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ABSTRACT
The three major solutions for increasing the nominal per-
formance of a CPU are: multiplying the number of cores
per socket, expanding the embedded cache memories and
use multi-threading to reduce the impact of the deep mem-
ory hierarchy. System with tens or hundreds of hardware
threads, all sharing a cache coherent UMA or NUMA mem-
ory space, are today the de-facto standard. While these
solutions can easily provide benefits in a multi-program en-
vironment, they require recoding of applications to leverage
the available parallelism. Application threads must synchro-
nize and exchange data, and the overall performance is heav-
ily influenced by the overhead added by these mechanisms,
especially as developers try to exploit finer grain parallelism
to be able to use all available resources.

This paper examines two fundamental synchronization mech-
anisms - locks and queues - in the context of multi and
many cores systems with tens of hardware threads. Locks
are typically used in non streaming environments to syn-
chronize access to shared data structures, while queues are
mainly used as a support for streaming computational mod-
els. The analysis examines how the algorithmic aspect of the
implementation, the interaction with the operating system
and the availability of supporting machine language mecha-
nism contribute to the overall performance. Experiments are
run on Intel X86TM and IBM PowerENTM , a novel highly
multi-threaded user-space oriented solution, and focus on
fine grain parallelism - where the work performed on each
data item requires only a handful of microseconds. The re-
sults presented here constitute both a selection tool for soft-
ware developer and a datapoint for CPU architects.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Performance attributes;

HPDC ’12 Delft, The Nederlands

D.1 [Concurrent Programming]: Parallel Programming

General Terms
Performance,Experimentation

1. INTRODUCTION
In the past, advances in transistor count and fabrication
technology have led to increased performance, typically pro-
portional to improvements in clock rates. However, this
trend has slowed due to limitations arising from power con-
sumption, design complexity, and wire delays. In response,
designers have turned to multi-core and multi-thread confi-
gurations that incorporate several cores on one or more dies.
While multiple cores can readily support throughput appli-
cations, such as web servers or map-reduce searches that
are embarrassingly parallel, threaded applications that op-
erate on a shared address space to complete a unique task
demand efficient synchronization and communication mech-
anisms. Efficient and low overhead core-to-core communi-
cation is critical for many solution domains with countless
examples in network computing, business analytics, financial
markets, biology, and high-performance computing in gen-
eral. As the number of cores increases, the desired grain of
parallelism becomes smaller and understanding the overhead
and tradeoff of the core-to-core communication mechanism
is becoming increasingly important.

Most threaded applications have concurrent needs to access
resources that can only be shared with a logical sequential
consistency model. The way these contentions are resolved
directly affects the system’s timeliness properties. Several
mechanisms are available today, and they can broadly be
classified into: (1) lock-based schemes and (2) non-blocking
schemes including wait-free protocols [16] and lock-free pro-
tocols [12] [2]. Lock-based protocols, typically used in multi-
threaded applications that do not follow a stream computing
model, serialize accesses to shared objects by using mutual
exclusion, resulting in reduced concurrency [4]. Many lock-
based protocols typically incur additional run-time overhead
due to scheduler activations that occur when activities re-
quest locked objects.

Concurrent lock-free queues for inter-thread communication
have been widely studied in literature since they are the



basic building block of stream computing solutions. These
algorithms are normally based on atomic operations and
modern processors provide all the necessary hardware primi-
tives such as atomic compare-and-set (CAS) and load-linked
store-conditional (LL/SC). All these primitives implicitly in-
troduce synchronization at the hardware level that are often
an order of magnitude slower, even for uncontested cache
aligned and resident words, than primitive stores. With the
exception of Lamport’s queue [13], the focus of prior art
has been on multiple producer and/or multiple-consumer
(MP/MC) queue variants. These general purpose queues
to date have been limited in performance due to high over-
heads of their implementations. Additionally, general pur-
pose MP/MC variants often use linked lists which require in-
direction, exhibit poor cache-locality, and require additional
synchronization under weak consistency models [15].

While an extensive amount of work has been performed on
locks and queues, being these fundamental building blocks
for threaded applications, a comprehensive comparison of
their runtime performance characteristics and scalability on
modern architectures is still missing. This paper wants to
address the following open questions:

• Can modern CPU architectures effectively execute fine
grain parallel programs that utilize all available hard-
ware resources in a coordinated way?

• What is the overhead and the scalability of the sup-
porting synchronization mechanisms?

• Which synchronization algorithm and Instruction Set
Architecture level support is the best for fine grain
parallel programs?

The paper contains an evaluation of different types of locks
and queues on large multi-core multi-threaded systems and
focuses on fine grain parallelism, where the amount of work
performed on each “data item” is in the order of microsec-
onds. The implementations cover a range of different solu-
tions, from Operating System to full user-space based, and
look at their behaviour as the load increases. Moreover
a new Instruction Set Architecture solution for low over-
head user-space memory waiting is presented and its usage
is evaluated both from a performance and overhead reduc-
tion point of view. The next section describes the two test
systems and briefly details the hardware synchronization
mechanisms available in their CPU cores. Section 3 briefly
describes the locking algorithms considered while section 4
examines their runtime behavior; the following section 5 de-
tails the queueing strategies implemented; these are then
evaluated in section 6. Section 7 contains some concluding
remarks.

System Nehalem PowerEN
Sockets 2 1
Cores 6 16

Threads per core 2 4
Total threads 24 64

Table 1: Systems under test.

2. TARGET PLATFORMS
This paper examines the performance of synchronization
mechanisms on two very different computer architectures:
Intel Nehalem-EPTM and IBM PowerENTM . Their general
characteristics are summarized in Table 1 and both systems
run Linux Operating System.

The Intel XeonTM 5570 (Nehalem-EP) is a 45nm quad core
processor whose high level overview is shown in figure 1. De-
signed for general purpose processing, each core has a pri-
vate L1 and L2 cache, while the L3 cache is shared across the
cores on a socket. Each core supports Simultaneous Multi
Threading (SMT), allowing two threads to share processing
resources in parallel on a single core. Nehalem EP has a
32KB L1, 256KB L2 and a 8MB L3 cache. As opposed to
older processor configurations, this architecture implements
an inclusive last level cache. Each cache line contains ‘core
valid bits’ that specify the state of the cache line across the
processor. A set bit corresponding to a core indicates that
the core may contain a copy of this line. When a core re-
quests for a cache line that is contained in the L3 cache,
the bits specify which cores to snoop for the latest copy of
this line, thus reducing the snoop traffic. The MESIF [10]
cache-coherence protocol extends the native MESI [7] proto-
col to include ‘forwarding’. This feature enables forwarding
of unmodified data that is shared by two cores to a third
one.
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Figure 1: High-Level Overview of Intel NehalemTM .

Atomic operations on the Intel architecture are implemented
using a LOCK prefix: the lock instruction can be prefixed
to a number of operations and has the effect to lock the sys-
tem bus (sometimes only the local cache in recent architec-
tures) to ensure exclusive access to the shared resource. In
2003, Intel first introduced, as part of the SSE3 instruction
set extension, the MONITOR and MWAIT instructions.
The MONITOR operation sets up an address range that is
monitored by the hardware for special events to occur, and
MWAIT waits for that event or for a general interrupt to
happen. One possible use is the monitoring of store events:
a spin lock’s wait operation can be implement by arming the
MONITOR facility and executing the MWAIT instruction,
which puts the hardware thread into an“implementation op-
timized state”, which generally implies this hardware thread
does not dispatch further instructions. When the thread
holding the critical section stores to the lock variable re-
leasing the lock, the waiting hardware thread will be woken
up. The drawback of the MONITOR/MWAIT instructions



is that they are privileged in the X86 Instruction Set Archi-
tecture and thus cannot be executed by application software.
As a result an application writer still would have to utilize
costly system calls to perform these operations. Finally the
Intel X86 architecture provides a specific instruction (called
pause) meant to be used inside busy waiting loop to “wait
for a CPU specific amount of time” to reduce memory and
instruction scheduling pressure. The amount of time actu-
ally waited, and how this is implemented, depends on the
processor family and it is not disclosed.

The IBM PowerENTM “Edge of Network” processor (also
known as WireSpeedProcessor) [9][11] was recently intro-
duced by IBM and integrates technologies from both net-
work and server processors to optimise network facing ap-
plications where latency and throughput are the primary
design targets. PowerEN, whose high level view is shown
in figure 2, is a system on a chip (SoC) consisting of 16
embedded 2.3GHz 64-bit PowerPC cores and a set of accel-
eration units. Each CPU core consists of four concurrent
hardware threads that feed a dual issue in-order pipeline.
Each core includes a 16KB L1 data cache and a 16KB L1
instruction cache with 64 byte cache lines. Each group of
four cores shares a sliced 2MB L2 cache for total of 8MB L2
cache inside the chip. Two DDR3 DRAM controllers sup-
port a memory bandwidth of up to 64GB/s and four chips
can be joined together to form a 64 core (256 threads) cache
coherent system.
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Figure 2: High-Level Overview of PowerENTM .

In contrast to the X86, PowerPC architectures utilize the
load reservation / store conditional mechanism to support
atomic operations: the read-modify-write semantic is real-
ized by loading the involved memory address and simultane-
ously requesting a reservation on that loaded address (lwarx
- load word with reservation). Multiple threads can do this
simultaneously, but only one reservation can be active per
hardware thread and it is cleared upon any machine excep-
tion, such as a context switch or interrupt. The thread per-
forms register updates on the loaded data and, to complete
the atomic operation, it conditionally stores the modified
item (stwx). The store succeeds only if the thread is still
holding the reservation. Architecturally this mechanism is
implemented by the cache coherency protocol [8] and uses
reservation thread information attached to each cache line.
When issuing a lwarx the reservation for the current thread
is simultaneously set with the load operation. In order to
have the right to perform a store operation to a cacheline,
the issuing cache must contain the data exclusively, that is

no other cache contains the data. If the cacheline is not ex-
clusively held, a request is issued on the bus that all caches
snoop on which leads to the supply of cacheline from other
caches if present and the invalidation of the cachelines (in-
cluding the reservation) across all caches. Finally atomic
operations are realized by looping until the stwx succeeds.

The PowerEN architecture introduces the wrlos instruction
that allows for the thread to wait, i.e. not being dispatched,
until a reservation is lost. This new element in Power ISA is
in theory particularly useful in multi-threaded cores: the in-
struction units inside the core are shared across the various
threads and execution typically proceeds in a round robin
fashion. When a software thread needs to wait for a location
to change value, or to obtain a specific value, it is normally
forced to poll that location repeatedly (or to use operating
system semaphores) consuming valuable CPU cycles. The
wrlos instruction allows user-space and kernel-space threads
to wait for this asynchronous event without consuming ex-
ecution unit resources. Finally the instruction dispatching
priority of the four hardware threads per core can be con-
trolled by software, for example reducing it before a busy
waiting loop and increasing it once the condition is satis-
fied. PowerEN provides these mechanisms at all privilege
levels and hence application writers can take full advantage
of them.

3. LOCKS
Two threads in the same address space (or two processes
with shared memory segments) accessing common resources
must synchronize their behaviour in order to avoid wrong
or unpredicted behavior. The period of exclusive access is
referred to as a critical section, which is enforced through
mutual exclusion implying that only one thread at a time can
be in this critical section of code. This paper examines 3 dis-
tinct mechanisms for mutual exclusion: binary semaphores,
spinlocks and ticket locks.

Binary semaphores implement a blocking semantics: if a lock
can not be acquired the thread is descheduled by the Operat-
ing System. The drawback of this approach is the overhead
associated with the system call required to implement the
semantics, regardless of the state of the lock. Modern sys-
tems provide hybrid versions; for instance futexes [3] utilize
user level atomic operations to attempt to lock a mutex and
only upon failure enter the kernel to implement the wait
operation.

In spinlocks, competing threads will try to acquire the lock,
until they succeed, entirely in userspace. Their implemen-
tation is very simple: there’s a single shared variable and
acquiring the lock is done by using an atomic instruction,
such as test_and_set or compare_and_swap, looping until it
succeeds. Freeing the lock requires a single store operation;
best performance can be achieved when the shared variable
has a proper CPU specific alignment and sits in a cache line
of its own to avoid false shearing. The drawback of this ap-
proach is that a thread attempting to acquire a lock will run
in a tight loop while the lock is held by another thread, con-
suming valuable CPU cycles. Traditionally, spinlocks with
small hold periods were acceptable due to the low number
of application threads. As the number of threads in modern
systems increases, this approach might not scale when lock



contention increases. Furthermore, as the number of hard-
ware threads per core increases, the spinning threads will
consume cycles of the core’s instruction pipeline and poten-
tially slow down the dispatch of other threads presumably
executing useful work. On PowerEN the wrlos version of
the spinlock uses the hardware supported wait to be noti-
fied when the lock has been released, suspending instruction
issue in the current hardware thread; its pseudo code de-
scription is shown in Figure 3.

void sp_init(ulong *lock)
{

*lock = 0;
}
void sr_lock(volatile ulong *lock)
{

int success = 0;
success = atomic_cas(lock, 0, 1);
while(!success) {

wreslos(*lock,0) ;
success = atomic_cas(lock, 0, 1);

}
}
void sp_unlock(ulong *lock)
{

*lock = 0;
mem_sync();

}

Figure 3: PowerEN version of spinlock that uses wrlos in-
struction.

Under high contention spinlocks and Binary Semaphores are
usually not “fair”: it might happen that some threads very
often win access to the shared resource while other threads
will never be able to access it. Ticket locks[1], also known
as fair locks, ensure that all threads that want to access the
critical section will gain it in the exact order of arrival. This
is implemented in userspace by using two counters: a serving
id and an access id, both initialized to 0. To acquire the lock
a thread fetches the access id, atomically incrementing it at
the same time, by an atomic fetch_and_add instruction.
The thread must then wait for the serving id to be equal
to its private copy of the access id. Unlocking is done by
simply incrementing the serving id. Better performance can
be achieved when the shared counters have a proper CPU
specific alignment and they sit in two distinct cache lines,
removing false sharing. Moreover the serving id counter can
be replicated and distributed, ensuring that only one thread
is polling on a specific cache line, thus eliminating cache line
contention in the waiting phase. A pseudocode implementa-
tion for this version of ticket lock implementation is shown
in Figure 4.

The busy waiting loop can be optimized for the specific ar-
chitecture by inserting a pause instruction on X86 to halt
instruction dispatching for some time, or by lowering the
thread priority or issuing the wrlos on IBM PowerEN.

4. LOCK PERFORMANCE
The lock performance test measures the average service time
of a typical application loop: perform some computation on
private data, lock, update shared data structure, unlock.
Figure 5 shows the normalized average service time spent

struct lock {
ulong serv,acc;

};
void fp_init(lock *l)
{
l->serv = 0;
l->acc = 0;

}
void fp_lock(volatile lock *l)
{
ulong myid = atomic_add(&l->acc,1);
while(l->serv[myid % nthr] != myid) ;

}
void fp_unlock(lock *l)
{
l->serv[myid % nthr] = myid+1;
mem_sync();

}

Figure 4: Intel version of ticket lock that uses atomic add.

to complete these operations when only a single thread is
working, thus reporting the minimum overhead encountered
by a thread. The locking strategies considered on Intel X86
architecture are:

• pthread lock - these are available on any architecture
and Operating System. They are normally realized
using futexes and the lock operation (when the lock
is free) does not require any OS interaction while un-
lock triggers the scheduler to wake up other waiting
threads.

• spinlock - using the algorithm described in section 3
with a tight busy waiting loop.

• spinlock with pause - like the previous one where a
pause is inserted inside the busy waiting loop.

• ticket lock - using the algorithm described in section 3
with a tight busy waiting loop.

• ticket lock with pause - like the previous one where a
pause is inserted inside the busy waiting loop.

On IBM PowerEN the examined strategies are:

• pthread lock - the same Operating System based locks
as in the Intel X86 case.

• spinlock with low thread priority polling - using the al-
gorithm described in section 3 and lowering the thread
instruction priority before the busy waiting loop and
resetting after it.

• spinlock with wrlos - like the previous one but replac-
ing the busy waiting loop with wrlos.

• ticket lock with low thread priority polling - using
the algorithm described in section 3 and lowering the
thread instruction priority before the busy waiting loop
and resetting after it.

• ticket lock with wrlos - like the previous one but re-
placing the busy waiting loop with wrlos.



The computation time on each data item is around one mi-
crosecond and the ratio between the time spent computing
on private data and updating the data structure is one or-
der of magnitude. This is consistent with a fine grain paral-
lelism scenario: a simple computation and the update of a
complex data structure (like a hash table). The results high-
light that, on both architectures, spinlocks have the lowest
overhead and pthread locks, that require OS coordination,
the highest.

Figure 5: Normalized service time - no contention.

Figure 6 examines what happens to the average service time
under contention on the Intel X86 architecture. The test
creates a number of threads, each mapped on a different
hardware context, a single global lock and a single global
shared data structure. Each thread executes the same op-
erations as the first test (compute on private data, lock,
update shared data structure, unlock). The test stops when
all threads have executed a predefined number of iteration.
The results provide a good insights of the benefits and draw-
backs of the lock prefix mechanism for hardware implemen-
tation of atomic operations and its interaction with hyper-
threading. In the single socket scenario - see sub-graph -
spinlocks (based on atomic CAS) achieve a slightly lower
overhead than ticket locks (based on atomic increment).
When the application starts using the second socket, and
the QPI interface among processors, the atomic increment
performance degrades drastically. Spinlocks still achieve a
lower overhead compared to pthreads. Once the application
starts using the second thread of each core spinlock perfor-
mance degrades unless the pause instruction is used in the
tight busy waiting loop; this reduces the CPU resources used
by the spinning thread allowing the second thread to better
access the core.

Figure 7 examines the average service time under contention
on the IBM PowerEN architecture. This solution is user-
space oriented, providing mechanisms to control the instruc-
tion dispatching priority and for waiting for memory loca-
tion change. This design target and the available solutions
clearly reflects in the performance results: pthread perfor-
mance is extremely limited, since it requires interaction with
the Operating System but, on the other hand, user-space
performance is remarkable - with ticket locks clearly being
the best. It is also interesting to notice that the memory

Figure 6: Normalized Intel X86 service time under load.

reservation mechanism, used in the PowerPC architecture
for implementing atomic operations, in this specific situation
seems to make atomic increment more efficient than atomic
compare and swap - the opposite of what is happening with
the lock prefix mechanism used on Intel X86.

Figure 7: Normalized PowerEN service time under load.

The most important characteristic of multi-threaded solu-
tions is that the hardware execution units are shared inside
the CPU core. The reason for this choice is that “most of
the time” the core is waiting for some data coming from
lower (and slower) levels of the memory hierarchy, thus it
is not performing any useful work. This situation is called
“memory bound” computation. By multiplexing the use of
hardware resources across multiple logical threads it should
be possible to hide these delays and increase the number of
instructions executed per unit of time. In any case the in-
struction per cycle performance will depend on the mix of
operations executed by all dispatching threads at the same
time. Every user-space lock implementation, that does not
rely on the kernel to be notified of an event, works by loop-
ing over “a try to acquire lock” operation normally called
busy waiting. These tight loops have the potential to mo-
nopolize CPU resources over more important work. The



effect is analysed in Figure 8: a computation job is run on
one CPU thread and the lock test job is run in all other
CPU threads and cores, including the co-located hardware
thread (on PowerEN the test uses one, two or three of the
co-located hardware threads). It is easy to see that an archi-
tecture such as PowerEN, which provides several user-space
oriented features, can cope very well with this issue: the per-
formance reduction is extremely limited and always below
5%. A more traditional solution like Intel X86 absolutely
requires the use of pause instruction in busy waiting loops
to avoid starving the computation thread.

Figure 8: Normalized locking overhead over computation.

5. QUEUES
A common multi-threaded programming model is stream
computing [6], where work is represented by a sequence of
items pipelined through a graph of modules each executing
on a different thread. Due to variances in the execution time
of each sub work item, queueing provides a mean both of
connecting modules and of adapting to workload fluctuation.
To take advantage of highly multi-threaded processors it is
to be expected that work items become smaller in nature and
the network of threads deeper to exploit the large number of
resources available. As a result, the impact of inefficient or
inappropriate queue implementation will become more and
more evident.

The semantics of queues expect a set of producers and a set
of consumers to properly coordinate access to a limited or
unlimited buffer of elements (data). Proper access implies
that a producer can not enter a new element when the queue
buffer is full, nor can a consumer retrieve an element if the
queue is empty. Open is to what a thread ( producer or con-
sumer ) should do when one of these boundary conditions
exists. Similar to locking, the thread could either poll, go to
sleep using OS services or use other wait mechanisms such
as PowerEN wrlos. Efficient queues have received consid-
erable attention in the research community. For instance,
the non-blocking concurrent queue algorithm as described
in [14] has demonstrated excellent performance even under
high contention. Basic operations on queues are enqueue()
and dequeue() - the former queues an element while the later
removes the oldest (in a FIFO queue) element. Queues can
be classified as:

• Bounded (when there’s a maximum number of queued
elements) or UnBounded ;

• Blocking (when enqueue and dequeue operation are
serialized using locks) or NonBlocking ;

• Partial (when enqueue and dequeue operation wait for
the queue to be not full and not empty) or Total ;

• Single Producer (when only one thread is allowed to
call enqueue operation) or Multiple Producer ;

• Single Consumer (when only one thread is allowed to
call dequeue operation) or Multiple Consumer ;

Bounded queues are normally implemented using circular
buffers, statically sized and not requiring any allocation at
runtime, and can usually achieve higher performance. Un-
bounded queues must use some kind of dynamic data struc-
ture and allocators to implement their dynamic behavior.
The implementation of a thread safe queue that supports
multiple producers and/or consumers must always use locks
or atomic operations. This paper focuses on fine grain par-
allelism, thus only “Bounded” queues are considered: the
overhead of managing element allocation and deallocation
as well as flow control at runtime would be overkill. More-
over the tests look only at the “Partial” version of enqueue()
and dequeue() since the focus is understanding their perfor-
mance and overhead independently of the actual behavior
of the computation. Finally, given the lack of space and
that Single Producer Single Consumer (SPSC) queues have
been widely studied, the experiment consider only Multi-
ple Producer Multiple Consumer (MPMC) semantic that
is often used for “fan out” and “fan in” streaming configu-
ration such as in a worker farm structure. Two different
queue implementation are examined: a (1) Blocking and a
(2) NonBlocking.

Algorithm 1 BNPVB enqueue() [CAS Implementation]

Require: q queue, qlen max queue len, d data item
1: loop
2: myEQC ⇐ q.eqc
3: myI ⇐ myEQC mod qlen
4: status⇐ q.v[myI].s
5: if status ≡ myEQC then
6: if CAS(q.eqc,myEQC,myEQC + 1) then
7: q.v[myI].data = d
8: mem sync()
9: q.v[myI].s = q.v[myI].s + 1

10: return true
11: else
12: continue
13: end if
14: else
15: if myEQC 6= q.eqc then
16: continue
17: end if
18: wait for change meml(q.v[myI].s, status)
19: end if
20: end loop

The first queue is built upon the Lamport[13] lock free single
producer single consumer algorithm. This solution employs



Algorithm 2 BNPVB enqueue() [AttAdd Implementation]

Require: q queue, qlen max queue len, d data item
1: myEQC = Att ADD(q.eqc,+1)
2: myI ⇐ myEQC mod qlen
3: wait for val meml(q.v[myI].s,myEQC)
4: q.v[myI].data = d
5: mem sync()
6: q.v[myI].s = q.v[myI].s + 1
7: return true

a pre-allocated buffer B of size P and two indexes: the inser-
tion index (ms) and the extraction index (mr); both indexes
are initialized to 0. Insert first checks if the queue is not full
by verifying that ms < mr + P ; if insertion is allowed the
new message is stored at position B[ms%P ]. Extract checks
if the queue is empty by verifying mr > ms and, if possible,
retrieves the message at position B[mr%P ]. Concurrent ac-
cess is synchronized since the single producer can write only
the insertion index and read the extraction index; the single
consumer write only the extraction index and read the input
one. The extension[5] for handling multiple producers and
consumers is simple and requires just two locks: the first
is acquired when inserting an item, thus is protecting the
head pointer; the second is used when removing an element,
thus protecting the tail pointer. The “Partial” queue version
considered in this paper waits (while holding the lock) for
the error condition to disappear; this wait is implemented
using either polling or wrlos (on PowerEN).

Algorithm 3 BNPVB queue dequeue()

Require: q queue, qlen max queue len
1: loop
2: myDQC ⇐ q.dqc
3: myI ⇐ myDQC mod qlen
4: status⇐ q.v[myI].s
5: if status ≡ myDQC + 1 then
6: if CAS(q.dqc,myDQC,myDQC + 1) then
7: retv = q.v[myI].data
8: mem sync()
9: q.v[myI].s = q.v[myI].s + qlen− 1

10: return retv
11: else
12: continue
13: end if
14: else
15: if myDQC 6= q.dqc then
16: continue
17: end if
18: wait for change meml(q.v[myI].s, status)
19: end if
20: end loop

The second queue version is implemented using a novel al-
gorithm here introduced. Data items are stored inside a
shared circular vector accessed using a shared enqueue and
a dequeue offset; no locks are required, making this imple-
mentation “Non Blocking”. Each entry of the the support
vector contains a variable to store pushed data and a sta-
tus variable which exactly identifies the data variable either
readable or writable. At initialization, all the status variable
are set to the index of their entry in the vector. The mech-

Algorithm 4 BNPVB dequeue() [AttAdd Implementation]

Require: q queue, qlen max queue len, d data item
1: myDQC = Att ADD(q.eqc,+1)
2: myI ⇐ myDQC mod qlen
3: wait for val meml(q.v[myI].s,myDQC + 1)
4: retv = q.v[myI].data
5: mem sync()
6: q.v[myI].s = q.v[myI].s + qlen− 1
7: return true

anism of the status is based on some properties of toroidal
spaces and it requires the cardinality of the numbers repre-
sentable by the status variable to be a multiple of the queue
length. In the presented implementation a 64 bit variable
was chosen, therefore the length of the queue can be set to
any power of two smaller than 263. The enqueue() Compare
And Swap based implementation (“partial”version) is shown
in Algorithm 1 and its Atomic Add version in Algorithm 4.
It is based on a single compare and swap (line 6) that atom-
ically updates the enqueue index reserving one slot for the
producer. In the “partial” implementation line 20 is used to
wait for the status of the target index to change value; this
can be realised using polling or wrlos. The dequeue() be-
haviour is shown in Algorithm 3 for the Compare And Swap
and in Algorithm4 for atomic add. Again, this is based on a
single compare and swap (line 6) that updates the dequeue
index when an element is present and ready to be extracted,
and line 18 shows the wait for a status change implemented
with wrlos.

Figure 9: Normalized queue latency on Intel X86.

6. QUEUE PERFORMANCE
This paper focuses on queues used as communication sup-
port for fine grain streaming applications, where work items
are received as an (infinite) sequence and “flow” across a
network of lightweight threads that perform some compu-
tation and forward the item to other threads. Note that,
since the programming environments we are interested in
are shared memory, these queues contain references to data
items to avoid the overhead of copying the actual data. The
most common communication patterns used in this scenario
are: point-to-point, fan-out and fan-in. Fan out and fan in
structures are normally used for implementing thread farms,



where several workers are used to increase the bandwidth of
a specific computation; in this case the most important pa-
rameter is scalability: how many workers can be added to
the farm before saturation. Point to point links are normally
used to implement other network topologies of threads and
in this case the most important parameter is latency: how
much time it takes for data items to flow across the connec-
tion.

Figure 10: Normalized queue latency on IBM PowerEN.

The first experiment measures the basic point-to-point (PtP)
queue latency under the optimal condition of an empty queue.
This is the minimum overhead involved in handling the com-
munication between two peers on the architecture under
exam. The basic queue latency is heavily influenced by
how the producer and consumer are mapped on the under-
lying physical architecture. Figure 9 shows the latency data
(normalized to the minimum value) on the Intel X86 archi-
tecture under test for the two queues considered (Lamport
lock based and Vector-based lock free) and the three pos-
sible mappings (same core, same socket and different sock-
ets). When producer and consumer are mapped inside the
same core, using two hyper-threads, the spinlock based Lam-
port queue seems to have an edge, being twice as fast as
the pthread based Lamport implementation and showing a
tiny increase over the vector based lock free implementation.
When the peers move outside the single core, but still inside
the same socket, the situation does not change too much,
with the spinlock version still showing a small edge over the
other implementations. From this results it is possible to
see that the L2 cache, used when exchanging data between
two cores, is about 3 times slower than the L1 cache that
is used when exchanging data between hyper-threads inside
the same core. When mapping the two threads on different
sockets, the performance of every queue implementation de-
grades more than 10 times and the vector based queues, with
atomic add or atomic CAS, become the best performing, but
with a small edge (about 10% latency) over the others.

Figure 10 examines the same scenarios on IBM PowerEN.
Since this hardware solution is a system on a chip the per-
formance difference between the various mappings is very
limited and always below 3 times, thus ensuring a very low
overhead for exchanging data between lightweight threads.
An interesting side effect of how wrlos works is that, be-

Figure 11: Fan-out scalability on Intel X86.

ing implemented inside the L2 controller, queueing solutions
that employ the instruction perform exactly the same in the
“same A2” and “same At chiplet” case. Looking at the bar
chart it is possible to see that the vector based implementa-
tion with atomic add, both with and without wrlos, provide
very good performance across all mappings.

Figure 12: Fan-out scalability on IBM PowerEN.

The next test explores the behaviour in the fan-out case,
which is often used to distribute work items on a farm of
threads to increase application bandwidth. Since this paper
focuses on fine grain parallelism, the task performed by farm
test workers takes about one microsecond. The single queue
producer is enqueueing work items as fast as possible and the
overall bandwidth is measured as the number of workers in-
creases. The graph reports scalability: the farm bandwidth
is normalized over the slowest configuration. Intel X86 fig-
ures are reported in Figure 11; it is easy to see that there’s a
clear winner on this platform: the vector based queue using
atomic add reaches a maximum scalability of 9 with about
20 workers.

It is interesting to observe what happens when we start using
two sockets for coordinated fine grain parallelism using a



Figure 13: Normalized Fin bandwidth on Intel X86.

streaming farm paradigm: the overall performance degrades
sharply using any tested synchronization mechanism; this is
due to the overhead involved at running atomic operations
over the QPI inter-chip link. The only way to “recover” the
lost performance it to use almost all the available threads;
this is a strong signal that hiding the memory cost, including
the atomic operation cost, is essential to achieve scalability
for fine grain parallelism. Multi-threading seems to be a
very good strategy to achieve the desired results.

This can be confirmed by looking at IBM PowerEN figures
shown in Figure 12. This hardware solution is heavily multi-
threaded, having 4 threads per core, and the performance
results show how scaling the number of workers is able to
multiply performance by over 50 times using 64 workers!
The vector based lock free implementations are much better
than the lock based Lamport versions, regardless of the kind
of lock employed. Again the atomic add version of the queue
achieved the best scalability.

Figure 14: Normalized Fin bandwidth on IBM PowerEN.

The fan-in test examines the multiple producer single con-
sumer case, often used to collect worker farm results for fur-
ther processing in a streaming environment. Also for these

tests the amount of computation performed by farm work-
ers is in the microsecond range and the results are reported
as scalability by normalizing the overall bandwidth over the
slowest case. Intel X86 figures are shown in Figure 13 and
are very similar to the fan-in case: the vector based lock
free queue that uses atomic add achieves the best scalabil-
ity, which in any case it is not too good, reaching a maximum
of 10 with 24 workers. Also in this case we can observe the
“second socket performance penalty”; this is consistent with
the fact that all these queues are symmetrical: the complex-
ity of element insertion and extraction is identical.

IBM PowerEN figures are shown in Figure 14 and again are
very similar to the fan-out case. Interestingly enough the
scalability in the single producer multiple consumer case is
slightly higher than the multiple producer single consumer
but the lock free schema have always an edge over the lock
based solution.

7. CONCLUSION AND FUTURE WORK
It is well known that the selection of the proper synchro-
nization mechanism is fundamental in any multi-threaded
program. When these applications are executed on a large
multi-core multi-thread processor this becomes (if possible)
even more important. It is also common knowledge that
“Operating Systems calls must be avoided as much as pos-
sible”: the idea is that their cost is huge when compared to
their user-space counterparts and anyway scheduler involve-
ment is not required when the number of available hardware
threads is high.

This naive analysis states that user-space operations should
be used whenever possible to increase program performance
and scalability, but their specific implementation mechanism
(such as busy waiting or atomic operations) must be care-
fully evaluated and it is tied to the desired program synchro-
nization semantic. An in depth analysis of the benefits and
drawbacks of Operating System and userspace based solu-
tions was still missing and this work desires to close this gap
at least in the fine grain parallelism case, where this issues
can become predominant over the application algorithmic
aspects.

This paper examines the performance of two fundamental
inter-thread synchronization mechanisms, locks and queues,
in the scenario of fine grain parallelism. The tests are de-
signed to highlight the architectural differences between two
hardware solutions whose design targets are completely dif-
ferent:

• The first system examined here is Intel X86 Nehalem,
a Complex Instruction Set Computer architecture with
powerful cores, very large on chip cache and a low de-
gree of Symmetric Multi Threading. Intel X86 systems
usually embed 4 to 6 cores on a chip and employ mul-
tiple sockets, connected via Quick Path Interconnect
links, to achieve more concurrency. The primary de-
sign target for this processor is heavyweight processing
of complex serial workloads, thus the units employ very
advanced out of order execution and branch prediction
strategies.

• The second design point here analysed is IBM Pow-



erEN, a novel solution that sits half way between a
network processor and a server processor. This design
is targeted at throughput oriented workloads and cou-
ples a Reduced Instruction Set Computer architecture,
with an high degree of Symmetric Multi Threading,
many cores with simple “in order” execution engines,
large caches and several novel userspace oriented fea-
tures. Everything is embedded in a single chip to pro-
vide a powerful foundation for exploiting the available
fine grain parallelism.

The first basic synchronization mechanism examined is locks,
often used in non streaming applications to protect and se-
rialize the access to shared resources. The common inter-
action scenario is: compute on private data, lock, modify
shared data structure and unlock. This paper examines fine
grain parallelism, where the computation cost is about one
microsecond and the time spend in updating the shared re-
source is one order of magnitude less than the computation.
Three types of locks are evaluated: one operating system
based (pthreads) and two userspace based locks (spinlocks
and ticket locks). Results show how userspace based solu-
tions are mandatory for fine grain parallelism. The more ad-
vanced mechanisms available on PowerEN allow much bet-
ter scalability by reducing the overhead experienced at very
high contention.

The second mechanism here evaluated are queues, often used
as basic support of streaming programming environments.
Again the focus is on fine grain parallelism, with very small
computational task of about one microsecond for each data
token. The tests cover only bounded multiple producer mul-
tiple consumer types of queues, which are the most used in
shared memory streaming environments. Two distinct im-
plementations are examined: a blocking one based on the ex-
tension of Lamport algorithm and a non blocking one based
on a circular buffer and a lock free protocol that uses atomic
operations. The test results show that multi-threading is a
good mechanism for hiding both memory access latency and
atomic operation costs; moreover the availability of specific
userspace mechanisms to control CPU instruction dispatch
priority and to wait for memory-based events allow for un-
matched scalability.

The results here outlined support the concept that fine grain
parallelism, with unit of work in the order of few microsec-
onds, is indeed possible on modern architectures. Program
scalability can be helped by Symmetric Multi Threading and
it is extremely sensitive to the use of architecture specific
optimizations that start from the proper selection of algo-
rithms. The results highlight also the fact that some novel
mechanism can indeed help program performance and scala-
bility: providing in userspace the ability to control hardware
thread instruction scheduling priority and the possibility of
passively waiting on a memory location reduces the synchro-
nization overhead by an order of magnitude.

Future work will evaluate how the Non Uniform Memory
Access characteristics of most systems can influence the per-
formance and synchronization scalability figures. More work
must also be done on architectural support for user-space
synchronization by leveraging the cache coherence protocol:
which other mechanism (if any) would provide the best ben-

efit to the implementation of locks and queues.
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