RC25291 (WAT 1206-031) June 13, 2012
Computer Science

|BM Resear ch Report

QPX Architecture:
Quad Processing eXtension to the Power 1SA™

Thomas Fox, Michadl Gschwind, Jaime M oreno

(foxy, mkg, jhmoreno@us.ibm.com)

IBM Research Division
Thomas J. Watson Research Center
P.O. Box 218
Y orktown Heights, NY 10598

— = Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India- T. J. Watson - Tokyo - Zurich

QPX Architecture

Contributors

The following individuals contributed to an extensive degree to this
architectural specification:

John Gunnels
Alexandre Eichenberger
Daniel Prener

Bruce Fleischer

Acknowledgements

The following individuals played a significant role in the design of the
Quad floating-point Processing Unit of the BQC compute chip in Blue
Gene/Q:

Charles Wait
Thomas Roewer

Bernard Brezzo

QPX Architecture

Chapter 1. Quad-Vector Floating-Point Facility Overview

This document defines the Blue Gene/Q Quad-Pro-
cessing eXtension (QPX) to IBM’'s Power Instruction
Set Architecture. Refer to IBM's Power ISA™ AS archi-
tecture document for descriptions of the base Power
instruction set, the storage model, and related facilities
available to the application programmer.

The computational model of the QPX architecture is a
vector Single Instruction Multiple Data (SIMD) model
with four execution slots and a register file containing
32 registers of 256 bits. Each of the 32 registers can be
envisioned as containing four elements of 64 bits,
whereby each of the execution slots operates on one
vector element.

1.1 Notation

The following notation is specific to and used through-
out the QPX Architecture document.

n QRT, QRA, QRB, and QRC refer to Quad Float-
ing-Point Registers, which are 256-bit vector regis-
ters containing four elements with 64 bits per
element. The vector elements are numbered
0,1,2,3, with element 0 comprising bits 0:63, ele-
ment 1 comprising bits 64:127, element 2 compris-
ing bits 128:191, and element 3 comprising bits
192:255.

n QRT* refers to element x of vector register QRT.

QPX Architecture

Chapter 2. Quad-Vector Floating-Point Facility Registers

2.1 Quad-Vector Floating-Point
Registers

Implementations of this architecture provide 32
Quad-vector floating-Point Registers (QPRs), named
QPRO through QPR31. The QPX instruction formats
provide 5-bit fields for specifying the QPRs to be used
in the execution of the instruction.

Scalar floating-point computational instructions,
defined in the Power ISA, operate on element 0 QPRs,
which serve as both the scalar FPRs for scalar instruc-
tions and the element 0 QPRs for vector instructions.

The figure below shows the Quad floating-point regis-
ters.

QPROY QPRO! QPRO? QPRO®

QPR1Y QPR1! QPR12 QPR1°

QPR30° QPR301 QPR302 QPR303

QPR31Y QPR311 QPR312 QPR31°
0 63 64 127 128 191 192 255
Figure 1. Quad Floating-Point Registers

2.2 Floating-Point Status and
Control Register

The Floating-Point Exception Summary bits (32:34)
and the Floating-Point Exception bits (35:44 and 53:55)
of the FPSCR are never updated by QPX instructions,
neither implicitly nor explicitly. The remaining status bits
(45:51) are never updated by QPX instructions.

The Floating-Point Exception Enable bits (56:60) are
ignored by all QPX instructions, which execute as if
these bits were disabled. The Floating-Point Non-IEEE
Mode (NI) bit (61) and the Floating-Point Rounding
Control (RN) bits (62:63) of the FPSCR affect the oper-
ations on all four vector elements for QPX instructions.

QPX Architecture

2.3 Store Exception Enable Registers

Certain QPX store instructions provide a novel mecha-
nism for the detection and indication of numerically
exceptional conditions at the store interface.

A Store Indicate NaN Exception occurs when the
source operand of a Store with Indicate instruction con-
tains a NaN value. The Store Nan Exception Enable
(SNEE) register enables the indication of such an
exception. If an enabled Store Indicate NaN Exception
occurs, the Auxiliary Processor bit of the Exception
Syndrome Register is set (ESR[AP] = ‘'1").

A Store Indicate Infinity Exception occurs when the
source operand contains an Infinity value during a
Store with Indicate instruction. The Store Infinity
Exception Enable (SIEE) register enables the indica-
tion of such an exception. If an enabled Store Indicate
Infinity Exception occurs, the Auxiliary Processor bit of
the Exception Syndrome Register is set (ESR[AP] =
1.

The precedence of simultaneously occurring indication
exceptions and memory fault exceptions is implemen-
tation defined.

— Implementation Note

In the QPU for BGQ, the following bits in the
AXUCRO Special Purpose Register contain the
SNEE and SIEE state on a per thread basis:

axucr 0(20 . Thread 0 SNEE
axucr 0(21 . Thread 0 SIEE
axucr 0(22 : Thread 1 SNEE
axucr0(23 : Thread 1 SIEE
axucr0(24 : Thread 2 SNEE
axucr0(25 : Thread 2 SIEE
axucr 0(26 : Thread 3 SNEE
axucr 0(27 : Thread 3 SIEE

QPX Architecture

Chapter 3. Scalar Instructions

Scalar floating-point load instructions, defined in the
Power ISA, cause a replication of the source data
across all elements of the target register.

Scalar floating-point move, arithmetic, rounding and
conversion, compare, and select instructions, defined
in the Power ISA, are executed in execution slot O.
Source operands for these instructions are read from
element 0 QPRs, while target results are written to ele-
ment 0 QPRs. Target elements 1, 2, and 3 are left in an
undefined state.

QPX Architecture

Chapter 4. Quad-Vector Floating-Point Facility Instructions

4.1 Quad-Vector Floating-Point Load Instructions

Quad-Vector Load Floating-point Single

Quad-Vector Load Floating-point Single

indeXed X-form with Update indeXed X-form
qvlfsx QRT,RA,RB (X=0) gvlfsux QRT,RA,RB (X=0)
qvlfsxa QRT,RA,RB (X=1) gvifsuxa QRT,RA,RB (X=1)

31 QRT [RA RB 519 X 31 QRT | RA RB 551 X
0 6 11 16 21 31 0 6 11 16 21 31

if RAR=0thenb - 0

el se b -« (RA

EA - (b + (RB)) & OXFFFFFFFFFFFFFFFO
WAL - MEMEA, 16)

QRT® - DOUBLE(M/ALy, 3;)

~ DOUBLE(WAL3). 63)
QRT? . DOUBLE(MALgy. g5)

 DOUBLE(WALgg. 157)
Let the effective address (EA) be the sum (RA|0)+(RB).

The 16 bytes in storage addressed by the
16-byte-aligned EA are interpreted as four single-preci-
sion vector elements, converted to double-precision for-
mat, and placed into register QRT.

If the X bit is set, and the address is not aligned on a
16-byte boundary, an exception is raised.

Special Registers Altered:
None

EA « ((RA) + (RB)) & OXFFFFFFFFFFFFFFFO
WAL - MEMEA, 16)
QRT? . DOUBLE(WALy, 3,)

QRT! - DOUBLE(MAL3). 63)
QRT? . DOUBLE(M/ALgy. o)
QRT® . DOUBLE(M/ALgg: 17)
RA - EA

Let the effective address (EA) be the sum (RA)+(RB).

The 16 bytes in storage addressed by the
16-byte-aligned EA are interpreted as four single-preci-
sion vector elements, converted to double-precision for-
mat, and placed into register QRT.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

If the X bit is set, and the address is not aligned on a
16-byte boundary, an exception is raised.

Special Registers Altered:
None

QPX Architecture

Quad-Vector Load Floating-point Double

Quad-Vector Load Floating-point Double

indeXed X-form with Update indeXed X-form
qulfdx QRT,RA,RB (X=0) quifdux QRT,RA,RB (X=0)
gvifdxa QRT,RA,RB (X=1) gvifduxa QRT,RA,RB (X=1)
31 QRT [RA RB 583 X 31 QRT | RA RB 615 X
0 6 11 16 21 31 0 6 11 16 21 31

if RA=0thenb -0

el se b -« (RA

EA - (b + (RB)) & OXFFFFFFFFFFFFFFEQ
RT - MEMEA, 32)

Let the effective address (EA) be the sum (RA|0)+(RB).

The 32 bytes in storage addressed by the
32-byte-aligned EA are interpreted as four double-pre-
cision vector elements, and placed into register QRT.

If the X bit is set, and the address is not aligned on a
32-byte boundary, an exception is raised.

Special Registers Altered:
None

EA - ((RA) + (RB)) & OXFFFFFFFFFFFFFFEQ

RT - MEMEA 32)
RA - EA

Let the effective address (EA) be the sum (RA)+(RB).

The 32 bytes in storage addressed by the
32-byte-aligned EA are interpreted as four double-pre-
cision vector elements, and placed into register QRT.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

If the X bit is set, and the address is not aligned on a
32-byte boundary, an exception is raised.

Special Registers Altered:
None

QPX Architecture

Quad-Vector Load Floating-point

Quad-Vector Load Floating-point

Complex Single indeXed X-form Complex Double indeXed X-form
gvlifcsx QRT,RA,RB (X=0) gvifcdx QRT,RA,RB (X=0)
gvifcsxa QRT,RA,RB (X=1) gvifcdxa QRT,RA,RB (X=1)
31 QRT [RA RB 7 X 31 QRT | RA RB 71 X
0 6 11 16 21 31 0 6 11 16 21 31

if RA=0thenb - 0
el se b -« (RA
EA - (b + (RB)) & OXFFFFFFFFFFFFFFF8
AL - MEMEA, 8)
DOUBLE(WALy, 31)
 DOUBLE(WAL3,. g3)
QRTZ . DOUBLE(WAL 31)
- DOUBLE(WAL3;: 63)

=

Let the effective address (EA) be the sum (RA|0)+(RB).

The 8 bytes in storage addressed by the 8-byte-aligned
EA are interpreted as two single-precision vector ele-
ments, converted to double-precision format, and repli-
cated into register QRT.

If the X bit is set, and the address is not aligned on an
8-byte boundary, an exception is raised.

Special Registers Altered:
None

if RA=0thenb - 0

el se b - (RA

EA - (b + (RB)) & OxFFFFFFFFFFFFFFFO
WAL - MEMEA, 16)

QRrT? .~ WAL®
Rt~ mALl
QRT2 . WAL?
QRT® .~ MALL

Let the effective address (EA) be the sum (RA|0)+(RB).

The 16 bytes in storage addressed by the
16-byte-aligned EA are interpreted as two double-pre-
cision vector elements, and replicated into register
OQRT.

If the X bit is set, and the address is not aligned on a
16-byte boundary, an exception is raised.

Special Registers Altered:
None

QPX Architecture

Quad-Vector Load Floating-point
Complex Single with Update indeXed
X-form

Quad-Vector Load Floating-point
Complex Double with Update indeXed
X-form

gvlfcsux QRT,RA,RB (X=0) gvifcdux QRT,RA,RB (X=0)

gvifcsuxa QRT,RA,RB (X=1) gvlifcduxa QRT,RA,RB (X=1)
31 QRT RA RB 39 X 31 QRT RA RB 103 X

0 6 11 16 21 31 0 6 11 16 21 31

EA « ((RA) + (RB)) & OXFFFFFFFFFFFFFFF8

WAL - MEMEA, 8)

R0 DOUBLE(M/AL0 31)

@Ti - LE(M/AL3». 63)
- DOUBLE(MALg. 3)

QRT® . DOUBLE(MWAL3. 3)

RA . EA

Let the effective address (EA) be the sum (RA)+(RB).

The 8 bytes in storage addressed by the 8-byte-aligned
EA are interpreted as two single-precision vector ele-
ments, converted to double-precision format, and repli-
cated into register QRT.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

If the X bit is set, and the address is not aligned on a
8-byte boundary, an exception is raised.

Special Registers Altered:
None

EA - ((RA) + (RB)) & OXFFFFFFFFFFFFFFFO
WAL -~ MEMEA 16)
QRT® .~ MvAL?
QRTl < MALL
« WAL
QRT® .~ MALL
RA - EA

Let the effective address (EA) be the sum (RA)+(RB).

The 16 bytes in storage addressed by the
16-byte-aligned EA are interpreted as two double-pre-
cision vector elements, and replicated into register
ORT.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

If the X bit is set, and the address is not aligned on a
16-byte boundary, an exception is raised.

Special Registers Altered:
None

10

QPX Architecture

Quad-Vector Load Floating-point as

Quad-Vector Load Floating-point as

Integer Word Algebraic indeXed X-form Integer Word and Zero indeXed X-form
gvlfiwax QRT,RA,RB (X=0) gvlifiwzx QRT,RA,RB (X=0)
gvifiwaxa QRT,RA,RB (X=1) gvifiwzxa QRT,RA,RB (X=1)

31 QRT | RA RB 871 X| 31 QRT [RA RB 839 X

0 6 11 16 21 31

0 6 11 16 21 31

if RAR=0thenb -0
el se b - (RA

Let the effective address (EA) be the sum (RA|0)+(RB).

The 16 bytes in storage addressed by the
16-byte-aligned EA are interpreted as 32-bit integers,
sign extended to 64-bit integers, and placed into regis-
ter QRT.

If the X bit is set, and the address is not aligned on a
16-byte boundary, an exception is raised.

Special Registers Altered:
None

if RAR=0thenb -0
el se b - (RA)

EA - (b + (RB)) & OXFFFFFFFFFFFFFFFO
M - MEMEA 16)

QRTY — 20 || My

Q?Tz - 320 | M2 63

CRT3 - 320 | Msa: o5

QRT> < 790 || Myg: 127

Let the effective address (EA) be the sum (RA|0)+(RB).

The 16 bytes in storage addressed by the
16-byte-aligned EA are interpreted as 32-bit integers,
zero extended to 64-bit integers, and placed into regis-
ter QRT.

If the X bit is set, and the address is not aligned on a
16-byte boundary, an exception is raised.

Special Registers Altered:
None

11

QPX Architecture

Quad-Vector Load Permute Control Left

Quad-Vector Load Permute Control Left

Double indeXed X-form Single indeXed X-form
gvipcldx QRT,RA,RB gvipclsx QRT,RA,RB
31 QRT RA RB 582 / 31 QRT RA RB 518 /
0 6 11 16 21 31 0 6 11 16 21 31
if RAR=0thenb -0 if RA=0thenb -0
el se b -« (RA el se b - (RY
EA - b + (RB) EA - b + (RB)
AA = EA & 0b11000 AA = (EA * 2) & 0b11000
QRTO . 0x400 || (PA)sggo || 50 QRTY - 0x400 || (MA)gggo || 720
RT_ — 0x400 || (AA+ 8)sg. 0 || 70 QRT_ ~ 0x400 || (AA+ 8)sg.60 || 70
QRT2 — 0x400 || (AA+16)sg.69 || 290 QRTZ = 0x400 || (AA+16)sg.60 || 490
QRT3 0x400 || (AA+24)55.69 || *90 QRT3 0x400 || (AA+24)55.60 || 490

Let the effective address (EA) be the sum (RA|0)+(RB).

A quad-vector (32 bytes) describing a dynamic dou-
ble-precision data alignment to be performed using the
quad-vector permute instruction qvfperm is generated
based on the address EA.

The instruction may raise a memory translation excep-
tion if EA is not a valid address.

The behavior of this instruction is boundedly undefined
when the address does not correspond to at least the
natural alignment of an IEEE double precision floating
point number.

Special Registers Altered:
None

— Programming Note

This instruction allows the implementation of a soft-
ware based alignment sequence for double-preci-
sion floating-point quad-vectors

qvlpcldx gqalign, ra, rb

qul fdux qment, ra, rb
qvl fdux qmen2, ra, rb
qufperm qaligned, gmenl, gnen?, qalign

Let the effective address (EA) be the sum (RA|0)+(RB).

A quad-vector (32 bytes) describing a dynamic sin-
gle-precision data alignment to be performed using the
guad-vector permute instruction qvfperm is generated
based on the address EA.

The instruction may raise a memory translation excep-
tion if EA is not a valid address.

The behavior of this instruction is boundedly undefined
when the address does not correspond to at least the
natural alignment of an IEEE double precision floating
point number.

Special Registers Altered:
None

— Programming Note

This instruction allows the implementation of a soft-
ware based alignment sequence for single-preci-
sion floating-point quad-vectors

qvl pclsx qalign, ra, rb

qvlfsux qmentl, ra, rb

gqvlfsux qmen2, ra, rb

qufperm qaligned, qmentl, gnen2, galign

12

QPX Architecture

Quad-Vector Load Permute Control Right

Quad-Vector Load Permute Control Right

Double indeXed X-form Single indeXed X-form
gvipcrdx QRT,RA,RB gvipcrsx QRT,RA,RB

31 QRT [RA RB 70 / 31 QRT | RA RB 6 /
0 6 11 16 21 31 0 6 11 16 21 31

if RAR=0thenb « 0

el se b -« (RA

EA - b + (RB)

AA = (32 - (EA & 0b11000))

QRTO .~ 0x400 || (AA)sggo || %
QRT = 0x400 || (AA+ 8)sggo || %
QRT? = 0x400 || (AA+16)sggo || %0
QRT® = 0x400 || (AA+24)5g.60 || %0

Let the effective address (EA) be the sum (RA|0)+(RB).

A quad-vector (32 bytes) describing a dynamic data
alignment to be performed using the quad-vector per-
mute instruction qvfperm is generated based on the
address EA.

The instruction may raise a memory translation excep-
tion if EA is not a valid address.

The behavior of this instruction is boundedly undefined
when the address does not correspond to at least the
natural alignment of an IEEE double precision floating
point number.

Special Registers Altered:
None

Programming Note

This instruction allows the implementation of a soft-
ware based alignment sequence for double-preci-
sion floating-point quad-vectors.

if RAR=0thenb - 0

el se b - (RA

EA - b + (RB)

AA = (32 - ((EA* 2) & 0b11000))
QRTY - 0x400 || (MA)gggo || 700
QRT 0x400 || (AA+ 8)s5g.60 ||
QRTZ — 0x400 || (AA+16)s5g.60 || 4%
QRT® .~ 0x400 || (AA+24)5g.60 || %0

Let the effective address (EA) be the sum (RA|0)+(RB).

A quad-vector (32 bytes) describing a dynamic data
alignment to be performed using the quad-vector per-
mute instruction qvfperm is generated based on the
address EA.

The instruction may raise a memory translation excep-
tion if EA is not a valid address.

The behavior of this instruction is boundedly undefined
when the address does not correspond to at least the
natural alignment of an IEEE double precision floating
point number.

Special Registers Altered:
None

Programming Note

This instruction allows the implementation of a soft-
ware based alignment sequence for single-preci-
sion floating-point quad-vectors.

13

QPX Architecture

4.2 Quad-Vector Floating-Point Store Instructions

Quad-Vector STore Floating-point Single

Quad-Vector STore Floating-point Single

indeXed X-form with Update indeXed X-form
gvstfsx QRS,RARB (X=0) gvstfsux QRS,RARB (X=0)
gvstfsxa QRS,RARB (X=1) gvstfsuxa QRS,RA,RB (X=1)
31 QRS RA RB 647 X 31 QRS RA RB 679 X
0 6 11 16 21 31 0 6 11 16 21 31

if RAR=0thenb - 0

el se b -« (RA

EA « (b + (RB)) & OXFFFFFFFFFFFFFFFO

MEMEA, 16) —SINGLE(QRSY) || SINGLE(QRSY ||
SINGLE(QRS?) || SINGLE(QRS®)

Let the effective address (EA) be the sum (RA|0)+(RB).

The four vector elements of register QRS are converted
to single-precision format and stored into the 16 bytes
in storage addressed by the 16-byte-aligned EA.

If the X bit is set, and the address is not aligned on a
16-byte boundary, an exception is raised.

Special Registers Altered:
None

EA - ((RA) + (RB)) & OXFFFFFFFFFFFFFFFO
MEM EA, 16) ~SINGLE(QRSY) || SINGLE(QRSY) ||

SINGLE(QRS?D) || SINGLE(QRS?)
RA - EA

Let the effective address (EA) be the sum (RA)+(RB).

The four vector elements of register QRS are converted
to single-precision format and stored into the 16 bytes
in storage addressed by the 16-byte-aligned EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

If the X bit is set, and the address is not aligned on a
16-byte boundary, an exception is raised.

Special Registers Altered:
None

14

QPX Architecture

Quad-Vector STore Floating-point Single

Quad-Vector STore Floating-point Single

indeXed and Indicate X-form with Update indeXed and Indicate X-form
gvstfsxi QRS,RARB (X=0) gvstfsuxi QRS,RARB (X=0)
gvstfsxia QRS,RARB (X=1) gvstfsuxia QRS,RA,RB (X=1)
31 QRS | RA RB 645 X 31 QRS | RA RB 677 X
0 6 11 16 21 31 0 6 11 16 21 31
if RA=0thenb -0 EA - ((RA) + (RB)) & OXFFFFFFFFFFFFFFFO
el se b - (RA) MEM EA, 16) ~ SINGLE(QRSY) || SINGLE(QRSY) ||
EA - (b + (RB)) & OXFFFFFFFFFFFFFFFO SINGLE(QRS?) || SINGLE(QRS®)
MEMEA, 16) - SINGLE(QRS)) || SINGLE(QRSY) || RA - EA
SINGLE(QRS?) || SINGLE(QRS®)
if (SNEE = 1) then
if (SNEE = 1) then if (isNaN (QRSY) OR
if (isNaN (QRSY) OR i sNaN (QRSH) OR
i sNaN (QRSH) OR i sNaN (QRS9) OR
i sNaN (QRSH) R i sNaN (QRS®)) then
i sNaN (QRS®)) then ESRIAP] - 1
ESRIAP| - 1
if (STEE = 1) then
if (SIEE = 1) then if (islnf (RSY) OR
if (isinf (RS OR isinf (QRSY) OR
isinf (QRSY OR isinf (QR$H) OR
isinf (QRSY) OR isinf (QRS)) then
isinf (QRS%)) then ESRIAP] - 1
ESRIAP| - 1

Let the effective address (EA) be the sum (RA|0)+(RB).

The four vector elements of register QRS are converted
to single-precision format and stored into the 16 bytes
in storage addressed by the 16-byte-aligned EA.

If any vector element being stored is a NaN (or Infinity),
and the corresponding Store NaN (or Infinity) Excep-
tion is enabled, then the Auxiliary Processor bit of the
Exception Syndrome Register (ESR[AP]) is set.

If the X bit is set, and the address is not aligned on a
16-byte boundary, an exception is raised.

Special Registers Altered:
ESR[AP]

Let the effective address (EA) be the sum (RA)+(RB).

The four vector elements of register QRS are converted
to single-precision format and stored into the 16 bytes
in storage addressed by the 16-byte-aligned EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

If any vector element being stored is a NaN (or Infinity),
and the corresponding Store NaN (or Infinity) Excep-
tion is enabled, then the Auxiliary Processor bit of the
Exception Syndrome Register (ESR[AP]) is set.

If the X bit is set, and the address is not aligned on a
16-byte boundary, an exception is raised.

Special Registers Altered:
ESR[AP]

15

QPX Architecture

Quad-Vector STore Floating-point Double

Quad-Vector STore Floating-point Double

indeXed X-form with Update indeXed X-form
gvstfdx QRS,RARB (X=0) gvstfdux QRS,RARB (X=0)
gvstfdxa QRS,RARB (X=1) gvstfduxa QRS,RA,RB (X=1)
31 QRS RA RB 711 X 31 QRS RA RB 743 X
0 6 11 16 21 31 0 6 11 16 21 31

if RA=0thenb -0

el se b - (RA

EA - (b + (RB)) & OXFFFFFFFFFFFFFFEQ
MEM EA, 32) « (QRS)

Let the effective address (EA) be the sum (RA|0)+(RB).

The contents of register QRS are stored into the 32
bytes in storage addressed by the 32-byte-aligned EA.

If the X bit is set, and the address is not aligned on a
32-byte boundary, an exception is raised.

Special Registers Altered:
None

EA - ((RA) + (RB)) & OXFFFFFFFFFFFFFFEQ
MEMEA 32) - (QRS)
RA - EA

Let the effective address (EA) be the sum (RA)+(RB).

The contents of register QRS are stored into the 32
bytes in storage addressed by the 32-byte-aligned EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

If the X bit is set, and the address is not aligned on a
32-byte boundary, an exception is raised.

Special Registers Altered:
None

16

QPX Architecture

Quad-Vector STore Floating-point Double

Quad-Vector STore Floating-point Double

indeXed and Indicate X-form with Update indeXed and Indicate X-form
gvstfdxi QRS,RARB (X=0) gvstfduxi QRS,RARB (X=0)
gvstfdxiaa QRS,RA,RB (X=1) gvstfduxia QRS,RA,RB (X=1)

31 QRS | RA RB 709 X 31 QRS | RA RB 741 X
0 6 11 16 21 31 0 6 11 16 21 31

if RA=0thenb -0

el se b - (RA

EA - (b + (RB)) & OXxFFFFFFFFFFFFFFEQ
MEM EA, 32) « (QRS)

if (SNEE = 1

=
5
=
&

Let the effective address (EA) be the sum (RA|0)+(RB).

The contents of register QRS are stored into the 32
bytes in storage addressed by the 32-byte-aligned EA.

If any vector element being stored is a NaN (or Infinity),
and the corresponding Store NaN (or Infinity) Excep-
tion is enabled, then the Auxiliary Processor bit of the
Exception Syndrome Register (ESR[AP]) is set.

If the X bit is set, and the address is not aligned on a
32-byte boundary, an exception is raised.

Special Registers Altered:
ESR[AP]

EA - ((RA) + (RB)) & OXFFFFFFFFFFFFFFEQ
MEMEA 32) - (QRS)
RA - EA

if (SNEE = 1
it (ishaN

o

&5

=
—_———r

if (SSEE =1
i f (islnf

—~——

Let the effective address (EA) be the sum (RA)+(RB).

The contents of register QRS are stored into the 32
bytes in storage addressed by the 32-byte-aligned EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

If any vector element being stored is a NaN (or Infinity),
and the corresponding Store NaN (or Infinity) Excep-
tion is enabled, then the Auxiliary Processor bit of the
Exception Syndrome Register (ESR[AP]) is set.

If the X bit is set, and the address is not aligned on a
32-byte boundary, an exception is raised.

Special Registers Altered:
ESR[AP]

17

QPX Architecture

Quad-Vector STore Floating-point

Quad-Vector STore Floating-point

Complex Single indeXed X-form Complex Double indeXed X-form
gvstfcsx QRS,RARB (X=0) gvstfcdx QRS,RARB (X=0)
gvstfcsxa QRS,RA,RB (X=1) gvstfcdxa QRS,RA,RB (X=1)

31 QRS | RA RB 135 X 31 QRS | RA RB 199 X
0 6 11 16 21 31 0 6 11 16 21 31

if RAR=0thenb « 0

el se b -« (RA

EA - (b + (RB)) & OXFFFFFFFFFFFFFFF8
MEMEA, 8) -~ SINGLE(QRSY) || SINGLE(QRSY

Let the effective address (EA) be the sum (RA|0)+(RB).

Vector elements 0 and 1 of register QRS are converted
to single-precision format and stored into the 8 bytes in
storage addressed by the 8-byte-aligned EA.

If the X bit is set, and the address is not aligned on an
8-byte boundary, an exception is raised.

Special Registers Altered:
None

if RAR=0thenb - 0

el se b « (RA)

EA - (b + (RB)) & OxFFFFFFFFFFFFFFFO
MEMEA, 16) - QRS || QRS!

Let the effective address (EA) be the sum (RA|0)+(RB).

Vector elements 0 and 1 of register QRS are stored into
the 16 bytes in storage addressed by the
16-byte-aligned EA.

If the X bit is set, and the address is not aligned on a
16-byte boundary, an exception is raised.

Special Registers Altered:
None

18

QPX Architecture

Quad-Vector STore Floating-point
Complex Single indeXed and Indicate
X-form

Quad-Vector STore Floating-point
Complex Double indeXed and Indicate
X-form

gvstfcsxi QRS,RARB (X=0) gvstfcdxi QRS,RARB (X=0)

gvstfcsxia QRS,RA,RB (X=1) gvstfcdxia QRS,RA,RB (X=1)
31 QRS RA RB 133 X 31 QRS RA RB 197 X

0 6 11 16 21 31 0 6 11 16 21 31

if RAR=0thenb - 0

el se b - (RA

EA - (b + (RB)) & 0xFFFFFFFFFFFFFFF8
MEMEA, 8) « SINALE(QRSY) || SINGLE(QRSY

if (SNEE = 1) then

if (isNaN (QRSY) OR

i sNaN (QRSH)) then
ESRIAP| - 1

if (SIEE- 1) then
f (isinf (QRY) OR
isinf (QRSY) then
ESRAP] - 1

Let the effective address (EA) be the sum (RA|0)+(RB).

Vector elements 0 and 1 of register QRS are converted
to single-precision format and stored into the 8 bytes in
storage addressed by the 8-byte-aligned EA.

If any vector element being stored is a NaN (or Infinity),
and the corresponding Store NaN (or Infinity) Excep-
tion is enabled, then the Auxiliary Processor bit of the
Exception Syndrome Register (ESR[AP]) is set.

If the X bit is set, and the address is not aligned on an
8-byte boundary, an exception is raised.

Special Registers Altered:
ESR[AP]

if RA=0thenb -0
el se b - (RA

< (b + (RB)) & OXFFFFFFFFFFFFFFFO
MEMEA, 16) - QRS || QRS!

if (SNEE = 1) then

if (isNaN (QRSY) OR

i sSNaN (QRSY)) then
ESRAP - 1

if (SIEE- 1) then
f (isinf (QRY) OR
isinf (QRSY) then

ESR AP - 1

Let the effective address (EA) be the sum (RA|0)+(RB).

Vector elements 0 and 1 of register QRS are stored into
the 16 bytes in storage addressed by the
16-byte-aligned EA.

If any vector element being stored is a NaN (or Infinity),
and the corresponding Store NaN (or Infinity) Excep-
tion is enabled, then the Auxiliary Processor bit of the
Exception Syndrome Register (ESR[AP]) is set.

If the X bit is set, and the address is not aligned on a
16-byte boundary, an exception is raised.

Special Registers Altered:
ESR[AP]

19

QPX Architecture

Quad-Vector STore Floating-point
Complex Single with Update indeXed
X-form

Quad-Vector STore Floating-point
Complex Double with Update indeXed
X-form

gvstfcsux QRS,RA,RB (X=0) gvstfcdux QRS,RA,RB (X=0)

gvstfcsuxa QRS,RA,RB (X=1) gvstfcduxa QRS,RA,RB (X=1)
31 QRS RA RB 167 X 31 QRS RA RB 231 X

0 6 11 16 21 31 0 6 11 16 21 31

EA - ((RA) + (RB)) & OXFFFFFFFFFFFFFFF8
MEMEA, 8) - SINGLE(QRS’) || SINGLE(QRS')
RA - EA

Let the effective address (EA) be the sum (RA)+(RB).

Vector elements 0 and 1 of register QRS are converted
to single-precision format and stored into the 8 bytes in
storage addressed by the 8-byte-aligned EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

If the X bit is set, and the address is not aligned on an
8-byte boundary, an exception is raised.

Special Registers Altered:
None

EA - ((RA) + (RB)) & OXFFFFFFFFFFFFFFFO

MEMEA, 16) - QRS” || QRS!
RA - EA

Let the effective address (EA) be the sum (RA)+(RB).

Vector elements 0 and 1 of register QRS are stored into
the 16 bytes in storage addressed by the
16-byte-aligned EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

If the X bit is set, and the address is not aligned on a
16-byte boundary, an exception is raised.

Special Registers Altered:
None

20

QPX Architecture

Quad-Vector STore Floating-point
Complex Single with Update indeXed and

Quad-Vector STore Floating-point
Complex Double with Update indeXed and

Indicate X-form Indicate X-form
gvstfcsuxi QRS,RA,RB (X=0) gvstfcduxi QRS,RA,RB (X=0)
gvstfcsuxia QRS,RA,RB (X=1) gvstfcduxia QRS,RA,RB (X=1)
31 QRS RA RB 165 X 31 QRS RA RB 229 X
0 6 11 16 21 31 0 6 11 16 21 31

EA - ((RA) + (RB)) & OXFFFFFFFFFFFFFFF8
MEMEA, 8) -~ SINGLE(QRS?) || SINGLE(QRS!)
RA - EA

if (SNEE = 1) then

if (isNaN (QRSY) OR

i sNaN (QRS)) then
ESRIAP] - 1

t

1

if (SIEE = 1) h

if (islnf (Q:ZS)
i sl nf (C_RS))

ESR] AP] Fl

Let the effective address (EA) be the sum (RA)+(RB).

Vector elements 0 and 1 of register QRS are converted
to single-precision format and stored into the 8 bytes in
storage addressed by the 8-byte-aligned EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

If any vector element being stored is a NaN (or Infinity),
and the corresponding Store NaN (or Infinity) Excep-
tion is enabled, then the Auxiliary Processor bit of the
Exception Syndrome Register (ESR[AP]) is set.

If the X bit is set, and the address is not aligned on an
8-byte boundary, an exception is raised.

Special Registers Altered:
ESR[AP]

EA - ((RA) + (RB)) & OXFFFFFFFFFFFFFFFO

MEMEA 16) - QRS’ || QRS
RA ~ EA
if (SNEE = 1) th
if (isNaN(QRS)
isNaN(Q?S)) then
ESRIAP] - 1
if (SIEE = 1) the
if (islnf (QRS)
i sl nf (QQS))
ESRIAP] - 1

Let the effective address (EA) be the sum (RA)+(RB).

Vector elements 0 and 1 of register QRS are stored into
the 16 bytes in storage addressed by the
16-byte-aligned EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

If any vector element being stored is a NaN (or Infinity),
and the corresponding Store NaN (or Infinity) Excep-
tion is enabled, then the Auxiliary Processor bit of the
Exception Syndrome Register (ESR[AP]) is set.

If the X bit is set, and the address is not aligned on a
16-byte boundary, an exception is raised.

Special Registers Altered:
ESR[AP]

21

QPX Architecture

Quad-Vector STore Floating-point as

Integer Word indeXed X-form
gvstfiwx QRS,RA,RB (X=0)
gvstfiwxa QRS,RA,RB (X=1)
31 QRS | RA RB 967 X
0 6 11 16 21 31

if RAR=0thenb « 0

el se b - (RA

EA . (b + (RB)) & OXFFFFFFFFFFFFFFFO

MEMEA, 16) - @5232:63 [l @5;32:63 |
RS32:63 || RS’32: 63

Let the effective address (EA) be the sum (RA|0)+(RB).

The least significant 32 bits of each vector element of
register QRS are stored into the 16 bytes in storage
addressed by the 16-byte-aligned EA.

If the contents of register QRS were produced, either
directly or indirectly, by a Load Floating-Point Single
instruction, a single-precision Arithmetic instruction, or
frsp, then the value stored is undefined. (The contents
of register QRS are produced directly by such an
instruction if QRS is the target register for the instruc-
tion. The contents of register QRS are produced indi-
rectly by such an instruction if QRS is the final target
register of a sequence of one or more Floating-Point
Move instructions, with the input to the sequence hav-
ing been produced directly by such an instruction.)

If the X bit is set, and the address is not aligned on a
16-byte boundary, an exception is raised.

Special Registers Altered:
None

22

QPX Architecture

4.3 Quad-Vector Floating-Point Move Instructions

Quad-Vector Floating-point Move Register
X-form

Quad-Vector Floating-point CoPy SiGN
X-form

gvfmr QRT,QRB gvfcpsgn QRT,QRA,QRB

4 QRT | /1 | QRB 72] 4 ORT | QRA | ORB 8 /
0 6 11 16 21 31 0 6 11 16 21 31
For each vector element, the contents of register QRB ®RTy - QRA
are placed into register QRT. RT3 - RByga

. . _ 64 - QRAgy
Special Registers Altered: RTes: 197~ RBgs: 197

None RTpg « RhAgg

_ _ QRT129: 101 = PBigg: 191

Quad-Vector Floating-point NEGate QR - RAjgp

X-form

gvfneg QRT,QRB

4 QRT | /I | QRB 40 /
0 6 11 16 21 31

For each vector element, the contents of register QRB,
with bit 0 inverted, are placed into register QRT.

Special Registers Altered:
None

Quad-Vector Floating-point ABSolute

value X-form
gvfabs QRT,QRB

4 ORT 17l QRB 264 /
0 6 11 16 21 31

For each vector element, the contents of register QRB,
with bit O set to zero, are placed into register QRT.

Special Registers Altered:
None

Quad-Vector Floating-point Negative

ABSolute value X-form
gvfnabs QRT,QRB

4 ORT 17l QRB 136 /
0 6 11 16 21 31

For each vector element, the contents of register QRB,
with bit O set to one, are placed into register QRT.

Special Registers Altered:
None

RT193: 255 « QRB193: 255

For each vector element, the contents of register QRB,
with bit O set to the value of bit O of register QRA, are
placed into register QRT.

Special Registers Altered:
None

23

QPX Architecture

4.4 Quad-Vector Floating-Point Arithmetic Instructions

4.4.1 Quad-Vector Floating-Point Elementary Arithmetic Instructions

Quad-Vector Floating-point ADD [Single]

Quad-Vector Floating-point SUBtract

A-form [Single] A-form
qvfadd QRT,QRA,QRB qvfsub QRT,QRA,QRB

4 QRT [QRA [QRB | /I 21 [/ 4 QRT [QRA [QRB [/I 20 [/
0 6 11 16 21 26 31 0 6 11 16 21 26 31
gvfadds QRT,QRA,QRB gvfsubs QRT,QRA,QRB

0 QRT [QRA | QRB | 1/ 21 |/
0 6 11 16 21 26 31

0 ORT | QRA | QRB | 7l 20 |/

0 6 11 16 21 26 31

For each vector element, the floating-point operand in
register QRA is added to the floating-point operand in
register QRB.

For each vector element, the resultant significand may
require normalization or denormalization, depending
on the values of the two most significant bits of the
resultant significand and on the value of the resultant
exponent. The result is rounded to the target precision
under control of the Floating-Point Rounding Control
field (RN) of the FPSCR, and placed into register QRT.

Floating-point addition is based on exponent compari-
son and addition of the two significands. The exponents
of the two operands are compared, and the significand
accompanying the smaller exponent is shifted right,
with its exponent increased by one for each bit shifted,
until the two exponents are equal. The two significands
are then added or subtracted as appropriate, depend-
ing on the signs of the operands, to form an intermedi-
ate sum. All 53 bits of the significand as well as all
three guard bits (G, R, and X) enter into the computa-
tion.

If a carry occurs, the sum’s significand is shifted right
one bit position and the exponent is increased by one.

Special Registers Altered:
None

For each vector element, the floating-point operand in
register QRB is subtracted from the floating-point oper-
and in register QRA.

For each vector element, the resultant significand may
require normalization or denormalization, depending
on the values of the two most significant bits of the
resultant significand and on the value of the resultant
exponent. The result is rounded to the target precision
under control of the Floating-Point Rounding Control
field (RN) of the FPSCR, and placed into register QRT.

The execution of the Floating Subtract instruction is
identical to that of Floating Add, except that the con-
tents of QRB participate in the operation with the sign
bit (bit 0) inverted.

Special Registers Altered:
None

24

QPX Architecture

Quad-Vector Floating-point MULtiply
[Single] A-form

gvfmul QRT,QRA,QRC

Quad-Vector Floating-point Reciprocal
Estimate [Single] A-form

gvfre QRT,QRB

4 QRT [QRA | /Il [QRC | 25 |/
0 6 11 16 21 26 31

4 QRT | /Il | QRB | /Il 24 |1/

0 6 11 16 21 26 31

gvfmuls QRT,QRA,QRC

gvfres QRT,QRB

0 QRT [QRA | /Il [QRC | 25 |/
0 6 11 16 21 26 31

0 QRT | /I | QRB | /Il 24 |1/

0 6 11 16 21 26 31

For each vector element, the floating-point operand in
register QRA is multiplied by the floating-point operand
in register QRC.

For each vector element, the resultant significand may
require normalization or denormalization, depending
on the values of the two most significant bits of the
resultant significand and on the value of the resultant
exponent. The result is rounded to the target precision
under control of the Floating-Point Rounding Control
field (RN) of the FPSCR, and placed into register QRT.

Floating-point multiplication is based on exponent addi-
tion and multiplication of the significands.

Special Registers Altered:
None

For each vector element, an estimate of the reciprocal
of the floating-point operand in register QRB is placed
into register QRT. The estimate placed into register
QRT is correct to a precision of one part in 16384 of the
reciprocal of (QRB), i.e.,

estimate —1/x < 1

ABS(1/x)< 16384

where X is the initial value in QRB.

Operation with various special values of the operand is
summarized below.

Operand Result
- -0
-0 -0
+0 +00
+00 +0
SNaN QNaN
QNaN QNaN

The results of executing this instruction may vary
between implementations.

Special Registers Altered:
None

25

QPX Architecture

Quad-Vector Floating-point Reciprocal
SQuare RooT Estimate [Single] A-form

gvfrsqrte QRT,QRB

4 QRT | /l | QRB [/Il 26 |/
0 6 11 16 21 26 31

gvfrsgrtes QRT,QRB

0 QRT | /I | QRB [/I 26 |/
0 6 11 16 21 26 31

For each vector element, an estimate of the reciprocal
of the square root of the floating-point operand in regis-
ter QRB is placed into register QRT. The estimate
placed into register QRT is correct to a precision of one
part in 16384 of the reciprocal of the square root of
(QRB), i.e.,

estimate—1/(A/)_())< 1

BS
(1/(J%) 16384

where X is the initial value in QRB.

Operation with various special values of the operand is
summarized below.

Operand Result

- 00 QNaN
<0 QNaN
-0 -0
+0 +00
+00 +0
SNaN QNaN
QNaN QNaN

The results of executing this instruction may vary
between implementations.

Special Registers Altered:
None

26

QPX Architecture

4.4.2 Quad-Vector Floating-Point Multiply-Add Instructions

Quad-Vector Floating-point Multiply-ADD

Quad-Vector Floating-point

[Single] A-form Multiply-SUBtract [Single] A-form
gvfmadd QRT,QRA,QRC,QRB gvfmsub QRT,QRA,QRC,QRB

4 ORT [ORA[ORB | QRC [29 [/ 4 ORT [ORA [QRB | QRC | 28 [/
0 6 11 16 21 26 31 0 6 11 16 21 26 31
gvfmadds QRT,QRA,QRC,QRB gvfmsubs QRT,QRA,QRC,QRB

0 QRT | QRA | QRB | QRC 29 /
0 6 11 16 21 26 31

0 QRT | QRA | QRB | QRC 28 /
0 6 11 16 21 26 31

The operations
QRTY - [(QRAY)X(QRCY)] + (QRB?)
QRT! - [(QRAYX(QRCYH)] + (QRBY)
QRT? - [(QRA?)x(QRC?)] + (QRB?)
QRT? - [(QRA®)x(QRC)] + (QRB?)
are performed.

For each vector element, the floating-point operand in
register QRA is multiplied by the floating-point operand
in register QRC. The floating-point operand in register
QRB is added to this intermediate result.

For each vector element, the resultant significand may
require normalization or denormalization, depending
on the values of the two most significant bits of the
resultant significand and on the value of the resultant
exponent. The result is rounded to the target precision
under control of the Floating-Point Rounding Control
field (RN) of the FPSCR, and placed into register QRT.

Special Registers Altered:
None

The operations
QRTY - [(QRAY)X(QRCY)] - (QRB?)
QRT! - [(QRAYX(QRCY)] - (QRBY)
QRT? - [(QRA?)X(QRC?)] - (QRB?)
QRT? - [(QRA®)X(QRC?)] - (QRB?)
are performed.

For each vector element, the floating-point operand in
register QRA is multiplied by the floating-point operand
in register QRC. The floating-point operand in register
QRB is subtracted from this intermediate result.

For each vector element, the resultant significand may
require normalization or denormalization, depending
on the values of the two most significant bits of the
resultant significand and on the value of the resultant
exponent. The result is rounded to the target precision
under control of the Floating-Point Rounding Control
field (RN) of the FPSCR, and placed into register QRT.

Special Registers Altered:
None

27

QPX Architecture

Quad-Vector Floating-point Negative
Multiply-ADD [Single] A-form

gvfnmadd QRT,QRA,QRC,QRB

Quad-Vector Floating-point Negative
Multiply-SUBtract [Single] A-form

gvfnmsub QRT,QRA,QRC,QRB

4 QRT [QRA [QRB [QRC | 31 [/
0 6 11 16 21 26 31

4 QRT | QRA | QRB | QRC | 30 |/

0 6 11 16 21 26 31

gvfnmadds QRT,QRA,QRC,QRB

gvfnmsubs QRT,QRA,QRC,QRB

0 QRT [QRA [QRB [QRC | 31 [/
0 6 11 16 21 26 31

0 QRT | QRA | QRB | QRC | 30 |/

0 6 11 16 21 26 31

The operations
QRT? - - ([(QRA%)X(QRCY)] + (QRB?))
QRT! . - ([(QRALX(QRCY)] + (QRBY))
QRT? . - ([(QRA%)X(QRC?)] + (QRB?))
QRT3 . - ([(QRA%)X(QRC?)] + (QRB?))

are performed.

For each vector element, the floating-point operand in
register QRA is multiplied by the floating-point operand
in register QRC. The floating-point operand in register
QRB is added to this intermediate result.

For each vector element, the resultant significand may
require normalization or denormalization, depending
on the values of the two most significant bits of the
resultant significand and on the value of the resultant
exponent. The result is rounded to the target precision
under control of the Floating-Point Rounding Control
field (RN) of the FPSCR, then negated and placed into
register QRT.

This instruction produces the same result as would be
obtained by using the gvfmadd instruction and then
negating the result, with the following exceptions.

n QNaNs propagate with no effect on their “sign” bit.

n QNaNs that are generated as the result of a dis-
abled Invalid Operation Exception have a “sign” bit
of 0.

n SNaNs that are converted to QNaNs as the result
of a disabled Invalid Operation Exception retain the
“sign” bit of the SNaN.

Special Registers Altered:
None

The operations
QRTY - - ([(QRA%)X(QRCY)] - (QRBY))
QRTL . - ([(QRALX(QRCYH] - (QRBY))
QRT? . - ([(QRA%)X(QRC?)] - (QRB?))
QRT3 - - ([(QRA%)X(QRC?)] - (QRB3))

are performed.

For each vector element, the floating-point operand in
register QRA is multiplied by the floating-point operand
in register QRC. The floating-point operand in register
QRSB is subtracted from this intermediate result.

For each vector element, the resultant significand may
require normalization or denormalization, depending
on the values of the two most significant bits of the
resultant significand and on the value of the resultant
exponent. The result is rounded to the target precision
under control of the Floating-Point Rounding Control
field (RN) of the FPSCR, then negated and placed into
register QRT.

This instruction produces the same result as would be
obtained by using the gvfmsub instruction and then
negating the result, with the following exceptions.

n QNaNs propagate with no effect on their “sign” bit.

n QNaNs that are generated as the result of a dis-
abled Invalid Operation Exception have a “sign” bit
of 0.

n SNaNs that are converted to QNaNs as the result
of a disabled Invalid Operation Exception retain the
“sign” bit of the SNaN.

Special Registers Altered:
None

28

QPX Architecture

Quad-Vector Floating-point cross (X)
Multiply-ADD [Single] A-form

gvfxmadd QRT,QRA,QRC,QRB

4 QRT | QRA[QRB [QRC | 9 [/
0 6 11 16 21 26 31

gvfxmadds QRT,QRA,QRC,QRB

0 QRT [QRA[QRB [QRC | 9 [/
0 6 11 16 21 26 31

The operations
QRT? . [(QRA%X(QRCY)] + (QRB?)
QRT! - [(QRA%X(QRCY)] + (QRBY)
QRT? _ [(QRA?)X(QRC?)] + (QRB?)
QRT? _ [(QRA%)X(QRC3)] + (QRB?)
are performed.

For each vector element, the resultant significand may
require normalization or denormalization, depending
on the values of the two most significant bits of the
resultant significand and on the value of the resultant
exponent. The result is rounded to the target precision
under control of the Floating-Point Rounding Control
field (RN) of the FPSCR, and placed into register QRT.

Special Registers Altered:
None

Programming Note

This instruction is typically used in cross-product
multiplication, and in conjunction with qvfxxnp-
madd.

Quad-Vector Floating-point double-cross
complex (XXNP) Multiply-ADD [Single]
A-form

gvixxnpmadd QRT,QRA,QRC,QRB

4 QRT [QRA | QRB | QRC | 11 |/
0 6 11 16 21 26 31

gvixxnpmadds QRT,QRA,QRC,QRB

0 QRT [QRA | QRB | QRC | 11 |/
0 6 11 16 21 26 31

The operations
QRTY - - ([(QRAMX(QRCYH)] - (QRBY))
QRT: . [(QRA%)X(QRCY)] +(QRBY)
QRT? _ - ([(QRA%X(QRC?)] - (QRB?))
QRT3 . [(QRA?)X(QRC?)] +(QRB?)
are performed.

For each vector element, the resultant significand may
require normalization or denormalization, depending
on the values of the two most significant bits of the
resultant significand and on the value of the resultant
exponent. The result is rounded to the target precision
under control of the Floating-Point Rounding Control
field (RN) of the FPSCR. For vector elements 0 and 2,
the rounded result is negated and placed into register
QRT. For vector elements 1 and 3, the rounded result is
placed into register QRT.

Special Registers Altered:
None

— Programming Note

This instruction is typically used in cross-product
multiplication of complex numbers, in conjunction
with gvfxmul or gvfxmadd.

Mo#Noi Ny Py+Qoi 2+Qui

Ma#Ni 5+Ngi Py+Qyi 3+Qgi

Consecutive Memory Locations: Mo No My Ny M, N, Mg N
Separate from above, but consecutive in memory: ~ Po Qo P; Qi P, Q; Py Qg
A 2x2 matrix MN times a 2x2 matrix PQ produces a resultant 2x2 matrix R

Entry RowlColumn1 of the Resultant Matrix R

= (Mo*No)(Po+Qoi) + (M1 +N1i)(P1+Qsi)
= MoPo*+MoQqi+NoPoi-NgQo + M;P1+M;Qi+N;Pyi-N;Q;

Element? Element! Element? Element®

| QPR20 Mo No My Ny

Element®

Q1

Element! Element?

Qo

Element?

I I I I
I I I I
I I I I
[opr2s | | | |

Po P1

quixmul QPR22, QPR20, QPR21 (notice A=QPR20 and C=QPR21) yields:

| Element® | Element! | Element? | Element® |

[opr22 [mPo [M] we [war |

qvfxxnpmadd QPR23, QPR21, QPR20, QPR22 (notice A=QPR21 and C=QPR20) yields:

[emen® [Eemen [Elemen® | Elemen?
[opr23 [MoPo-NoQo | MoQorNoPo | MiPi-NiQr | MiQutNPy |

Now need to add Element®+Element? and Element!+Element®

29

QPX Architecture

Quad-Vector Floating-point double-cross
conjugate (XXCPN) Multiply-ADD [Single]
A-form

gvixxcpnmadd QRT,QRA,QRC,QRB

4 QRT [QRA [QRB [QRC | 3 [/
0 6 11 16 21 26 31

gvixxcpnmadds QRT,QRA,QRC,QRB

0 ORT | QRA [QRB | QRC | 3 [/
0 6 11 16 21 26 31

The operations
QRT? - [(QRAYX(QRCH] + (QRBO)
QRT! - - ([(QRAY)X(QRCYH] - (QRBY))
QRT?2 - [(QRA®)X(QRC3)] + (QRB?)
QRT3 — - ([(QRA%)X(QRC3)] - (QRB?))

are performed.

For each vector element, the resultant significand may
require normalization or denormalization, depending
on the values of the two most significant bits of the
resultant significand and on the value of the resultant
exponent. The result is rounded to the target precision
under control of the Floating-Point Rounding Control
field (RN) of the FPSCR. For vector elements 0 and 2,
the rounded result is placed into register QRT. For vec-
tor elements 1 and 3, the rounded result is negated and
placed into register QRT.

Special Registers Altered:
None

Quad-Vector Floating-point double-cross
(XX) Multiply-ADD [Single] A-form

gvixxmadd QRT,QRA,QRC,QRB

4 QRT | QRA | QRB | QRC 1 /

0 6 11 16 21 26 31

gvixxmadds QRT,QRA,QRC,QRB

0 QRT | QRA | QRB | QRC 1 /

0 6 11 16 21 26 31

The operations
QRTY — [(QRALX(QRCY)] + (QRB?)
QRT! — [(QRA%)X(QRCY)] + (QRBY)
QRT? _ [(QRA3)X(QRC3)] + (QRB?)
QRT3 _ [(QRA?%)X(QRC3)] + (QRB?)
are performed.

For each vector element, the resultant significand may
require normalization or denormalization, depending
on the values of the two most significant bits of the
resultant significand and on the value of the resultant
exponent. The result is rounded to the target precision
under control of the Floating-Point Rounding Control
field (RN) of the FPSCR, and placed into register QRT.

Special Registers Altered:
None

30

QPX Architecture

Quad-Vector Floating-point cross (X)

MULtiply [Single] A-form
gvfxmul QRT,QRA,QRC

4 QRT | QRA 1 QRC 17 |/
0 6 11 16 21 26 31
gvfxmuls QRT,QRA,QRC

0 QRT | QRA 1 QRC 17 |/
0 6 11 16 21 26 31

The operations

QRTY . (QRA?) x (QRC?)
QRT! . (QRA?) x (QRCY)
QRT? . (QRA?) x (QRC?)
QRT3 - (QRA?) x (QRC®)

are performed.

For each vector element, the resultant significand may
require normalization or denormalization, depending
on the values of the two most significant bits of the
resultant significand and on the value of the resultant
exponent. The result is rounded to the target precision
under control of the Floating-Point Rounding Control
field (RN) of the FPSCR, and placed into register QRT.

Special Registers Altered:

None

31

QPX Architecture

4.5 Quad-Vector Floating-Point Rounding and Conversion Instruc-
tions

4.5.1 Quad-Vector Floating-Point Rounding Instruction

Quad-Vector Floating-point Round to

Single-Precision X-form
qvfrsp QRT,QRB

4 QRT i QRB 12 /
(0] 6 11 16 21 31

For each vector element, the floating-point operand in
register QRB is rounded to single-precision under con-
trol of the Floating-Point Rounding Control field (RN) of
the FPSCR, and placed into register QRT.

Special Registers Altered:
None

32

QPX Architecture

4.5.2 Quad-Vector Floating-Point Convert To/From Integer Instructions

Quad-Vector Floating-point Convert To

Integer Doubleword X-form
gvfctid QRT,QRB

4 QRT T QRB 814 /
0 6 11 16 21 31

Quad-Vector Floating-point Convert To
Integer Doubleword with round toward

For each vector element, the floating-point operand in
register QRB is rounded to a floating-point integer
under control of the Floating-Point Rounding Control
field (RN) of the FPSCR.

For each vector element, if the rounded floating-point
integer is greater than 2%3- 1, then QRT is set to
Ox7FFF_FFFF_FFFF_FFFF.

For each vector element, if the rounded floating-point
integer is less than -25% then QRT is set to
0x8000_0000_0000_0000.

Otherwise, for each vector element, QRT is set to the
value of the rounded floating-point integer converted to
64-bit signed-integer format.

Special Registers Altered:
None

Quad-Vector Floating-point Convert To

Zero X-form
gvfctidz QRT,QRB

4 ORT 7 QRB 815 /
0 6 11 16 21 31

Integer Doubleword Unsigned X-form
gvfctidu QRT,QRB

4 QRT [/Il | QRB 942 /
0 6 11 16 21 31

For each vector element, the floating-point operand in
register QRB is rounded to a floating-point integer
using the rounding mode Round toward Zero.

For each vector element, if the rounded floating-point
integer is greater than 253 - 1, then QRT is set to
OX7FFF_FFFF_FFFF_FFFF.

For each vector element, if the rounded floating-point
integer is less than -253 then QRT is set to
0x8000_0000_0000_0000.

Otherwise, for each vector element, QRT is set to the
value of the rounded floating-point integer converted to
64-bit signed-integer format.

Special Registers Altered:
None

Quad-Vector Floating-point Convert To
Integer Doubleword Unsigned with round

For each vector element, the floating-point operand in
register QRB is rounded to a floating-point integer
under control of the Floating-Point Rounding Control
field (RN) of the FPSCR.

For each vector element, if the rounded floating-point
integer is greater than 2%4- 1, then QRT is set to
OXFFFF_FFFF_FFFF_FFFF,

For each vector element, if the rounded floating-point
integer is less than 0.0, then QRT is set to
0x0000_0000_0000_0000.

Otherwise, for each vector element, QRT is set to the
value of the rounded floating-point integer converted to
64-bit unsigned-integer format.

Special Registers Altered:
None

toward Zero X-form
gvfctiduz QRT,QRB

4 ORT 7 ORB 943 /
0 6 11 16 21 31

For each vector element, the floating-point operand in
register QRB is rounded to a floating-point integer
using the rounding mode Round toward Zero.

For each vector element, if the rounded floating-point
integer is greater than 254- 1, then QRT is set to
OXFFFF_FFFF_FFFF_FFFF.

For each vector element, if the rounded floating-point
integer is less than 0.0, then QRT is set to
0x0000_0000_0000_0000.

Otherwise, for each vector element, QRT is set to the
value of the rounded floating-point integer converted to
64-bit unsigned-integer format.

Special Registers Altered:
None

33

QPX Architecture

Quad-Vector Floating-point Convert To

Quad-Vector Floating-point Convert To

Integer Word X-form Integer Word Unsigned X-form
gvfctiw QRT,QRB gvfctiwu QRT,QRB

4 QRT 1T QRB 14 / 4 QRT i QRB 142 /
0 6 11 16 21 31 0 6 11 16 21 31

For each vector element, the floating-point operand in
register QRB is rounded to a floating-point integer
under control of the Floating-Point Rounding Control
field (RN) of the FPSCR.

For each vector element, if the rounded floating-point
integer is greater than 231 - 1, then QRT3 is set to
Ox7FFF_FFFF.

For each vector element, if the rounded floating-point
integer is less than - 23!, then QRT5,43 is set to
0x8000_0000.

Otherwise, for each vector element, QRT3,.43 iS set to
the value of the rounded floating-point integer con-
verted to 32-bit signed-integer format.

QRT.3; of each vector element is undefined.

Special Registers Altered:
None

Implementation Note

In the QPU of BGQ, for each vector element,
QRTO:31 ~ 0x7FF80000

For each vector element, the floating-point operand in
register QRB is rounded to a floating-point integer
under control of the Floating-Point Rounding Control
field (RN) of the FPSCR.

For each vector element, if the rounded floating-point
integer is greater than 232 - 1, then QRT3,.63 is set to
OxFFFF_FFFF.

For each vector element, if the rounded floating-point
integer is less than 0.0, then QRT3,.43 iS set to
0x0000_0000.

Otherwise, for each vector element, QRT35.43 iS set to
the value of the rounded floating-point integer con-
verted to 32-bit unsigned-integer format.

QRTy.3; of each vector element is undefined.

Special Registers Altered:
None

Implementation Note

In the QPU of BGQ, for each vector element,
QRTO:31 ~ Ox7FF80000

34

QPX Architecture

Quad-Vector Floating-point Convert To
Integer Word with round toward Zero

Quad-Vector Floating-point Convert To
Integer Word Unsigned with round toward

X-form Zero X-form
gvfctiwz QRT,QRB gvfctiwuz QRT,QRB

4 QRT i QRB 15 / 4 QRT 1" QRB 143 /
0 6 11 16 21 31 0 6 11 16 21 31

For each vector element, the floating-point operand in
register QRB is rounded to a floating-point integer
using the rounding mode Round toward Zero.

For each vector element, if the rounded floating-point
integer is greater than 231 - 1, then QRT3 is set to
Ox7FFF_FFFF,

For each vector element, if the rounded floating-point
integer is less than - 23!, then QRT5,45 is set to
0x8000_0000.

Otherwise, for each vector element, QRT3,.43 iS set to
the value of the rounded floating-point integer con-
verted to 32-bit signed-integer format.

QRTy.3; of each vector element is undefined.

Special Registers Altered:
None

Implementation Note

In the QPU of BGQ, for each vector element,
QRTq.31 « OX7FF80000

For each vector element, the floating-point operand in
register QRB is rounded to a floating-point integer
using the rounding mode Round toward Zero.

For each vector element, if the rounded floating-point
integer is greater than 232 - 1, then QRT,.63 is set to
OxFFFF_FFFF.

For each vector element, if the rounded floating-point
integer is less than 0.0, then QRT3,.43 iS set to
0x0000_0000.

Otherwise, for each vector element, QRT35.43 iS set to
the value of the rounded floating-point integer con-
verted to 32-bit unsigned-integer format.

QRTy.3; of each vector element is undefined.

Special Registers Altered:
None

Implementation Note

In the QPU of BGQ, for each vector element,
QRTp.31 « 0X7FF80000

35

QPX Architecture

Quad-Vector Floating-point Convert From

Quad-Vector Floating-point Convert From

Integer Doubleword X-form Integer Doubleword Single X-form
gvfcfid QRT,QRB gvfcfids QRT,QRB

4 QRT 1T QRB 846 / 0 QRT i QRB 846 /
0 6 11 16 21 31 0 6 11 16 21 31

For each vector element, the 64-bit signed fixed-point
operand in register QRB is converted to an infinitely
precise floating-point integer. The result of the conver-
sion is rounded to double-precision under control of the
Floating-Point Rounding Control field (RN) of the
FPSCR, and placed into register QRT.

Special Registers Altered:
None

Quad-Vector Floating-point Convert From

Integer Doubleword Unsigned X-form
gvfcfidu QRT,QRB

4 QRT 1T QRB 974 /
(o] 6 11 16 21 31

For each vector element, the 64-bit unsigned
fixed-point operand in register QRB is converted to an
infinitely precise floating-point integer. The result of the
conversion is rounded to double-precision under con-
trol of the Floating-Point Rounding Control field (RN) of
the FPSCR, and placed into register QRT.

Special Registers Altered:
None

For each vector element, the 64-bit signed fixed-point
operand in register QRB is converted to an infinitely
precise floating-point integer. The result of the conver-
sion is rounded to single-precision under control of the
Floating-Point Rounding Control field (RN) of the
FPSCR, and placed into register QRT.

Special Registers Altered:
None

Quad-Vector Floating-point Convert From
Integer Doubleword Unsigned Single
X-form

gvfcfidus QRT,QRB

0 QRT | /I | QRB 974 /
0 6 11 16 21 31

For each vector element, the 64-bit unsigned
fixed-point operand in register QRB is converted to an
infinitely precise floating-point integer. The result of the
conversion is rounded to single-precision under control
of the Floating-Point Rounding Control field (RN) of the
FPSCR, and placed into register QRT.

Special Registers Altered:
None

36

QPX Architecture

4.5.3 Quad-Vector Floating-Point Round to Integer Instructions

Quad-Vector Floating-point Round to

Quad-Vector Floating-point Round to

Integer Nearest X-form Integer toward Zero X-form
gvfrin QRT,QRB qvfriz QRT,QRB

4 QRT [/Il | QRB 392 / 4 QRT | /Il | QRB 424 /
0 6 11 16 21 31 0 6 11 16 21 31

For each vector element, the floating-point operand in
register QRB is rounded to a floating-point integer as
follows, with the result placed into register QRT. If the
sign of the operand is positive, (QRB) + 0.5 is truncated
to a floating-point integer, otherwise (QRB) - 0.5 is trun-
cated to a floating-point integer.

Special Registers Altered:
None

For each vector element, the floating-point operand in
register QRB is rounded to a floating-point integer
using the rounding mode Round toward Zero, and the
result is placed into register QRT.

Special Registers Altered:
None

Quad-Vector Floating-point Round to

_ _ Integer Minus X-form
Quad-Vector Floating-point Round to
Integer Plus X-form qvfrim QRT,QRB
qvfrip QRT,QRB 4 QRT [/Il | QRB 488 /
0 6 11 16 21 31
4 QRT [/Il | QRB 456 /
o 6 11 16 21 31 For each vector element, the floating-point operand in

For each vector element, the floating-point operand in
register QRB is rounded to a floating-point integer
using the rounding mode Round toward +Infinity, and
the result is placed into register QRT.

Special Registers Altered:
None

register QRB is rounded to a floating-point integer
using the rounding mode Round toward -Infinity, and
the result is placed into register QRT.

Special Registers Altered:
None

37

QPX Architecture

4.6 Quad-Vector Floating-Point Compare Instructions

Quad-Vector Floating-point TeST for NAN

Quad-Vector Floating-point CoMPare

X-form Greater Than X-form
gvftstnan QRT,QRA,QRB gvfcmpgt QRT,QRA,QRB

4 QRT | QRA | QRB 64 / 4 QRT | QRA | QRB 32 /
0 6 11 16 21 31 0 6 11 16 21 31

if isNaN(QRAY) OR i sNaN(QRBY)
then QRTC. 0Xx3FFO_0000_0000_0000
el se QRTY. OxBFF0_0000_0000_0000
if i sNaN(QRAL) OR i sNaN(QRBY)
then QRT*. 0x3FFO_0000_0000_0000
el se QRT!. OxBFFO_0000_0000_0000
if isNaN(QRAZ) OR i sNaN(QRB?)
then QRTZ. 0x3FFO_0000_0000_0000
el se QRT2. OxBFF0_0000_0000_0000
if i sNaN(QRA%) OR i sNaN(QRB®)
then QRT3. 0x3FFO_0000_0000_0000
el se QRT®. 0xBFFO_0000_0000_0000

Each vector element is compared for the specified con-
dition, and the result is encoded. The Boolean value
TRUE is encoded as 1.0. The Boolean value of FALSE
is encoded as -1.0.

Special Registers Altered:
None

if (QRY > (QREY)

then QRT. 0x3FF0_0000_0000_0000
_ elselCRToﬁ oﬁsFFo_oooo_oooo_oooo
if (QRAY) > (QRBY)

then QRTL. 0x3FFO_0000_0000_0000
~ else QRTL. 0xBFFO_0000_0000_0000
if (QRAY) > (QRB?)

then QRTZ. 0x3FF0_0000_0000_0000
_ elsesCRTzﬁ oﬁpFFo_oooo_oooo_oooo
if (QRAY) > (QRBY)

then QRT3. 0x3FFO_0000_0000_0000

el se QRT3 O0xBFFO_0000_0000_0000

Each vector element is compared for the specified con-
dition, and the result is encoded. The Boolean value
TRUE is encoded as 1.0. The Boolean value of FALSE
is encoded as -1.0.

When one of the operands is a NaN, the value -1.0
(FALSE) is returned.

Special Registers Altered:
None

38

QPX Architecture

Quad-Vector Floating-point CoMPare

Quad-Vector Floating-point CoMPare

Less Than X-form EQual X-form
gvfcmplt QRT,QRA,QRB gvfcmpeq QRT,QRA,QRB

4 QRT | QRA | QRB 96 / 4 QRT | QRA | QRB 0 /
0 6 11 16 21 31 0 6 11 16 21 31
it () < (QRE) it (RO = ()

t hen (;RTO ~ 0x3FF0_0000_0000_0000

el se QRT0 « 0xBFF0_0000_0000_0000
if (QRAY) < (QRBY)

then QRT® Ox3FFO_0000_0000 0000

el se QRTY . 0xBFFO_0000_0000_0000
if (QRY) < (QRBY)

then QRTZ _ OX3FFO_0000 0000 0000

el se QRT2 . 0XBFFO_0000_0000_0000
it (QRAY) < (QREY)

then QRT® . OX3FF0_0000_0000_0000

el se QRT® . OxBFFO_0000_0000_0000

Each vector element is compared for the specified con-
dition, and the result is encoded. The Boolean value
TRUE is encoded as 1.0. The Boolean value of FALSE
is encoded as -1.0.

When one of the operands is a NaN, the value -1.0
(FALSE) is returned.

Special Registers Altered:
None

then QRT® — 0x3FFO_0000_0000 0000
. el se QQTO ~ 0xBFF0_0000_0000_0000
i (R = (QRBY)

then QRTY . 0x3FFO_0000_0000_0000
_ e|se2cRT1 - Q}BFFO_OOOO_OOOO_OOOO
it (V) = (QRBY)

then QRTZ - 0x3FF0_0000_0000 0000
~else QRT2 .~ O0xBFF0_0000_0000_0000
i () = (QRE’)

then QRT® .~ 0x3FFO_0000_0000_0000

el se QRT® . OxBFFO_0000_0000_0000

Each vector element is compared for the specified con-
dition, and the result is encoded. The Boolean value
TRUE is encoded as 1.0. The Boolean value of FALSE
is encoded as -1.0.

When one of the operands is a NaN, the value -1.0
(FALSE) is returned.

Special Registers Altered:
None

39

QPX Architecture

4.7 Quad Floating-Point Select Instruction

Quad-Vector Floating-point SELectA-form

qufsel QRT,QRA,QRC,QRB

4 QRT [QRA [QRB [QRC | 23 [/
0 6 11 16 21 26 31

if (R =20.0
then RO - (RO
else R0 - (QRR)
if (A =20.0
then QRTY - (
else QRTT o (
if (QRA%) 20.0
then QRTZ - (
else3Q¥T2h(
it (QRA% = 0.0
then QRT® -~ (QRCY)
else RT° - (QRBY)

For each vector element, the floating-point operand in
register QRA is compared to the value zero. If the
operand is greater than or equal to zero, register QRT
is set to the contents of register QRC. If the operand is
less than zero or is a NaN, register QRT is set to the
contents of register QRB. The comparison ignores the
sign of zero (i.e., regards +0 as equal to - 0).

(=}

<

)
)

g 88

N
—

)
B

<

Special Registers Altered:
None

40

QPX Architecture

4.8 Quad-Vector Alignment and Formatting Instructions

Quad-Vector ALIGN Immediate

Quad-Vector Floating-point PERMute

Z23-form A-form

gvaligni QRT,QRA,QRB,VD gvfperm QRT,QRA,QRB,QRC

4 QRT | ORA | QRB [VD 5 / 4 ORT | ORA | ORB | QRC /
0 6 11 16 21 |23 31 0 6 11 16 21 26 31
i f VD = 00 then For each vector element,

QRT - (QRA) if QRCp.1p = 0x400 then
else if VD= 011 then) s 0 case QRCiy: 14

QT (QRA) [(QRA) || (QRA) || (QRBY) QRT < (QRA%) when 000
else if VD=10 then . . QRT - (QRAL) when 001

QRT - (RA) || (RA) || (RB) || (QRBY) QRT - (QRAD) when 010
elseif VD= 11 then QRT « (QRA®) when 011

RT - (RY) || (QREY) || (QRBY || (QRBY) RT - (QRB‘l’) when 100
The contents of registers QRA and QRB are concate- g . Eggzg mgﬂ i%
nated, and a quad-vector is extracted starting at the QT : (QRB3) when 111

vector element specified by field VD. The resulting
quad-vector is placed into register QRT.

Special Registers Altered:
None

el se

QRT « Undefined

The contents of registers QRA and QRB are concate-
nated. A quad-vector is composed from vector ele-
ments extracted from the concatenated registers, as

specified by the contents of register QRC.

Special Registers Altered:

None

41

QPX Architecture

Quad-Vector Element SPLAT Immediate

Quad-Vector Generate Permute Control

Z23-form Immediate Z23-form
gvesplati QRT,QRA,VD gvgpci QRT,GPC

4 QRT [QRA | /I [vwb 37 / 4 QRT GPC 133 /
0 6 11 16 21 (23 31 0 6 11 23 31
if VD = 00 then QRTY .~ 0x400 || GG, 5 || *%0

RT « (R[] (RO [() || (QRAY) QRT! - 0x400 || GPCy 5 || *0
else if VD= 01 then QRTZ .~ 0x400 || GPG; g || %

RT - (QRAY) || (QRAY) || (QRAY || (QrRAY)
else if VD =10 then

RT - (RY) || (R || (®RD) || (RA)
else if VD =11 then

QRT - (QRAY || (RAY) || (QRAY) || (QRAY)

The vector element from register QRA, specified by
field VD, is placed into each vector element of register
QRT.

Special Registers Altered:
None

QRT3 - 0x400 || GPCy 1y || *0

Register QRT is loaded with the 12-bit immediate field
GPC, dispersed across its four elements, to serve as
control for a QVFPERM instruction.

Special Registers Altered:
None

42

QPX Architecture

4.9 Floating-Point Boolean Instruction

Quad-Vector Floating-point boolean
LOGICAL X-form

gvflogical QRT,QRA,QRB,TT

4 QRT [QRA [QRB | TT 4 |17
0 6 11 16 21 25 31

For each vector element,

ifo[(<0.0 OR isNaN(QRA)] AND

[(< 0.0 OR isNan(QRB)] then

if TTy = 1 then QRT « OX3FF0_0000_0000_0000

el se QRT — OxBFFO_0000_0000_0000
AND

BCE

if [(QRA) 2 0.0]
[(QRB) <0.0 OR isNaN(QRB)] then
if TT; = 1 then QRT — Ox3FF0_0000_0000_0000
else QRT ~ OxBFFO_0000_0000_0000
if [(QRA) <0.0 ORisNaN(QRA)] AND
[(QRB) = 0.0] then
if TT, = 1 then QRT ~ 0x3FF0_0000_0000_0000
else QRT OxBFF0_0000_0000_0000
if [(QRA) = 0.0] AND
[(QRB) 20.0] then
if TT3 = 1 then QRT ~ O0x3FF0_0000_0000_0000

el'se QRT ~ OxBFFO_0000_0000_0000

The floating-point operands in registers QRA and QRB
are treated as boolean values of TRUE if greater than
or equal to +/- 0.0, and as FALSE if less than 0.0 or a
NaN. Immediate field TT is used in conjunction with
these values to create a logical operation.

— Programming Note

Some common logical operations can be accessed
via pseudo mnemonics, expressed in the table
below.

Extended Mnemonic Equivalent Function

qvfelr QRT qvflogical QRT,QRT,QRT,0 clear (set as FALSE)
qvfand QRT,QRA,QRB gvflogical QRT,QRA,QRB,1 and

qvfandc QRT,QRA,QRB qvflogical QRT,QRA,QRB,4 and complement B
qvfctfb QRT,QRA qvflogical QRT,QRA,QRA,5 convert to float-boolean A
qvfxor QRT,QRA,QRB qvflogical QRT,QRA,QRB,6 xor

qvfor QRT,QRA,QRB qvflogical QRT,QRA,QRB,7 or

qvfnor QRT,QRA,QRB qgvflogical QRT,QRA,QRB,8 nor

qvfequ QRT,QRA,QRB qvflogical QRT,QRA,QRB,9 Boolean equivalent (XNOR)
qvfnot QRT,QRA qvflogical QRT,QRA,QRA,10 not

qvforc QRT,QRA,QRB qgvflogical QRT,QRA,QRB,13 or complement B

qvfnand QRT,QRA,QRB qvflogical QRT,QRA,QRB,14 nand

qvfset QRT qvflogical QRT,QRT,QRT,15 set (set as TRUE)

43

