough bandwidth in the
network to accommodate inter-VM bandwidth requirements,
as well as satisfying any pairwise VM availability constraints.
Such a choice of placement would have to minimize the above
mentioned objective function, i.e. minimize the imbalance
(skew) of resource usage, the amount of network traffic, and
path lengths and network congestion for the pattern. Note that
other objective functions are possible. For example, one may
be concerned with rejection probability over a time horizon,
or some overall performance of all patterns already placed in
the cloud. These and others may be subject of future research.
As stated above, finding an optimal solution is NP-hard.

Several approaches are possible. A basic approach may be to
attempt to only satisfy the constraints while neglecting the
optimization part. This may lead to an inefficient state of
the cloud where patterns may be dropped even though they
could have been accepted with some better placement (or
rearrangement) of already deployed patterns. Heuristic-based
approaches would try to incorporate the objectives in the way
a solution is sought while searching the solution space. The
difficulty with such an approach is that the heuristic procedure
would have to change as the objective function is altered.
Our approach is to find a close to optimal solution by sta-
tistically sampling mapping solutions, then using importance
sampling techniques (cross-entropy) to refine the sampling
process and get closer to sampling near an optimal solution. A
straightforward implementation of such a technique may prove
inefficient due to the potentially large number of samples that
one has to consider. Alternatively, we use the communication
and availability constraints to bias the sampling as we build
a sample of a mapping for a pattern. In the next sections we
describe our method and then provide simulation results.

V. PLACEMENT ALGORITHM

A. Importance sampling
We provide a brief overview of the cross-entropy method,

also known as importance sampling, in appendix A. The main
idea is that in order to find an optimal solution to a combi-
natorial (maximization) problem, one generates many samples
of solutions using a parametrized probability distribution. The
samples (solutions) are ordered in their attained values of the
objective function. Then, the top small fraction of samples,
in other words the important samples, are used to adjust
the values of the parameters of the generating probability
distribution so as to skew the generation process to yield
samples with large objective values. The method iterates a
few times until a good solution is obtained.
In our case, a sample is analogous to a mapping solution

of VMs in a given pattern to PMs in the cloud. Of course
we only consider valid samples, in which individual VM
resource demands as well as pairwise VM communication
demands and availability constraints are met. We need to
solve this placement problem at the time a pattern p arrives,
given the current state of the cloud C. For simplicity, since
in this section we refer to a particular pattern p, we will omit
any variable related to the pattern. We define the parameters
for the sample generation process as a matrix P = [pi,j]
of probabilities, where i = 1, 2, · · · , nvm, is the ith VM
in the pattern according to some order discussed below,
and j = 1, 2, · · · , npm, is pmj in the cloud. Thus, pi,j

represents the probability of assigning vmi in the pattern
to pmj . Starting from some initial P, which may be based
on resource availability as discussed below, the algorithm
proceeds to modify P until a solution is reached, represented
by a dominant (close to 1) entry in each row of P and
all other entries are negligibly small (close to 0). In every
iteration of the importance sampling algorithm, the entries in
P that correspond to a large objective value are reinforced
and amplified, at the cost of other solutions that are away
from optimality. (Note that the importance sampling algorithm
is stated to solve a maximization problem, whereas we deal
with an equivalent minimization problem.) A straightforward
implementation of the importance sampling method to our
placement mapping problem would be terribly inefficient (as
illustrated in section VI), since typically thousands of samples
need to be generated at each iteration. This is a very costly
proposition for a cloud-sized problem. Therefore, one needs
to bias the values of P while building a solution so as to
accelerate arriving at a solution to the problem

B. Sample biasing
As we decide on the placement of a pattern we sequentially

consider the VMs in the pattern without backtracking, i.e. once
vmi, i = 1, 2, · · · , nvm is placed, the choice for placement is
only left for vmi+1, · · · , vmnvm

. Thus, the order of VMs in
a pattern plays a role during placement. We propose to satisfy
the availability constraints before satisfying communication
need. Hence, we place the VMs with availability constraints

ahead of the remaining VMs in the order. Further, we propose
to satisfy the higher communication needs than the lower
ones. Hence, we order the VMs according their pairwise
communication need. Other ordering criteria are also possible.
A natural one is where VMs with high communication need
are placed close to each other in the order. Such approach was
taken in [6] using a clustering technique described in [7].
1) Initial biasing: The initial setting of P should reflect the

state C. A simple choice that is only based on PM resources
is pi,j ∝ 1/ρj,k, where k is the bottleneck resource. It may
also depend on the communication bandwidth available to pmj

through the utilization of say link lkj connected to pmj , as
pi,j ∝ 1/(ρj,k + νj). Or, it may include the utilization of
further hops, but it makes the computation more complex. The
choice of the initial pi,j may also depend on the resource need
of vmi to mimic best-fit or first-fit strategies. In our simulation
experiments we use the simple criterion pi,j ∝ 1/ρj,k.
2) Availability constraint biasing: Once vmi is placed on

say pmi = pm(vmi), we examine any availability constraint
with vmm, m = i+1, · · · , nvm in a look-ahead fashion. More
precisely, let’s say that vmi and vmm have an availability
constraint of level l. Then, we need to bias pm,j positively
towards pmj ∈ gi(l) and negatively to all other PMs. In case
the constraint is hard then the negative bias should make the
corresponding entries zeros. Otherwise, the negative biasing
becomes more negative for pmj ∈ gi(l−1)∪gi(l+1), pmj ∈
gi(l − 2) ∪ gi(l + 2), and so on. That is if the constraint is
soft on both sides of the desired availability level. Otherwise,
it would consider only the higher availability levels.
The way biasing is done is through multiplying pm,j by a

factor fm,j and normalize the pm,· after all biasing factors are
applied. In our simulation experiments we set fm,j = 10d,
where d ∈ [3,−3], a range that is divided for deviation
values 0, 1, · · · , L, corresponding to cases l, l − 1, · · · , l − L,
respectively.
3) Communication biasing: In a similar way to biasing the

probabilities to reflect availability constraints, we bias them
depending on the number of hops between a given PM and
the other PMs in the cloud. A measure that is based on path
congestion, rather than number of hops is also possible but
it is more complex to partition the PMs based on congestion
with respect to a given PM. Once vmi is placed on say pmi =
pm(vmi), consider the communication demand λi,m between
vmi and vmm, m > i. In order to keep vmm placed close to
pmi we positively bias pm,j towards pmj ∈ wi(0), i.e. pmi,
then less positively towards pmj ∈ wi(1), and so on until we
reach a most negative bias towards pmj ∈ wi(L), the farthest
away PMs from pmi. Similar to availability constraint biasing,
we multiply pm,j by a factor fm,j and normalize pm,·. In our
simulation experiments we set fm,j = 10dλi,m, where d ∈
[3,−3], a range that is divided for distance values 0, 1, · · · , L.

C. Complexity
The complexity of biasing depends on the size of matrix P

which is nvm × npm. Since we place one VM at a time, and
once placed we consider networking demand and availability

constraints of all remaining (unplaced) VMs in the pattern,
and accordingly we modify entries in the whole row, then we
end up with a complexity of O(npmn2

vm).

VI. RESULTS
A. Description of setup
We consider a cloud with a base configuration consisting

of 256 PMs, each with a CPU capacity of 64 cores. The PMs
are connected by a tree network with degree of 16, hence a
two-level tree. The bottom level consists of 256 edge links,
each with capacity 256 units, and the top level consists of
16 core links each with capacity 1024 units. We consider
multi-tier patterns similar to the one shown in Figure 1. In
particular, we assume a generic pattern consisting of {1, 2,
1} VMs arranged in 3 tiers, respectively, totaling 4 VMs.
Larger patterns are generated by scaling this generic pattern
by multiplying the number of VMs by a factor. For example,
a factor of 4 results in patterns of size {4, 8, 4} VMs in the
3 tiers, respectively, totaling 16 VMs. The scale factor for a
pattern is uniformly distributed between 1 and 4, hence an
average number of 10 VMs. The CPU demand of a VM is
{2, 4, 8} cores for VMs in the 3 tiers, respectively. The inter-
VM communication bandwidth requirement is 1 unit for all
pairs of VMs between tier 1 and tier 2, and 2 units between
tier 2 and tier 3. As described earlier, our availability model
is hierarchical and overlays the communication tree topology.
In other words, each PM forms an availability zone of level
0, each group of 16 PMs that are connected to a common
switch forms an availability zone of level 1, and the group
of the latter groups forms a zone of level 2. This hierarchy
corresponds to 16 PMs on a blade center, and 16 blade centers
housed in a rack. Two PMs in the same blade center have lower
availability level than two PMs in different blade centers in
the rack. Availability constraints in a pattern involve all pairs
of VMs in the same tier, at the same level. Different tiers of
the same pattern may require different levels. The zone level
corresponding to a tier is either 1 or 2, with probability 0.8
and 0.2, respectively. This is a hard constraint, so a pattern is
dropped if the constraint cannot be satisfied by the placement
algorithm.
We simulate the above described system and workload,

starting from an empty system, leading up to a loading
of 80% average PM CPU utilization, then having Poisson
pattern arrivals and exponentially distributed pattern lifetime
maintaining the 80% average loading figure. The placement
algorithm is configured to generate 20 samples per iteration
with the top 0.1 fraction used to generate the importance
sampling of the subsequent iteration. The stopping criterion
is obtaining the same value of the objective function in two
consecutive iterations, or reaching a maximum of 10 iterations.
We use the following weights in the objective function:

ω2res0
= 2, ω1edge = 4, ω1core = 2, ω2edge = 1, ω2core = 2,

ωpath = 3, and ωdelay = 0. We are mostly concerned about
the amount of traffic on edge links, hence we wanted to force
placement of VMs in the same pattern on the same PM as
much as possible. As discussed earlier, we care about the

imbalance in the core network than the edge network. The
imbalance in CPU loading among PMs is relevant, but not
as important as decreasing network traffic. Lastly, for pattern
performance measures, we consider the path length to be more
relevant than the delay index, which is a function of link
utilization which already appears in the equation somewhere
else.
The algorithm is coded in Java and runs on a MacBook Pro

with 2.4 GHs Intel Core 2 Duo and 4GB RAM, running Mac
OS X 10.5 and JVM 1.6.0. The code is not optimized and
could be easily made faster, but our purpose here is purely
comparative. A word on the algorithm execution time is in
order. The placing time of a pattern depends on the arrival
rate of patterns and their lifetime. Let’s do some back-of-
the-envelope calculation. Consider a configuration of 1000
PMs running at 80% with a workload similar to the one
described above. Given an average of 2 cores per VM and
an average of 8 VMs per pattern, a PM with capacity 64
cores could host a maximum of 64/(2 × 8) = 4 patterns.
Hence, the whole data center would have an average of
1000 × 0.8 × 4 = 3, 200 concurrently deployed patterns. If
the average lifetime of a pattern is 8 hours, then the arrival
rate of patterns is 3, 200/(8× 3, 600) = 0.11 requests/sec, i.e.
the average time between two consecutive requests is about 9
sec. Therefore, practically speaking 1 sec or less placing time
for one pattern is quite reasonable for this configuration. Note
that our algorithm is easily parallelizable since several samples
may be tried independently in parallel in case the number of
PMs is an order of magnitude higher. Also, other solutions
such as decomposition of the cloud into separately managed
zones are possible.

B. Optimality verification
In order to compare the quality of our algorithm to opti-

mal placement we consider a numerical integer programming
optimization package, namely IBM ILOG [14]. However, due
to the quadratic nature of the optimization problem and its
complexity, we consider a small system consisting of 16 host
PMs, connected via a tree network of degree 4. We consider
the generic pattern described above, consisting of 4 VMs
in three tiers, without scaling it any larger. The rest of the
parameters as far as resource capacities and requirements, pat-
tern communication needs, and pattern availability constraints
remain the same as described above. We set a time limit of 10
seconds for numerically solving the optimization problem and

Our Algorithm Optimal (ILOG)
PM utilization 0.77 0.77
Edge link utilization 0.51 0.52
Core link utilization 0.20 0.20
Pattern path length 1.21 1.22
Pattern delay index 0.26 0.28
Pattern rejection prob. 0.02 0.02
Placement time (msec) 3 10,329

TABLE I
COMPARISON OF OUR ALGORITHM TO OPTIMAL.

producing a pattern placement solution mapping. The results
of using the IBM ILOG package are contrasted to that of
our algorithm. The comparison is summarized in Table I. As
shown, the performance of our algorithm is quite comparable
to optimal for this manageable system, except that it is orders
of magnitude faster.

C. Unbiased importance sampling
A straight implementation of importance sampling resulted

in having to generate a large number of samples, most of which
failed to satisfy the constrains. For the system and pattern
configurations described above in Section VI-A, we turned
off biasing in our algorithm and allowed a maximum of 1000
trials to generate a valid sample. All other parameters remained
the same. The comparison between the base algorithm (with
biasing) and a plain implementation of importance sampling,
or cross-entropy, without biasing is summarized in Table II.
As shown, a large fraction, about two-thirds, of the requests
were rejected due to failing to generate a feasible placement.
Consequently, the utilization of the PMs and the network
links dropped substantially. As a result the pattern delay index
measure was lower, 0.13 compared to 0.28, due to the drop
in link utilization. The pattern path length was significantly
higher, 2.99 compared to 1.99, highlighting the fact that the
algorithm without biasing failed to place the VMs in a given
pattern close to each other. The placement time for patterns
that were placed was about three times longer than that of our
algorithm.

D. Biased importance sampling: Base case

A good placement algorithm would attempt to keep the
highly communicating VMs in a pattern close to each other
as much as possible. Also, it would try to keep the utilization
of the core links balanced. Our algorithm achieved those
objectives as illustrated. In Figure 3 we show the distribution
of PM CPU utilization as well as link utilization as Box-
Whisker diagrams. For the CPU utilization we obtained a
relatively well-balanced system around a median of 81%. The
link utilization was kept low, with the median utilization for
edge links and core links at about 33% and 43%, respectively.
The traffic through the core links was inevitable in order to
accommodate the availability constraint of level 2, i.e. some
VMs in a pattern had to be placed on different blade centers,
hence incurring cross blade center communication. Noticeable

Our Algorithm Plain Importance Sampling
(with biasing) (without biasing)

PM utilization 0.80 0.22
Edge link utilization 0.35 0.06
Core link utilization 0.44 0.17
Pattern path length 1.99 2.99
Pattern delay index 0.28 0.13
Pattern rejection prob 0.0005 0.6382
Placement time (msec) 115 354

TABLE II
THE IMPACT OF BIASING ON PERFORMANCE.

 0

 0.2

 0.4

 0.6

 0.8

 1

PM Edge Core

Ut
iliz

at
io

n

Resource

Fig. 3. PM and network utilization.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

0 1 2 3 4 5 6 7 8 9 10

Pr
ob

ab
ilit

y

(a) Pattern weighted path length.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Pr
ob

ab
ilit

y

(b) Pattern delay index.

Fig. 4. Pattern performance.

though is the extremely low skew in the utilization of the 16
core links in the closed range [37%, 48%].
The histograms of the pattern performance measures are

exhibited in Figure 4. The average weighted path length was
1.96 with a stdDev of 0.81. In other words, two communicating
VMs in a pattern had an average of 2 of link between them.
Note that 2 PMs in the same blade center are 2 links apart,
and 2 PMs on different blade centers are 4 links apart. The
weighted delay index measure for patterns was 0.26 on average
with a stdDev of 0.08. This means that the effect of link
congestion was small.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

0 20 40 60 80 100 120 140 160 180 200

Pr
ob

ab
ilit

y

(a) Number of trials.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

0 100 200 300 400 500 600 700 800 900 1000

Pr
ob

ab
ilit

y

(b) Pattern placement time (msec).

Fig. 5. Placement performance.

The performance of the placement algorithm is exhibited in
Figure 5. The average number of trials (samples) per pattern
placed was about 55 with a stdDev of 19. The placing time for
a pattern was 106 msec on average with a stdDev of 108 msec.
The maximum placing time experienced in this case was 471
msec, i.e. quite reasonable given the discussion above.

E. Effect of pattern size

Now, we investigate the effect of the pattern size. We
increase the pattern scaling factor from 1 to 6, where as
described earlier a generic pattern consists of 4 VMs arranged
as {1, 2, 1} in 3 tiers. The scaling factor multiplies the number
of VMs in the pattern, keeping the same ratio among the 3
tiers. Given a scaling factor, patterns are generated using a
uniform distribution from 1 to the value of the scaling factor.
The results are depicted in Figure 6. The load was kept at
80% PM CPU utilization. Edge and core link utilization grew
almost linearly with the pattern size. Note that the placement
algorithm managed to keep the traffic split between the edge
links and core links the same, independent of the pattern size.
As for pattern performancemeasures, the weighted delay index
grew linearly, whereas the weighted path length was concave,
approaching a limit. This is due to the structure and location
constraints of the pattern. There were more rejections as the
pattern size increased, though with a maximum of 0.25%.
Since the biasing of samples is O(n2) in the size of the pattern,

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6
 0

 0.2

 0.4

 0.6

 0.8

 1

Ut
iliz

at
ion

Ut
iliz

at
ion

Pattern maxSize

CPU
Edge
Core

(a) PM and network utilization.

 0

 0.5

 1

 1.5

 2

 2.5

 1 2 3 4 5 6
 0

 0.001

 0.002

 0.003

 0.004

 0.005

Le
ng

th
 a

nd
 In

de
x

Pr
ob

ab
ilit

y

Pattern maxSize

Path length
Delay index
Reject prob

(b) Pattern performance.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 2 3 4 5 6
 0

 50

 100

 150

 200

 250

 300

 350

 400

Nu
m

be
r

Ti
m

e
(m

se
c)

Pattern maxSize

NumTrials
PlaceTime

(c) Placement performance.

Fig. 6. Effect of maximum pattern size.

we see that the placing time of a pattern grew quadratically,
but still less than 300 msec on average (maximum 290 msec
at maximum pattern size).

F. Effect of load
We varied the PM CPU utilization from 70% to 95% with

increments of 5%, as depicted in Figure 7. We clearly see a
linear increase in link utilization, indicating that the placement
algorithm performed well even at high utilization. Further,
the pattern performance measures, weighted path length and
weighted delay index, also grew linearly and very slightly.
Another indication that the placement algorithm managed not
to create a skew in network utilization and hence congestion.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
 0

 0.2

 0.4

 0.6

 0.8

 1
Ut

iliz
at

ion

Ut
iliz

at
ion

PM Load

CPU
Edge
Core

(a) PM and network utilization.

 0

 0.5

 1

 1.5

 2

 2.5

 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
 0

 0.005

 0.01

 0.015

 0.02

 0.025

Le
ng

th
 a

nd
 In

de
x

Pr
ob

ab
ilit

y

PM Load

Path length
Delay index
Reject prob

(b) Pattern performance.

 0

 50

 100

 150

 200

 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
 0

 50

 100

 150

 200

Nu
m

be
r

Ti
m

e
(m

se
c)

PM Load

NumTrials
PlaceTime

(c) Placement performance.

Fig. 7. Effect of load.

The rejection probability of patterns started to increase at
95% loading to a significant 1.9%, but quite expected at that
saturation level. Surprisingly, the placing time for a pattern
and the number of trials (samples) remained fairly constant
and independent of the loading factor. Hence, the placement
algorithm did not have to work much harder to place patterns
at high loading.

G. Effect of number of hosts
In order to investigate the scalability of our placement

algorithm we varied the number of PMs from 128 to 1024
in powers of 2, as illustrated in Figure 8. The load factor
for the PM CPU utilization was kept at 80%. As the system

 0

 0.2

 0.4

 0.6

 0.8

 1

128 256 512 1024
 0

 0.2

 0.4

 0.6

 0.8

 1

Ut
iliz

at
ion

Ut
iliz

at
ion

numHosts

CPU
Edge
Core

(a) PM and network utilization.

 0

 0.5

 1

 1.5

 2

 2.5

128 256 512 1024
 0

 0.001

 0.002

 0.003

 0.004

 0.005

Le
ng

th
 a

nd
 In

de
x

Pr
ob

ab
ilit

y

numHosts

Path length
Delay index
Reject prob

(b) Pattern performance.

 0

 20

 40

 60

 80

 100

128 256 512 1024
 10

 100

 1000

Nu
m

be
r

Ti
m

e
(m

se
c)

numHosts

NumTrials
PlaceTime

(c) Placement performance.

Fig. 8. Effect of number of hosts.

size increased, the sample space increased exponentially due
to the combinatorial effect. However, our placement algorithm
managed to keep the network link utilization fairly constant,
with the core link utilization only increasing from an average
of 42% to 44%. The pattern performance measures, weighted
path length and weighted delay index, also were fairly con-
stant, with an increase from 1.97 to 1.98, and from 0.27 to
0.28, respectively. Placement time grew linearly as discussed
earlier, with the number of trials slowly decreasing. Further,
pattern rejections decreased with the increase in system size,
which is an anticipated behavior of loss systems.

VII. CONCLUSION AND FUTURE WORK

We demonstrated a method for biasing samples when
performing an importance sampling approach to solving a
large-scale optimization problem arising from placing virtual
clusters in compute clouds. The performance of our algorithm
grows linearly in the number of PMs in the cloud and is shown
to take about 500 msec in the case of 1024 PMs.
Several issues need further investigation. The algorithm is

quadratic in the size of the pattern. This begs the question of
whether the ordering of VMs in a pattern could help reduce
the complexity to a linear one by applying the biasing on
a fixed number of VMs, instead of all remaining VMs in the
pattern. Also, when placing a pattern, we were concerned with
the performance that the pattern would experience given the
current state of the system. One should also be concerned with
the impact of placing a pattern, not only on system resource
utilization, but on the performance experienced by the already
placed patterns.

REFERENCES
[1] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of

data center networks with traffic-aware virtual machine placement,” in
INFOCOM, 2010 Proceedings IEEE, March 2010, pp. 1 –9.

[2] D. Jayasinghe, C. Pu, T. Eilam, M. Steinder, I. Whally, and E. Snible,
“Improving performance and availability of services hosted on iaas
clouds with structural constraint-aware virtual machine placement,” in
Services Computing (SCC), 2011 IEEE International Conference on,
July 2011, pp. 72 –79.

[3] Y. Zhu and M. Ammar, “Algorithms for assigning substrate network re-
sources to virtual network components,” in INFOCOM 2006. 25th IEEE
International Conference on Computer Communications. Proceedings,
April 2006, pp. 1 –12.

[4] K. Macropol and A. Singh, “Scalable discovery of best clusters on
large graphs,” Proc. VLDB Endow., vol. 3, pp. 693–702, September
2010.

[5] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual
network embedding: substrate support for path splitting and migration,”
SIGCOMM Comput. Commun. Rev., vol. 38, pp. 17–29, March 2008.

[6] K. Taura and A. Chien, “A heuristic algorithm for mapping communi-
cating tasks on heterogeneous resources,” in Heterogeneous Computing
Workshop, 2000. (HCW 2000) Proceedings. 9th, 2000, pp. 102 –115.

[7] C.-W. Yeh, C.-K. Cheng, and T.-T. Lin, “Circuit clustering using a
stochastic flow injection method,” Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, vol. 14, no. 2, pp. 154 –
162, February 1995.

[8] T. Agarwal, A. Sharma, A. Laxmikant, and L. Kale, “Topology-aware
task mapping for reducing communication contention on large parallel
machines,” in Parallel and Distributed Processing Symposium, 2006.
IPDPS 2006. 20th International, April 2006.

[9] M. Gori, M. Maggini, and L. Sarti, “Exact and approximate graph
matching using random walks,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 27, pp. 1100–1111, 2005.

[10] C.-C. Shen and W.-H. Tsai, “A graph matching approach to optimal task
assignment in distributed computing systems using a minimax criterion,”
Computers, IEEE Transactions on, vol. C-34, no. 3, pp. 197 –203, March
1985.

[11] R. Rubinstein, “The cross-entropy method for combinatorial and
continuous optimization,” Methodology and Computing in Applied
Probability, vol. 1, pp. 127–190, 1999.

[12] R. Y. Rubinstein and D. P. Kroese, The Cross-Entropy Method: A Unified
Approach to Combinatorial Optimization, Monte-Carlo Simulation and
Machine Learning, ser. Information in Sciences and Statistics Series.
Springer-Verlag New York, LLC, 2004.

[13] S. Sanyal and S. Das, “Match : Mapping data-parallel tasks on a
heterogeneous computing platform using the cross-entropy heuristic,”
in Parallel and Distributed Processing Symposium, 2005. Proceedings.
19th IEEE International, April 2005.

[14] “Ilog.” www.ibm.com/software/websphere/products/optimization/

APPENDIX
We provide a brief overview of the cross-entropy method

for combinatorial optimization [11], [12]. Consider the max-
imization problem of a real-valued objective function S on a
finite set of states X , whose solution x∗ defined by

S(x∗) = γ∗ = max
x∈X

S(x). (1)

Let V be a set of vectors of real-valued parameters and
define {f(·;v),v ∈ V} as a family of discrete pdfs on X
parametrized by v. Define the associated stochastic problem
to optimization problem 1 as

+(γ) = Pu(S(X) ≥ γ) =
∑

x

I{S(x)≥γ}f(x;u) = EuI{S(X)≥γ},

where u ∈ V , Pu is a probability measure, Eu denotes expec-
tation, and {I{S(x)≥γ}} is a collection of indicator functions
on X for various values γ ∈ R. The problem at hand is to
be able to estimate parameter values v, use them to generate
samples using f(·;v) in such a way to mostly generate the
solution x∗ and γ is close to γ∗. The method of minimizing
cross-entropy yields an equation for the parameter as

v
∗ = argmax

v

EuI{S(X)≥γ} lnf(X;v).

The method provides an iterative algorithm which uses the
likelihood ratio estimator to estimate such parameter values
leading to an optimal solution. At iteration t, t = 1, 2, · · · , T ,
of the algorithm, we get estimates for γ and v as γ̂t and v̂t,
respectively, in such a way that γ̂T is close to the optimal
γ∗ and v̂T leads to the generation of the optimal solution x∗

given by equation 1. Let v̂j,t be the jth element of v̂t, then
it is computed at iteration t, assuming that we generated n
samples X1,X2, · · · ,Xn from the density f(·; v̂t−1) as

v̂j,t =

∑n
i=1 I{S(Xi)≥γ̂t} I{Xi∈Xj}∑n

i=1 I{S(Xi)≥γ̂t}
, (2)

where Xj is the set of solutions which result with parameter
value v̂j,t.
The cross-entropy optimization algorithm follows. It has

two parameters: n, the number of samples which is typically
in the hundreds or thousands depending on the size of the
problem, and ρ, the fraction of samples which may lead to
the optimal solution, typically set around 0.01.
1) Initialization. Set t = 0 and some initial value v̂0.
2) Iteration step. Set t = t + 1.

a) Generate samples. GenerateX1,X2, · · · ,Xn from
the density f(·; v̂t−1) and compute the (1 − ρ)-
quantile, γ̂t.

b) Adjust parameters. Using generated samples com-
pute v̂t using equation 2.

c) Stopping condition. Check stopping criterion, e.g.
minimal change in γ̂t.

3) Optimal solution.γ∗ = γ̂t.

