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Towards Consensus Labeling of Malware Threats

Ting Wang Xin Hu
IBM T.J. Watson Research Center

ABSTRACT
The unprecedented immensity and variety of malware threats
(e.g., virus, Trojan horses, worms) have spurred intensive
research on large-scale malware analysis in both academia
and industrial communities; yet, the knowledge bases built
by such effort have not been collectively leveraged to a large
extent. One fundamental barrier facing the integration of
threat intelligence is the lack of malware labeling standards.
We show the severity of this problem by an in-depth empir-
ical study of the labeling systems of five popular anti-virus
engines using a large collection of malware instances. In-
stead of attempting to unify the malware naming conven-
tions, we propose a pragmatic alternative: leveraging cor-
respondence evidences from multiple anti-virus sources to
create a virtual, consensus malware categorization, such that
different anti-virus vendors can communicate through this
consensus scheme without changing their local naming con-
ventions. We present a prototype malware label matching
system LATIN that makes it possible to tell whether two mal-
ware samples under different naming conventions refer to
the same malware category simply by their names.

1. INTRODUCTION
The defense against malware (such as virus, worms, Tro-

jan horses, spyware, rootkits, and backdoors) has been a
prominent topic for computer security research for decades.
Nevertheless the challenge has never been immenser due to
the unprecedented scale and variety of threats: new malware
samples are now created at a rate of millions per day and in-
filtrate to every new platform [17], which goes way beyond
the defense capacity of any single organization.

1.1 Malware Threat Intelligence
Over the past decades, the research efforts on large-scale

malware analysis from both academia and industrial com-
munities have built up a large number of malware threat
knowledge bases, with abundant information such as threat
labels, behavior descriptions (e.g. Kaspersky’s SecureList),
and binary signatures. The techniques of collecting such in-
telligence have evolved from manually creating threat de-
scription libraries by human analysts to developing malware
classification systems that automatically extract distinguish-
ing features and categorize new samples. Today a modest
AntiVirus (AV) engine is typically shored up by a knowledge

base about millions of threats. Intuitively these knowledge
bases feature different coverage and expertise for parts of the
malware universe (details in Section 2); it is thus beneficial
to collectively exploit such intelligence. In practice, how-
ever, the integration of malware threat intelligence is still
limited to fairly small scales (e.g., [7]) due to a number of
great challenges (e.g., the lack of standards and the conflict
of interests).

In this work we focus on one of such fundamental bar-
riers: the lack of malware labeling standards. The labeling
system of a malware knowledge base essentially specifies
the categorization of its malware collection, i.e., if two mal-
ware should be considered as similar. The difference of two
labeling systems reflects the discrepancy of the underlying
categorization. As a concrete example, consider the labels
given to a set of malware samples by three popular AV en-
gines, Kaspersky, NOD32 (ESET), and BitDefender, as shown
in Table 1.

One can observe many types of discrepancies in the three
labeling systems:

• Coverage (Section 2.1): Both Kaspersky and BitDefender
consider S1 as malicious, while NOD32 fails to detect
it.

• Granularity (Section 2.2): Both Kaspersky and NOD32
give detailed categorization for S2, while BitDefender
only reports it as generic malware.

• Categorization (Section 2.3): NOD32 considers S3 and
S4 as belong to SdBot, while Kaspersky categorizes them
as two different categories, Trojan-Proxy and Back-
door. Meanwhile, S3 and S4 are also identified as
Bot by BitDefender; however, BitDefender assigns a more
generic label to S3.

Clearly addressing the discrepancy in different malware
labeling systems (or in other words, achieving their “consen-
sus”) would be a crucial step towards the integration of mal-
ware threat intelligence. Moreover, it would benefit a variety
of applications in its own right. Consider dataset comparison
as a concrete example: due to the lack of malware classifi-
cation benchmarks (the luxury enjoyed by some other re-
search communities, e.g., machine learning [18]), new mal-
ware classification systems are often evaluated against self-
composed threat datasets using certain knowledge bases, re-
sulting in hard-to-compare results.
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Kaspersky NOD32 BitDefender
S1 Trojan-Downloader.Win32.WinShow N/A Trojan.Downloader.WinShow
S2 Trojan-Spy.Win32.Agent Win32/Spy.Agent Trojan.Generic
S3 Trojan-Proxy.Win32.Ranky Win32/IRC.SdBot Backdoor.Bot
S4 Backdoor.Win32.SdBot Win32/IRC.SdBot Generic.SdBot

Table 1: Malware labels assigned by three AV engines.

Precision Recall # of Samples in # of Classes in
reference dataset reference dataset

System 1 [11] 0.932 0.928 3,935 200
System 2 [10] 0.80 0.35 4,821 20

Table 2: Accuracy of malware classification and charac-
teristics of test datasets (Precision measures how well the
individual clusters agree with the original classes and Re-
call R measures how much the malware classes are scat-
tered across the clusters. When evaluated against the la-
beling scheme that breaks down input data into a large
number of classes, the clustering/classfication system will
achieve better performance, especially Recall scores.

Table 2 shows the clustering accuracy and the test mal-
ware datasets as reported by two malware classification sys-
tems [11, 10]. To interpret such results requires to compare
the test malware samples (dataset alignment), while such ex-
ecutable instances are often unpublishable for their sensitiv-
ity and many privacy concerns. However, with the help of
the consensus labeling system, it is possible to contrast the
datasets provided only the labels of the samples under any
specific labeling systems (which is much less sensitive com-
paring with the binary executables) are available.

1.2 Our Contributions
To our best knowledge, this work represents the first at-

tempt of systematically addressing the discrepancies in dif-
ferent malware labeling systems in a large scale.

We start with investigating the severity of this problem by
conducting an empirical study of the current state of mal-
ware labeling systems (Section 2). Specifically, we apply
five popular AV engines in the market (Kaspersky, Avira, Avast,
NOD32, BitDefender) [6] over a large collection of malware
executable instances (over 250K) and present in-depth anal-
ysis of the diagnosis results to understand the discrepancies
in different threat knowledge bases.

More importantly, we develop a novel threat label match-
ing system, Label Alignment and MaTchINg System (LATIN)
(Section 3). Figure 1 sketches its architecture, which com-
prises two main components, label aligner and label matcher.
Label aligner takes a collection of malware instances (and/or
the alias information if available in the threat knowledge
bases) as input and automatically extracts the “consensus”
categorization of the labeling systems underlying these knowl-
edge bases. Equipped with the consensus categorization, la-
bel matcher is able to tell whether two malware labels (with

0

1

2

0

1

2

0

1

2

0

1

2

1 1.5 2 2.5 3 3.5
0

1

2

Kaspersky

ESET (NOD32)

Avira

Avast

BitDefender

Size of class (log10)

N
u

m
b

e
r 

o
f 

cl
a

ss
e

s 
(l

o
g

1
0

)
Figure 2: Distribution of class sizes (Logarithm scale)
under different labeling systems.

optional input including specification, instances, etc.) in two
different knowledge bases refer to the same category of mal-
ware.

We empirically evaluate the efficacy of LATIN using the
alias information available in the threat knowledge bases
(Section 4). The result is encouraging: LATIN successfully
matches over 74.5% of alias simply based on the label infor-
mation.

2. STORY OF CHAOS
The first step of addressing the discrepancies of malware

labeling is to understand how these discrepancies look like.
We select five anti-virus engines (Kaspersky, Avira, Avast, NOD32,
BitDefender) popular in market and feed them with a large col-
lection of malware samples (235,947 distinct instances). We
intend to understand the labeling discrepancy via analyzing
the reported diagnosis results.

We notice that except for generic labels (e.g., Trojan-Generic)
and heuristic diagnosis, most malware labels provided by
these anti-virus engines consist of four or less fields: ⟨type⟩
(e.g., Backdoor), ⟨platform⟩ (e.g., Win32, which is missing
in Avira), ⟨family⟩ (e.g., Ceckno), and ⟨vairant⟩ (e.g., crs,
which is missing in BitDefender and NOD32). We thus use
the combination of ⟨type⟩+⟨family⟩ to specifie the class of
malware.

Figure 2 illustrates the distributions of class sizes under
the five labeling systems. The fairly similar patterns indicate
that the concept of malware class prevails in different label-
ing systems, which can thus serve as the basis of comparing
different labeling systems.
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Figure 1: Overall architecture of LATIN.
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Figure 3: Number of samples undetected by AV engines.

We are now ready to tell the story of chaos.

2.1 Coverage
The first phenomenon we notice is that different anti-virus

engines (as supported by the underlying knowledge bases)
demonstrate drastically different coverage in terms of mal-
ware detection.

Figure 3 illustrates the number of malware samples that
are not detected by different AV engines, where the number
by each node represents the total samples missed by that en-
gine, the number on each edge represents the samples missed
by both engines at the ends of the edge, while the number in
each triangle is the samples undetected by the three engines
at that corner.

It is noticed that while individual AV engines may miss
a large number of malware population (e.g., NOD32 fails to
detect 4.71% of the entire malware collection) due to their
specific coverage and expertise, the coverage increase by
combining different AV engines is drastic (e.g., the samples
undetected by Avira, Avast, and BitDefender is below 0.03%).
Particularly there are no samples missed by all four engines,
which again highlights the necessity of threat intelligence
integration.

AV engine generic label number of samples

BitDefender

Application.Generic 533
Trojan.Generic 46,791

IRC-Worm.Generic 268
Adware.Generic 112

Backdoor.Generic 6,059
Dialer.Generic 350

Avast

Win32:Rootkit-gen 2,684
Win32:Trojan-gen 52,703

Win32:Spyware-gen 4,982
Win32:Malware-gen 9,591

Table 3: Generic labels assigned by AV engines.

2.2 Granularity
The second type of discrepancy we notice in the diagnosis

results reflects in the granularity of malware classes assigned
by different engines. For example, in Table 1 BitDefender
gives S2 a much more generic label than NOD32. Table 3
summaries the generic labels assigned by AV engines (only
the generic labels which are assigned to more than 100 sam-
ples are listed). It is noted that 19.8% and 22.3% of samples
are labeled as Trojan.Generic and Trojan-gen by BitDefender
and Avast, respectively, and 4% of samples are labeled as
Malware-gen by Avast. Clearly such generic labels are non-
informative to differentiate two malware samples simply by
their names.

2.3 Categorization
In the following we focus on non-generic labels assigned

by AV engines, i.e., labels that can assign the malware sam-
ples to specific malware classes. Thus for a given malware
collection, a labeling system essentially specifies one way
of categorizing the samples in the collection; in other words,
whether two samples are considered as belong to the same
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Figure 4: Number of inconsistent pairs in two labeling
systems.

class. The third type of discrepancy reflects in the difference
of such categorization. Figure 4 summarizes the number of
pairs classified into one class by one AV engine (the node
closest to the number) but regarded as of different classes by
another (the node at the other end of the edge). It is noticed
that any two AV engines disagree on 3∼7 million sample
pairs.

3. SYSTEM LATIN
Figure 1 illustrates the system architecture of LATIN. The

goal of LATIN is to leverage threat intelligence from multiple
data sources to derive a consensus categorization which al-
lows us to accurately match between diverse naming/labeling
systems from different vendors or intelligence providers. LATIN

is composed of two components: 1) Label Aligner, responsi-
ble for processing input threat intelligence and reconcile the
sample labels into an extended categorization via a scalable
ensemble learning algorithm; and 2) Label Matcher, capa-
ble of finding correspondence between different labels gen-
erated from different threat intelligence.

Given a large number of malware samples, Label Aligner
works in following three phases, i.e, Probing, Categorization
and Expansion, each of which we elaborate below.

• Phase 1: Probing LATIN first probes the various knowl-
edge bases to find a set of instance-level correspon-
dence of different labeling systems. A knowledge base
can be any data source that provide categorization in-
formation for the malware instance. Examples include
Anti-virus software (which provide family names), mal-
ware analysis frameworks (e.g. Anubis[2] which pro-
vide behavior profiles), online virus encyclopedia from
many AV vendors (which provide malware specifica-
tions). This flexibility allows LATIN to be easily ex-
tended to accommodate additional intelligence sources.

• Phase 2: Categorization LATIN creates individual cat-
egorization based on information collected from each
intelligence. For example, LATIN parses malware la-
bels from a particular vendor identifying malware sam-
ples that share the same family name and grouping
them into the same cluster. The ensemble learning
component takes as input the “local” categorization of

these malware instances and aggregates the instance-
level correspondences between local categorizations to
identify the consensus categorization. One challenge
of extracting such consensus categorization is the scal-
ability issue. For example, using our malware collec-
tion, we are facing over 235K malware samples and
over 25K malware classes. Conventional ensemble learn-
ing algorithms that rely on techniques such as spectral
graph clustering [14] is too slow for our task. We de-
velop a novel consensus learning algorithm based on
power iteration clustering [13], which reduces the run-
ning time of ensemble learning from days to hours in
our case.

• Phase 3: Expansion LATIN integrate additional infor-
mation available in the knowledge base to expand the
instance-level or class-level correspondence beyond the
instances available in the input dataset. For example,
many vendors maintain a correlation between their name
and used by other vendors in their malware description
databases or virus encyclopedia (often in the ’Alias’
section). This provides useful information absent of
the particular instances. LATIN also performs text min-
ing (i.e. semantic embedding via tf-idf weighting) on
crawled malware specifications, attempting to match
specifications of malware that are not in the input dataset
with specifications of input samples. Via this step,
LATIN is able to expand to malware samples that are
otherwise impossible to include in the consensus cate-
gorization due to the lack of their binaries.

Through the second component Label Matcher, LATIN al-
lows users to query the correspondence between informa-
tion obtained from different threat intelligence (e.g. mal-
ware description, labels from different AV vendors and clus-
tering/classification results) . Label Matcher uses the the
Extended Consensus Categorization (ECC) created by the
Label Aligner as the reference and maps the input threat in-
telligence to the closest category in the ECC, such that a cor-
respondence relationship can be identified if the information
of two input malware threats are mapped to the same consen-
sus category. Notice that the mapping is often one-to-many
as oppose to one-to-one mappings in the traditional labeling
system (where a malware program only has one unique la-
bel and thus belongs to a single family). This is caused by
the conflicting opinions from different vendors where some
of them may divide the set of samples into multiple groups
whereas others may prefer lumping them together. Hence, in
such cases, Label Matcher will provide a probability match-
ing score indicating the likelihood that the sample belongs
to a particular category. Notice that the uncertainty can be
reduced if additional intelligence about this sample is also
available (e.g. names from more AV vendors, its behavior
specification) because such additional information provide
additional dimension in searching for the closest consensus
category.
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Figure 5: Number of inconsistent pairs between consen-
sus and individual categorization.

4. PRELIMINARY EVALUATION
Next we present an empirical evaluation of LATIN by using

it to match labels under different labeling systems. While
the design of LATIN allows it to be augmented by additional
information (e.g., threat description, alias, features) in threat
knowledge bases (Section 3), to make the task challenging,
here we only rely on the collection of malware samples (235,947
distinct instances) as input to train the label aligner and use
the alias information as ground truth for evaluating label
matcher.

We first validate the quality of the consensus categoriza-
tion generated by label aligner. We consider good consensus
categorization should have as few discrepancies with each
individual categorization as possible. We therefore measure
the number of inconsistent pairs between the consensus and
each individual categorization, with results shown in Fig-
ure 5. Compared with the number of inconsistent pairs be-
tween two individual categorizations (shown in Figure 4),
the consensus categorization reaches the maximum agree-
ment among all the individual categorizations, thus repre-
senting a better way of categorizing the malware collection.

We then apply label matcher to match the labels under dif-
ferent labeling systems. We use the alias entries (each entry
listing the “also-known-as” names under other AV engines)
available in the threat knowledge bases as the test dataset.
The dataset consists of total 12,411 entries and the number
of intersection with our malware sample collection is 1,103.

For each pair of AV engines, we randomly select 1,000
pairs of aliases and test if LATIN maps them to a same class
in the consensus categorization. It is noted that there are
cases that one class C in individual categorization is split
and mapped separately to multiple classes {C ′} in the con-
sensus categorization (note that one can set a mapping prob-
ability proportional to the number of samples in C mapped
to each C ′). In these cases, we consider the two aliases
are “partially” matched if their corresponding classes in the
consensus categorization overlap. Table 4 summarizes the
results as categorized into complete match, partial match,
and missed match. It is noticed that the overall accuracy
(complete + partial match) is above 74.5% for all the cases.
We expect that augmented with additional information (e.g.,
threat specification) and more training samples, the accuracy
of LATIN can be further improved.

pair of AV engines complete partial miss
Kaspersky-Avira 439 320 241

Avira-Avast 534 211 255
Avast-BitDefender 617 204 179

BitDefender-Kaspersky 452 379 169

Table 4: Matching results: complete match, partial
match, and missed match.

5. RELATED WORK
In addition to its unprecedented immensity and complex-

ity, the current landscape of malware threats also features a
huge discrepancies in the names used by different anti-virus
product to ID a malware sample and an apparent lack of con-
sensus among AV vendors in a common naming standard.
Security communities have been debating this name incon-
sistency for decades long [5, 9, 3, 12] and several previous
research also studied the severity for such problem as well as
the potential root causes. Bailey et al [3] measured the con-
sistency in terms of the ability of AV vendors to identify sim-
ilar/identical malware in the same way and found that con-
sistency is never a design goal of many AV systems – they
assign the same label to identically behaved malware sam-
ples only the 31% to 61% of the time. Bureau and Harley
analyzed the number of detection strings generated when
scanning the same set of related samples and found a large
variation in the number of labels used by different AV ven-
dors from 100 to nearly 700. More recently, Maggi et. al
[15] quantitatively showed that high degreeof inconsistency
in terms of naming distance and scatter score exist across
different vendors. Many reasons contribute to the malware
naming mess. The first and foremost is the exponentially es-
calated number of new samples created nowadays [12, 4, 9].
Numbers published by different AV vendors constantly re-
ports that hundreds of thousands to millions of new samples
are received on a daily basis, making it practically impos-
sible to examine every new malware program and agree on
a reasonable name. In addition, AV vendors are under con-
siderable pressure to push out the response/detection signa-
tures promptly and wasting cycles on naming is always at
the bottom of their priority list. Second, antivirus systems
increasingly rely on generic signatures and other heuristics
(behaviors, rare packers,etc), which are often unique to ven-
dors, to identify malware. Methods for naming the detected
malware samples thus vary across AV companies and usu-
ally do not follow any convention. For instance, sometimes
when the malware does not have a name before, something
catchy from the code or simply a random name might be
picked to get it into the definition as fast as possible [12] and
the cost is often too expensive to correct/change the names
afterwards [4].

Several efforts have been made trying to remedy the nam-
ing confusion. The first attempt is the 1991 New Virus Nam-
ing Convention from CARO (Computer Antivirus Researchers

5



Organization) [19], followed by a series of proposals for re-
vision [16, 8, 4]. These work attempt to standardize the nam-
ing convention in a well defined format e.g. Platform/FamilyName.
GroupName.MajorVariat.MinorVariant and prohibit the use
of specific information such as names of companies, brands
and living people. Unfortunately, most of the major AV ven-
dors decided to ignore these proposal. Even if they did,
the name inconsistencies would still exist, as different ven-
dors may assign different names to the same malware fam-
ily/subfamily/variants. VGrep [20] and virustotal [1] offer
pragmatic ways for users to search names from different ven-
dors for a given malware instance, yet providing no system-
atic approaches to reconcile the inconsistent or even con-
flicting names. To our best knowledge, this work is the first
attempt to systematically resolve the malware naming dis-
crepancies by leveraging evidences of correspondences from
multiple sources. This work aims to serve as first step to de-
rive a common-ground benchmark that can be leveraged by
the security research community to evaluate and compare re-
sults from different malware analysis systems.

6. CONCLUSION
Despite a series of effort to standardize the malware nam-

ing convention, the inconsistency in malware labels remains
one fundamental barrier facing the integration of threat in-
telligence. Instead of attempting to unify the naming con-
ventions by different AV vendors, we consider a pragmatic
alternative: leveraging evidences from multiple AV sources
to find a virtual, consensus naming scheme such that differ-
ent sources can now communicate through this consensus
scheme without changing their local naming conventions.
We present a prototype system LATIN which demonstrates
that this approach is promising for addressing the issue of
label discrepancy to certain extent.
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