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Abstract. In the TaaS model, users have the opportunity to run their
applications by creating virtualized infrastructures, from virtual ma-
chines, networks and storage volumes. However, they are still not able
to optimize these infrastructures to their workloads, in order to receive
guarantees of resource requirements or availability constraints. In this
paper we address the problem of efficiently placing such infrastructures
in large scale data centers, while considering compute and network de-
mands, as well as availability requirements. Unlike previous techniques
that focus on the networking or the compute resources allocation in a
piecemeal fashion, we consider all these factors in one single solution. Our
approach makes the problem tractable, while enabling the load balanc-
ing of resources. We show the effectiveness and efficiency of our approach
with a rich set of workloads over extensive simulations.

Keywords: Network-aware virtual machine placement, Cloud, Perfor-
mance

1 Introduction

In enterprise data centers, infrastructure architects tailor hardware and soft-
ware configuration to optimize for their workloads. To run a production appli-
cation, the administrator provisions physical machines, storage, networks, mid-
dleware, and application code such that the application is resilient to hardware
failures and performance bottlenecks. The Cloud changes the infrastructure pro-
visioning model. A typical TaaS offers virtualized building blocks, such as virtual
machines, storage volumes, and networks, which users of the Cloud connect to-
gether to create virtualized infrastructures for their workloads. Very little control
is given to a user with respect to the layout of these virtualized building blocks
on the physical infrastructure. As a result, it is impossible for the user to build
a virtualized infrastructure that guarantees, for example, high communication
bandwidth between virtual machines, proximity to storage, or spreading of mul-
tiple virtula machines across different racks for availability reasons. As a matter
of fact, the only support for workload optimization available in today’s Cloud is
via pre-built virtual infrastructures which are tuned to specific workloads. Ama-
zon EC2 for instance offers high performance computing (HPC) instances [1].

We believe that this cookie-cutter approach hinders further adoption and
development of the technology. Instead, Cloud users should be able to design
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and deploy virtual infrastructures that optimize for their workload. We refer
to these virtual infrastructures as Virtual Network Infrastructures (VNI). More
specifically, a VNI is as a set of heterogeneous virtual machines with constraints
governing the performance of these virtual machins as a whole in order to sat-
isfy application requirements. In this work we address one crucial problem in
enabling this vision. We are concerned with developing placement techniques
that allow the Cloud to efficiently and effectively allocate resources that satisfy
VNI constraints, while satisfying Cloud level goals. We consider VNIs consisting
of virtual machines with compute and network demand, as well as availability

requirements.

A VNI can be represented an an attributed graph. As such, the VNI place-
ment problem is equivalent to the problem of graph monomorphism and therefore
is NP-hard [2]. The complexity of the problem arises from its combinatorial na-
ture thus, efficiency is a major challenge. Others in the community have tackled
less constrained versions of this problem [3-5]. The proposed approaches how-
ever, address the placement problem in a piecemeal fashion: they either focus on
the aspects pertaining to network performance leaving aspects of the allocation
of compute resources as a secondary objective or visceversa, or suffer from high
complexity. Our approach is unique in that it tackles the problem in a compre-
hensive manner by factoring in network, compute and availability performance
aspects into one single solution.

We have developed a novel placement framework that makes the problem
tractable and is generic enough to support increasing complexity. The heart
of the framework is the introduction of a novel resource abstraction, called a
cold spot from here on. A cold spot consists of a collection of compute nodes
that exhibit high availability of compute resources and network connectivity.
Cold spots identify a subsets of resources where VNIs should be best deployed.
They help reduce and guide the search space for the optimization problem.
Our placement framework consists of four steps : (a) identifying colds pots, (b)
clustering virtual machines to reduce overall communication traffic and reduce
placement complexity, (c) identifying candidate cold posts whose features are
similar to those of the VNI in order to increase the chances of deployment,
and (d) performing the actual placement by using efficient graph-based search
algorithms that optimize for load balancing.

The main contributions of this work can be summarized as follows:

— We develop a placement framework that breaks down the placement problem
into four tractable sub problems.

— We introduce a novel resource abstraction called cold spots that effectively
reduce the search space and improve performance.

— We present experimental results that show the efficiency and effectiveness of
our approach in large data centers.

The remainder of this paper is organized as follows. Section 2 provides an
overview of the current state of the art and positions our work. We formulate
the problem in Section 3. Section 4 overviews all four stages of our technique
in detail, while Section 5 presents our experimental results. Finally, in Section 6
we discuss open questions and future work, while we conclude in Section 7.
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2 Related work

Following we present a comparative analysis of similar research problems, as
well as simpler versions of the VNI placement problem.

Virtual network placement. The VNI placement problem shares similarities
with the Virtual Network Mapping (VNM) problem which plays a central role in
building a virtual network (VN). During the mapping process each virtual node
(link, respectively) is assigned to a node (path, respectively) of the physical
network such that a set of resource constraints is satisfied. In the VNI problem
however, we are concerned with a broader and finer-grained set of constraints in
addition to network and compute resources. Several efficient heuristics have been
developed to solve the VNM problem in the past [6-9]. Some of these restrict the
search space by assuming the node place is given in advance and only solve the
link embedding problem [9]. Others [8] rely on probabilistic metaheuristics such
as simulated annealing and reduce complexity by type-casting the virtual routers
and physical nodes. In [7] the authors reduce complexity by decomposing the
network substrate and the virtual networks into known topologies and assume
that a substrate node can only host one virtual node. Others such as [6] focus
on the network aspects of the problem only.

Topology-aware task mapping. The problem of placing task graphs in par-
allel computers is also similar to our problem. Tasks nodes must be placed on
processors nodes while respecting the network communication constraints and
the resource constraints of the processors. In the task graph placement problem
however, compute resources are specified coarsely. Therefore, existing solutions
focus on maximizing communication throughput only. Typically, task-mapping
algorithms consist of two stages: partitioning and mapping. In the partitioning
stage, a clustering process groups together those task nodes with high com-
munication requirements. In our technique we have adopted and extended an
existing clustering technique used in [10] for task graphs to cluster virtual ma-
chines. Later, in [11] the authors present a topology-aware placement technique
that considers the topology of the processor network when making placement
decisions. Note that both works focus on the network aspects only.

Network-aware virtual machine placement. In [5] the authors formulate
the network aware virtual machine placement problem as an optimization prob-
lem and prove its hardness. The heuristic proposed assumes a homogeneous slot
resource model, thus each physical machine can allocate a fix number of virtual
machines and is only concerned with network and compute resources. Further-
more, its complexity is O(n?) where n is the number of physical machines. Our
technique, in contrast, addresses the exploding combinatorial nature of the prob-
lem by identifying cold spots in advance. In [4] a novel cloud network platform
is proposed which extends the provisioning model of the Cloud to include a rich
set of network services. In CloudNaas the placement of virtual machines and
network demand is fully decoupled, i.e., a bin-packing technique is used to de-
cide on the allocation of compute resources, while a separate technique is used
to handle the allocation of network demand. This approach leads to resource
fragmentation since compute and network resources can be unevenly utilized.
We advocate for a more coupled approach that considers the management of
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both network and compute resource into one single integrated solution. Finally,
in [3] the authors propose using a placement engine based on an optimization
solver to orchestrate multiple resources. This solver can take up to 6.1 seconds
to load balance 1000VMs on a 15 PMs Cloud when only compute resources are
considered. This is another evidence of the scalability challenge faced in provi-
sioning resources in the Cloud. Note that we target solving the initial placement
problem in sub-seconds on larger systems.

3 Problem formulation

We consider a data center which consists of a collection of physical machines
(PM) that are inter-connected by a network consisting of a set of links (LK).
Every PM can host one or more virtual machines (VM). A VNI comprises a
set of networked and constrained VMs and is the deployable unit within the
data center. The placement problem consists of mapping VMs in a given VNI to
PMs in the data center. Next, we describe the physical infrastructure and VNI
characterization in more detail. Table 1 summarizes the most common terms
used throughout the paper.

Let PM = {PM;|i = 1,2,...,npp} denote the set of physical machines in
the data center. Each PM has a set of resources R = {r,,|m = 1,2,...,ng},
such as CPU, memory, and disk storage. The total capacity of resource r,, on
PM; is denoted by rc; ., whereas ru; ,, represents its usage on the same PM,
TUim < TCim. We define the amount of resource available for r,, on PM; as
TQim = T'Cim — TUjm. We assume that a PM is connected to a switch through
an edge link, and that switches are interconnected through core links.

The network is modelled as a graph, where PMs and switches are vertices,
while links are edges. We denote the set of links as LK = { LK |k = 1,2, ...,nrx }.
Each link is characterized by a communication bandwidth. The total bandwidth
capacity of LK}, is denoted by bcy, whereas buy represents its usage, buy < bc.

Term |Description Term Description
Tm Resource (e.g., CPU) bay Bandwidth available in LKy, i.e.,
bck - buk
TCim Total capacity of resource 7., on|byk Bandwidth usage of LK}
PM;
TUim Usage of resource r,, on PM; |bck Total bandwidth capacity of LK
TQim Availability of resource 7., on|rdjm Resource demand of VM, on re-
PM;, ie,. rcim — ruim source T'm
Aij Network demand between VM;|npn, g |Cardinality of the set of PMs be-
and VM, longing to cold spot C'S
lij Locality constraint (co, —oco)  |path(i,j) |Set of links on path between PM;
and PM;
nyym  |Cardinality of the set of VMs|np Cardinality of the set of PMs in
belonging to a VNI data center

Table 1: Common terminology
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The amount of available bandwidth is defined as bay, = bcy, —buy,. We characterize
data center D by the tuple {PM, LK}.

A VNI P is characterized by the tuple (VM A, S). The set VM = {VM;|j =
1,2,...,nya} represents the collection of virtual machines which constitute the
VNI. V' M; is characterized by a set of resource demands 7d; ., one per resource
type in R. These resource demands are considered when placing a specific VM
onto a PM, in order to make sure that there are enough available resources
on the PM to satisfy the VM demands. The communication bandwidth demand
between VM; and V M;, where 1 <14, j < nyp and i # j, is denoted by A; ; > 0.
We assume that the matrix A = [\, ;] is symmetrical with zero diagonal. In other
words, bandwidth requirements among VMs in a given VNI may be modelled
as an undirected graph, where the vertices are VMs and the edges are pairwise
communication demands.

Furthermore, we consider a data center which is partitioned into a hierar-
chy of availability zones, where PMs in the same zone have similar availability
characteristics. As an example, a hierarchy of availability zones may be induced
by the containment hierarchy of PMs, bladecenters, racks, cluster and data cen-
ters. In such case, one may model this hierarchy as a tree, where the leaves are
the PMs and the intermediate node represents a zone of availability. Thus, we
associate an availability level, V;,l = 0,--- | L, for a node at level [ in the tree,
where [ = 0 represents the leaves, i.e., PMs, and [ = L represents the root of the
tree with height L, i..e, highest level switch. We assume that Vo < Vi --- < Vg,
since two PMs in distant availability zones have higher chances of having one of
them available. Using this tree model, two PMs PM; and PM; with the lowest
common ancestor at level { have v; ; = V; (Clearly, v; ; = V). For convenience
we define ¢;(1),2 = 1,--- ;npy and | = 0,---, L as the set of PMs such that
for PM; € g;(l) we have v; ; = V. Following these observations, availability
constraints can be directly mapped into locality constraints. More specifically,
to represent location constraints between VMs, we define the matrix S = [sﬁ]],
where sé’j represents the type of location constraint between VM; and VM;,
where 1 < 4,5 < nyp and i # j and [ refers to the availability zone level re-
quired by the constraint. In this paper we assume two distinct types, namely
Séﬁj € {400, —o0}, corresponding to colocation and anticolocation, respectively.
To illustrate, an anticolocation constraint at the PM-level (I = 0) between V M;
and V M; indicates that VMs must be placed on different PMs and is associ-
ated with an infinitely large communication cost between them. Alternatively, a
colocation constraint means that the VMs must be placed on the same PMs.

We denote by n(P,D) a particular placement of VNI P in data center D
For brevity we will write it as w(P). #(P) is a vector of length ny s, where
m;(P) is the PM onto which VM is placed. The placement process maps every
VM in VM(P) to a particular PM in PM, such that (a) the VM’s resource
demands are satisfied by the PM, (b) the bandwidth constraints between any
two communicating VMs are met by the links of the data center connectivity
network, (c) the pairwise location constraints are satisfied.

Placement goals We consider two classes of objectives in our placement tech-
nique: system behaviour objectives (1-2) and performance objectives (3-5):
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Fig.1: VNI placement process

1. Efficient and scalable placement — We need to place VNIs in such a way
that (a) the performance of the application is maximized (e.g. fewer hops
between communicating VMs reduces network delay), and (b) the placement
time scales with the increasing size of the data center.

2. High VNI acceptance rate — The placement algorithm must maximize the
number of VNIs for which resources are successfully allocated and constraints
are satisfied.

3. Load balancing — For all placed VNI, we seek to balance allocation of all
resources across the data center.

4. Resource constraints — We assume that resources are not over-committed.
Hence, VNI resource demands must be met by the corresponding resources
available on the data center. Formally, VPM, € PM, Vr, € R,

TUim = Z Z de,m Iﬂj(p),PMi < TCi,m,
P VM;€EVM(p)
where p runs over all placed VNI and I is the indicator function. Further-

more, VLK € LK,

buy = Z Z Nij ok epath(ni(p),mp)) < bek,
P VM, VM,;eVM(p)
where path(PM;, PM ;) represents the set of links along the path between
PM; and PM ;. For simplicity, we assume that the traffic demand between
two PMs is routed through a single path in the network.
5. Hard location constraints — The colocation and anticolocation constraints
must be satisfied for all placed VNIs. As we explain later, softening con-
straints can be easily relaxed. That is, Vp, YV M,;,VM; € VM(p),

sli=400 = VMjegl(l),s, =—o00 = VMj¢gl(l),

4 Placement Algorithms

Our approach to meet the constraints and performance objectives presented
earlier is to divide the placement problem into four steps as shown in Figure 1.
In this section, we discuss these steps in detail.

4.1 Cold spot discovery

One key component of our placement technique is the concept of cold spot. A
cold spot is a resource construct consisting of a collection of physical computing
nodes that exhibit high availability of compute resources and network connec-
tivity. In principle, any property of interest can be considered when constructing
cold spots. This step is concerned with discovering such cold spots in the system
and is invoked periodically and asynchronously relative to the placement request.
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This observation is important since performing any analysis on the data center
graph is expected to be computational intensive.

The intuition behind this stage is two-folds: First, it reduces the search space
when placing a VNI within the data center, which results in an overall lower
placement time and hence better scalability. Second, cold spots improve resource
utilization by reducing resource fragmentation. We demonstrate these benefits
in Section 5. This step takes as input the data center model, its state (i.e., which
includes resource usage), as well as a dynamic parameter, called threshold and
outputs a set of cold spots. This stage is further divided into two main steps.

Ranking of physical compute nodes The first step ranks all the PMs in the
data center based on their resources availability. We define the availability of a
particular PM; by a measure, RAp)y,, which is based on the compute resources
and the network bandwidth of all outgoing links, namely:

RApn, = Z Wm TQim - Z bay,
TmER LK €links(PM;)
where w,, is a weight which can be adjusted in order to tailor the PMs ranking
relative to a specific type of resource and links(PM;) represents the set of links
connected to PM; (via NICs).

We want PMs with ample network connectivity to other PMs in the system
to be ranked higher, as they have a higher potential to satisfy the needs of VNIs.
To this end, To this end, we propose a heuristic that has a long-sighted view
of the PMs network connectivity. That is, to compute the rank of a given PM
the heuristic first identifies the PM’s neighbourhood as the set of PMs that are
K hops away, and then computes its network connectivity to these PMs as a
function of network bandwidth. K is a parameter which could be set in relation
to the data center diameter or VNI size. This step generates the list of all PMs
in decreasing order of their availabilities, computed with the heuristic NRApy,
defined below.

RApy;+RApw; . b
ZPMjeneighbors(PMi,K) 2 MINL K, epath(PM;,PM;) (00k)

NRApy, =
PM;, | neighbors(PM;, K) |

where neighbors(PM;, K) is the set of PMs that are at most K hops away from
PM;. Notice that the heuristic accounts for the minimum available bandwidth
on the path between PM; and a neighbour PM; to characterize the network
component, as well as for both PM;’s and PM;’s compute resources availability.

Cold spots generation Cold spots are constructed by continuously adding
PMs to already existing collections based on several heuristics. To keep track
of the non-added PMs we maintain an updated list. The first entry in the list,
which corresponds to the PM with the highest rank, becomes the root of the new
cold spot. In order to decide whether a particular not-yet-added PM; should be
included to the new cold spot, we define the measure Potentialpys, as follows.
Let C'S denote the currently identified cold spot. We define the potential of PM;
as the weighted sum,

H? + B2
Potentialpy, = (1 —w)R; + w\/T
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Fig. 2: Cold spot discovery and VNI clustering examples.
which includes three terms: R;, H;, and B;.

R, = E Wy, TWjm

rm€R
> hops(PM;,PM;)—1 S pncos 1 — hops(PMi,PM;)
PM;€CS hops(PM;,PM;)+1 i€ 2 LKy Epath(PM, PM;) T=buy
Hi = aBi =
NPMes NPMcs

where R; is a measure of resource utilization of PM;, H; captures the distance,
expressed in number of hops (hops(PM;, PMj)), between PM; and all PMs that
have been already added to the cold spot C'S and B; the bandwidth utilization
between all the links connecting PM; to all PMs in the cold spot. Both H;, and
B; terms are expressions of the network connectivity aspect. As such, the weight
w provides better controlability of the algorithm over the characteristics of the

cold spot. The complexity of the algorithm is O((npar + nPrasPV M) 10Gny )

PMs that have lower potential values are more desirable, thus a PM; is in-
cluded as part of C'S if Potentialpyr, < threshold. The threshold is a parameter
that greatly influences the features of the resulting cold spots. Fig. 2(a) provides
an example of how cold spots are discovered for a data center consisting of 16
PMs, depending on the variance of the resources load on PMs and the thresh-
old value. If the load variance on the PMs is low, then the prevailing factor for
adding new PMs to a cold spot is their distance to PMs already found in the
cold spot. In the opposite scenario, the cold spot discovery step groups PMs
with similar characteristics of their compute loads and neighbourhood qualities,
even beyond the first-level switch. The algorithm is driven by the threshold. The
lower its values, the more selective the filtering (i.e. adding PMs to a cold spot)
is, and vice-versa. Thus, with a threshold of 0.2 and a low load variance, the
algorithm groups together PMs under the same first-level switch.

4.2 VNI clustering

The clustering step groups the highly communicating VMs of a VNI in order
to reduce traffic, while at the same time satisfying the location constraints. The
purpose of performing the clustering is to guide and simplify the placement, by
establishing the order in which the VMs should be considered by the placement
algorithm to improve network utilization—while respecting locality constraints.
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Our proposed algorithm is based on stochastic flow injection [10]. Due to

space constraints we omit the description of the algorithm. We refer the reader
o [10]. We extended this technique to also consider locality constraints be-

tween pairs of VMs as follows. Since anticolocation and colocation constraints
translate to either placing VMs separately on different PMs or placing them
together, we add logical links between location-constrained VMs with oo or —oco
weights, as expressions of communication demands. The algorithm complexity
is O(nriosnvar?) where LK g corresponds to the number of links in the cold
spot. Notice that other clustering techniques such as K-mean clustering could
have been used and extended to incorporate locality constraints [5].

To illustrate consider a VNI composed of 5 VMs as shown in Fig. 2(b).
Assume that VM3 has the highest average compute demand followed by VM5,
VM1, VM4 and VM2. The communication links between VMs have demands
expressed in Mbps (e.g. 3Mbps between VM1 and VM3). Additionally, we include
two colocation and one anticolocation constraints. By applying the algorithm,
we generate 3 clusters of VMs, satisfying all location constraints. As expected,
VM1 and VM2 need to be placed on different PMs, while all remaining VMs
must be collocated — with these being hard requirements. The last step orders
the VMs within each cluster based on their average compute demands, followed
by a sorting between clusters. We can easily see that the first cluster considered
in the placement step contains VM3, VM4 and VM5, since VM3 is the most
demanding VM. Similarly, VM1 preceeds VM2 at placement.

4.3 Cold spot selection

This step compares specific VNI features against the properties of the avail-
able cold spots and selects those cold spots that have an increased chance of
allocating resources to match the VNI demands. To do this we introduce a met-
ric Scorecs which is used to rank all coldspots. Let us consider a VNI P, then
Scorecg is defined as:

Scorecs = (npues — sparsityp) * Avges,p * Deves, p
We describe in detail each of the three components that make Scorecgs.

Sparsityp provides a lower-bound in the number of PMs needed for placing P if
all the resources in the coldspot were fully available. We omit the algorithm to
compute this metric due to space constraints. Instead, we explain by example.
Suppose we have a VNI P composed of VM7, VMo and VM3 . Also suppose
there is an anticolocation constraint between V Mo and V M 3. This means from
start that in order to satisfy the constraints we need at least 2 PMs to place
the VNI, because VMo and V M3 need to stay on different machines. A similar
approach is followed for colocation constraints.

Avgcog.p is the average remaining availability over all ng resources and the
links. To define it consider cold spot CS and the set of physical machines in
CS as PMcgs = {PM;li = 1,2,...,npp.q}- Further, let LKes = {LKilk =
1,2,...,npKos | be the set of links in C'S. Let the VNI under consideration include
the set of VMs VMp = {V M;[j = 1,2,...,nvax }. We define

1
= [ E TQim — E 7dj m)
PMes =12, npwes J=12,mvm
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Candidates

ICS1=(1,2,3,4,9) CS2={5,6,7,8 CS3={10, 11,12, 13, 14} CS4=(15,16)| CS2 = CS3 - CS1

Fig. 3: Cold spot selection example for clustered VNI and a data center with 16 PMs

as the average remaining availability of resource r,,,m = 1,2, ...,ng, in C'S after
satisfying the resource demand of VNI P.

Further, we define
Z bak — Z )\i,j]

bT =
NLK . .
8 k=12,...,nLKqg 4,7=1,2,...,nv a1;9>]

as the average remaining bandwidth over all links in the C'S after satisfying the
bandwidth demand of VNI.

Thus, we can now define

m=1,2,....nR TTm + br

Av =
gcs,p g+ 1
Deveg vy is the absolute deviation in remaining resource availability, given by
Devcsyp = Z | Tl — A'Ugcsjp | -+ | br — A’Ugcsyp | .

m=1,2,....np

In a nutshell, the first term of the equation evaluates whether the size of the
cold spot is bigger than the sparsity of the VNI. The second term computes for
each resource the difference between the average aggregate cold spot availability
and the average aggregate VNI demand. Finally, the last term computes the
overall variance we would obtain if the VNI was placed on the given cold spot
— the smaller the variance, the better. The score needs to be positive for the
cold spot to be considered a candidate and we always choose the cold spot with
the minimum score value. The intuition behind the Scorecs metrics is that
the cold spots whose features are most similar to those of the VNI should be
ranked higher, and therefore tried first for placement. The algorithm complexity
is O(npures lognpags), as a function of the total number of cold spots.

Consider the scenario from Fig. 3, with the same VNI as in Fig. 2(b) and
four cold spots, each having 2, 4, 5 and 5 PMs, respectively. Assume that the
VNI to be placed has the sparsity value 3, given by the location constraints
and the fact that the PMs capacity allows neither VM1 or VM2 to be placed
together with the cluster VM3, VM4, VM5. Thus, the first step of the algorithm
already eliminates CS4, by comparing its size with the sparsity metric, and builds
the candidates set with the remaining cold spots. Consider, in the second step,
that by computing the Avges v v and Deves v s, all candidates obtain similar
values and the metric differentiating them is the size against sparsity. Given the
way we score the candidates, the cold spot with the smallest size (CS2) is ranked
first in the placement step, while the largest ones are last.
4.4 VNI placement

The final step performs the actual VNI placement within the current cold
spot, selected from the candidate list. We employ a breadth-first search algo-
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Algorithm 1 VNI placement algorithm

Params: VNI P = (VM, ), S), VM = {VMy, ..., My, },
CS = {PMcg,Lch}, PMcs = {PMl, “"PMnPMCS }, path

1: Initialize pending, placed, path, V, and S to 0

2: For each VM € VNI, add VM to pending

3: while pending <> () do

4: VMcurrent <— pending[0]

5:  if placed == () then

6: For each PM € CS, add (VMcyrrent, PM, h) to S
7 Add (VWMeurrent, PM) = minges{h} to path

8: else

9: V <+ getPMsForConstraints (VMcyrrent, path)
10: For each PM € V, add (VMcyrrent, PM, h) to S
11: Add (VWeurrent, PM) = minges{h} to path

12: end if

13: Remove Weyrrent from pending

14: Add VMeyrrent to placed
15: end while

rithm, which attempts to retrieve the optimal path from the search tree based on
heuristics. We describe the optimization goal later in this section. The search tree
is an expression of the optimization problem of finding the optimal placement
for a VNI Its root is the starting search point (i.e. no VM placed yet), the inner
nodes correspond to partial placements and leaf nodes to complete placements.
The search tree is dynamically constructed at runtime by iteratively creating
successor nodes linked to the current node. This is achieved by considering the
possible placements for VMs sequentially, depending on how VMs are ordered
as a result of the clustering step. A heuristic function estimating the cost of the
paths from the root to the current node is used. At each step during traversal,
the node with the lowest heuristic value is chosen. In what follows, we discuss
our heuristic used in the search algorithm given in Algorithm 1.

Our cost heuristic is an expression of the resource fragmentation in the cold
spot caused by the partial placement decisions, from the root to the current
node in the search tree. Since the algorithm always advances on the path with
minimum cost, i.e., minimizing resource fragmentation, our heuristic is effec-
tively seeking at balancing the cold spot resources utilization. Thus, for cold
spot C'S, we introduce the cold spot fragmentation measure denoted by h¢g,
which includes contributions due to (1) network fragmentation, expressed as the
number of isolated regions, and (2) resource imbalance, expressed as the devia-
tion of utilized CPU, disk storage and memory resources within the cold spot.
We define an isolated region as a set of PMs that share a link whose utiliza-
tion is higher than 90% when communicating to the rest of the network starting
from the first level switch. To illustrate, all the PMs contained in a bladecenter
whose link connecting to the rack-level switch is 92% utilized would comprise
an isolated region. Let Njsoiatedregions be the number of isolated regions in
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CS. In order to compute its value, we implemented a recursive algorithm that
we omit due to space limitation. As described earlier, cold spot CS consists
of the set of physical machines PMcs = {PM;li = 1,2,....npp.s}- We de-

o 1 ) . 1.
fine ra,, = v 21:1,2, ey Tdim A8 the average availability of resource
rm,m =1,2,...,ng, in C'S. Further, we define:

1
Avges = — E ram, Deveg = g | ram, — Avges |
R

m=1,2,...,nRr m=1,2,...,nRr
as the average availability over all ng resources in C'S and the absolute
deviation in resource availability, respectively.
We denote the cold spot fragmentation measure as
Nisolated’regions * DevC’S/nR
A’L}ailcs

where Availcg denotes the overall availability of C'S and is given by

(rapm;+rapny) . b
Ziaj:1’2v-~~x"PMcs?i>j 3 * MANEkepath(PM;,PMj) 00k

hcs =

)

Availcg =

)

npMes (MPyes — 1)

1
rapm; = o Z T m-
R

where

m=1,2,....ng

The algorithm complexity is O(nparos + nvarz). In order to speedup the
VNI placement, we consider a simple, but effective variant based on beam search.
Instead of accounting for all valid PMs for the current VM (i.e. by satisfying the
location constraints relative to VMs already placed), only a reduced number of
PMs are processed. Given the previously placed VMs, for the current VM we
consider those PMs that are closest, in number of hops, to all the PMs already
allocated. Only if, by computing the heuristic, none of the closest PMs have the
necessary resources for the current VM, we expand the search by including the
PMs that have not been considered in the first step. In most cases, the solution
found by applying beam search will be suboptimal, but significantly faster.

5 Evaluation

In this section we present simulation results to demonstrate the performance
of our VNI placement technique. We use the method of batch means to estimate
the performance parameters we consider (and which we discuss shortly), with
each batch consisting of 15 runs. For every run, the following methodology is
used. We start with an empty data center and sequentially place VNIs until
its average compute load, as mean over CPU, memory and disk storage usages,
reaches 25%, 50% and 75% utilization. Next, we remove random placed VNIs and
add new ones with an exponential distribution, such that the average compute
load remains stable around the respective targeted values. Each experiment is
run such that = 50% of the initially placed VNIs are replaced by new VNIs and
we collect the performance metrics periodically. Our simulator was written in
Java and the experiments were performed on a ThinkPad T520, with 4GB RAM
and Intel Core i3-2350m processor, running Ubuntu 11.04.

We consider three type of performance metrics which capture the perspec-
tive of the VNI, user and the system. The average path length per placed VNI
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represents the VNI metric and captures the distance in number of hops between
VMs belonging to the same VNI instance. We consider three user metrics: (1)
placement time, which represents the time it takes to solve the placement prob-
lem, (2) number of attempts, which captures the average number of attempts
or cold spots considered until successfully placing a VNI, and (3) drop rate,
which is a ratio of the number of rejected VINIs over the total number of offered
VNIs. Finally, the system metrics include the (1) average network utilization,
(2) average network congestion, defined as the mean over most congested links
per placed VNI, (3) network variance, and (4) compute resources variance.
Tree networks are widely adopted in data centers due to their cost-effectiveness
and simplicity. We consider a data center consisting of a three level tree struc-
ture. Following a bottom-top order it can be described as follows: the first level
consists of PMs, the second level consists of bladecenters —with each bladecenter
containing 16 PMs, the third level consists of racks —with each rack containing 4
bladecenters. We vary the number of racks to produce data centers of different
capacities, where by capacity we refer to the size of the data center in number
of PMs. We consider three data center sizes: 64, 256 and 1024 PMs. Each PM
consists of 32 cores, 64GB RAM and 4TB storage capacities, while each net-
work link has 1Gbps capacity. Additionally, between any two PMs there exists a
unique path in the data center. Following, the data center diameter (i.e., maxi-
mum number of hops between any two PMs) is 4 for 64 PMs, 6 for 256 PMs and
8 for 1024 PMs. Note that our technique is applicable to any network topology.
We consider a rich set of workloads. We first evaluate our technique against
a generic VNI mix in Section 5.1 and show the impact that each placement stage
has on the performance of our approach. Second, we consider a more realistic
workload mix consisting of cache, hadoop and three-tiered like VNIs as described
in Section 5.3. Finally, we report on the impact that the threshold value has on
the cold spot discovery step (Section 5.4) and compare our approach with a
technique proposed for virtual network embedding [12] in Section 5.5.

5.1 Generic VNI mix

We consider three types of VNIs: small, large and extra-large consisting of
small, large and extra-large VM instances, respectively. The resource demands
of the VMs follow the specifications of Amazon EC2 instances [13]. More specif-
ically, their respective resource demands are: (1 core, 1.7GB memory, 160GB
storage), (4 cores, 7.5GB memory, 850 GB storage) and (8 cores, 15GB memory,
1690 GB storage). A generic mix is composed of 60% small VNIs, 25% large
VNIs and 15% extra-large VNIs. The number of VMs per VNI is between 2 and
10 following a uniform distribution. For every pair of VMs, we create network
demand and locality constraints with 0.5 and 0.1, respectively, with the ratio of
colocation to anticolocation constraints being 0.5. The network demands between
small, large and extra-large pairs of VMs are 5, 20 and 50Mbps, respectively.

Results are shown in Fig. 4. As it can be observed, the average path length for
placed VNIs remains stable at a value of 2 hops and is independent of the data
center diameter, thus demonstrating the scalable nature of our approach. This is
due to the cold spots structure that generally pack together the PMs under the
same first-level switch, reducing network traffic across higher-level switches. We
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Fig. 4: Results for the generic VNI workload with various data center sizes.

also note that the average number of attempts to place a VNI varies between 1
and 2, which demonstrates that our selection techniques is effective at ranking
cold spots as a function of how their features compare to the offered VNI.

Fig. 4(b) depicts a low drop rate of less than 2%. More specifically, for the
64-PM, 256-PM and 1025-PM data center, (62, 118 and 184), (239, 468 and 723)
and (977, 1858 and 2820) VNIs are offered in total, respectively for the 25%, 50%
and 75% loads. As expected, we observe in Fig. 4(c) that the placement time
increases linearly with the size of the data center, going from 90ms for 64 PMs
to 1100ms for 1024 PMs. Similarly, the cold spot discovery time increases as the
data center becomes larger, from ~170ms for 64 PMs, to ~1255ms for 256 PMs,
and to x=9590ms for 1024 PMs. However, recall that this time is amortized since
the cold spot discovery step is executed asynchronously to VNI placement calls.

Fig. 4(d) considers the 256-PM data center and shows the average compute
and network utilizations, as well as their corresponding variances, as measures
of resource load balancing. Note that Amazon EC2 instances are CPU intensive,
therefore the CPU load for all three thresholds (i.e. 25%, 50%, 75%) is slightly
higher than memory and disk storage. To characterize the data center network,
we measure the average utilization, as well as the average congestion. The net-
work utilization has similar values as the compute one and its deviation is less
than 16%. As expected, the network congestion is higher than the utilization,
since for every placed VNI it accounts only for the most congested link on the
path between the corresponding PMs. We observe that the maximum network
congestion VNIs experience is 81% corresponding to 75% data center load.

5.2 Breaking down the placement technique

In this section we investigate the impact that each individual placement step
has on the overall performance. To do this we repeat the experiments with each
individual step disabled or modified as described below.
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VNI clustering. We first repeat the experiment for the 256 PMS data center
with the VNI clustering step disabled. As it can be observed in Fig. 5(a), without
clustering the network utilization and congestion increases by 10-25% and 10—
30%, respectively. Furthermore, the variance in the links utilization is higher by
up to 60% for lower data center loads, while the congestion variance is higher
by up to 45%. We conclude that the clustering step is effective at ensuring that
highly-communicating VMs are placed in close proximity, which, as a result,
improves network utilization and load balancing.

Cold spot discovery. Following, we compare our previous results for the
generic VNI workload mix with those obtained when disabling the cold spot
discovery step. That is, for every incoming VNI, the placement consider all the
PMs in the data center for placement. We plot the results in Fig. 5(b)— 5(d).
We observe that without cold spots the average path length for placed VNIs
increases by a factor of 2. That is, VMs belonging to the same VNI are placed
further apart from each other, thus impacting the traffic in the core links. In fact,
we observe the core links utilization increases up to 10x factor. As a consequence
of this, the drop rate increases from less than 2% to up to 25%. This is due to the
fact that as core links become congested, the network becomes fragmented and
it is more difficult to find a feasible placement for incoming VNIs. A secondary
effect is observed in the increased average network utilization and congestion by
up to 40% for lower loads of the data center. Finally, given that the placement
of each VNI needs to consider all PMs in the data center, the placement time
increases by 10-12x factor as shown in Fig. 5(c).

Random cold spot selection. Further, we are interested in assessing the im-
pact of our cold spot selection technique. To do this we consider a selection
algorithm wherein cold spots are selected in a random fashion. Fig. 6 shows the
average placement attempts and variance of compute resources. As observed,



16 Giurgiu, Castillo, Tantawi, Steinder

>

Cold spot selection —+— GPU deviation for random cold spot selection
Random cold spot selection - --- 100 CPU deviation for cold spot selection -
Memory deviation for random cold spot selection
Memory deviation for cold spot selection
80 Disk storage deviation for random cold spot selection
Disk storage deviation for cold spot selection

@
g
8

Average deviation (%)

Average number of attempts to place a VNI
©

25 50 75 25 75
Average load for data center with 256 physical machines Compute resources deviation in data center consisting of 266 physical machines

(a) Average attempts per VNI (b) Average compute variance
Fig. 6: Random cold spot selection vs. our default algorithm in a 256-PM data center.

Average path lengih{random cold spots) -
rage path length(cold spots) -

6 Average attampis(random cold spots) -
Average attempts (cold spots) -

- : _ Drop rate (vandam cold spots)
e i g Drop rate (cold spots) =
&- : Gore links utiization (random cold spots)
el 100 Core links uilization (cold spots) s

90
80
70
60
50
40
30
20
10
25 50 75 25 50 75
Average load for data center with 256 physical machines Average load of compute resources in data center consisting of 256 physical machines

(a) Path length and attempts per VNI (b) Drop rate and core links utilization
Fig. 7: Comparison between random cold spots and our default algorithm on 256 PMs.

Average path length and attempts

Drop rate and core links utilization (%

randomly selecting cold spots increases the number of attempts required for
successful placements by a factor of 1.5-2x. In addition, the compute resources
variance is higher by 15% to 55%, with the more significant impact for lower data
center loads. Similarly, the network utilization and congestion are also increased
by up to 40% and 15%, respectively. We conclude that the cold spot selection
step intelligently chooses the best candidate cold spots for each VNI, to achieve
better load balancing and VNI performance in the data center.

Random cold spot discovery. Finally, we evaluate how our cold spot discov-
ery technique influences the performance of our placement technique (Fig. 7).
We consider a cold spot discovery algorithm wherein PMs are randomly added
to cold spots, as opposed to being added based on their rankings. In this algo-
rithm, the size of the randomly generated cold spots corresponds to the average
observed in our previous experiments which is 16. This step is invoked every 20
new incoming VNIs. As expected, the average path length of the placed VNIs
increases to 3—4 hops and in some cases even reaches the data center diameter.
We also observe an increase in the average number of attempts to place VNIs.
Given the random locality in the data center of the VMs within one cold spot,
many VNI placements impose demands on the core links. As such, we notice an
increase to up to 90% utilization, as opposed to utilizations under 10% with our
technique. An important effect of the core links congestion is the increased drop
rate, to up to 36% of the total number of offered VNIs.

5.3 Placing cache, hadoop and three-tiered VNIs

The second part of the evaluation considers realistic workloads, composed
of cache, hadoop and three-tiered -like VNIs, and measures the effectiveness of
our placement technique for the performance metrics considered in the previous
section. Fig. 8 shows the topologies corresponding to these specific VNIs.
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Note that cache and hadoop VNIs have identical topologies, where all VMs
communicate in a full mesh model and their number varies between 6 and 12.
The compute demands match the specifications of Amazon EC2’s high-memory
extra large instances (6.5 cores, 17.1GB memory, 420GB storage). The network
demands are 2Mbps and 25Mbps for the cache and hadoop VNIs, respectively.
Whereas, the cache VNI has no location constraints, the VMs of hadoop VNIs
need to be placed on PMs located under the same first-level switch (bladecenter).
The three-tiered VNIs contain a proxy layer with 2 small EC2-like instances,
an application layer, consisting of 5 to 10 large EC2-like instances, and the
database layer with 1 extra-large EC2-like instance. The network connectivity
between layers is full mesh, with 10Mbps demand for proxies and 100 Mbps
for the database instance. The location constraints apply to the VMs belonging
to the application and proxy layers, such that they need to be placed on PMs
located under the same first-level switch.

Fig. 9 reports the results obtained when placing a mix of realistic VNIs,
where 50% are three-tiered, 25% are cache and the remaining 25% are hadoop.
We observe that the average path length per placed VNI is 2 and remains in-
dependent of the data center diameter. It is also noticeable that the network
constrained nature of the cache and hadoop VNIs results in higher drop rate of
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up to 8% when the average load in the data center is 75% and longer placement
time by at most 20% as compared to placing generic VNIs. This results in an
increase in the number of attempts to place a VNI to an average between 2 and
3.2. Finally in Fig. 9(d) we note that the average memory load is higher than
both CPU and disk storage. This effect is due to the higher memory footprint
of both cache and hadoop VNIs. We also observe that the network congestion
increases by up to 30% for lower loads, when compared to generic VNIs as a
result of the higher network demand of the VNIs.

5.4 Cold spot discovery threshold

Next, we investigate how the threshold used in the cold spot discovery step
influences the properties of the cold spots and the effectiveness of our technique.
To do this we run our simulation with the mix of realistic workloads on a 1024
PMs size data center for various threshold values. Selective results are shown
in Fig. 10. We notice an increased in average path length per VNI placed as
the threshold increases. Over extensive experiments, we found that a value of
0.2 results in cold spots that are balanced and PMs are closely located. With
other values, one can easily generate cold spots that are either too small in
size, and thus not suitable for demanding or location-constrained VNIs, or too
large, and thus making the placement process less effective. As a result, the drop
rate increases with higher thresholds, reaching 43% in some cases. This follows
intuition since VMs are located further from each other, which means core links
quickly become congested. We conclude that choosing different thresholds can
significantly impact the system performance and the user experience. In Section 6
we discuss this aspect further.

5.5 Comparison to VNM

Finally, we want to compare our approach with previous techniques.The clos-
est work to ours is a virtual network mapping (VNM) technique previously pro-
posed in [12]. In [12], the authors recognize the need to consider both physical
node and links optimizations together throughout the placement process. Addi-
tionally, the algorithm controls the network allocation (routing) and therefore
has more flexibility at finding a feasible placement. The algorithm in [12] finds a
cluster of physical nodes that are lightly loaded without considering the network
connectivity of the physical nodes and solves the routing problem of connect-
ing physical nodes based on the topology of the virtual network. To match the
authors’ assumption that one physical node can only allocate resources for one
virtual node, we apply our placement technique on generic VNIs whose VMs and
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links require at least 50% of a PM’s compute resources and bandwidth capacity.
We note that this is an unrealistic assumption since in practice, VM to PM den-
sities as high as 100 VMs per PMs are the norm in cloud environments. However,
it allows us to perform a more fair comparison between both techniques.

Our results for a 256-PM data center are presented in Fig. 11. As expected,
satisfying the compute constraint of 50% demand imposes additional difficulty
on our algorithm, which results in an increased drop rate to up to 25%. However,
since the VNM technique does not emphasize the locality factor in discovering
the cold spots, the quality features of the resulting clusters do not properly
match the nature of VNIs. Thus, the drop rate increases to up to 70% and the
core links utilization increases as the average load of the data center increases.
Similarly, the average path length per placed VNI is higher by a 2x factor. We
conclude that considering locality and neighbourhood quality in the cold spot
discovery are primary factors for resource allocation in data centers.

6 Discussion

In this section, we briefly address some additional considerations towards a
more complete VNI placement framework to be considered as future work.
VNI-aware dynamic cold spot discovery: We have shown that construct-
ing cold spots based on network and compute resource availability suffices to
achieve good placement performance for workloads with compute, network and
availability constraints. As workloads become more complex in constraints, the
process of cold spot discovery may need to be extended to address workloads
characteristics, e.g. requiring specific VM images or proximity to specific storage
devices. We favor an online approach wherein via learning mechanisms the cold
spot discovery is tuned to identify cold spots whose properties are aligned with
the incoming workload.

Integration into a real system: Our technique is model driven, therefore to
adopt it in a real environment one requires to build a model of the data center
and the workloads. This is a simple software engineer task. In fact, significant
part of the placement technique presented in this paper has been deployed in a
data center environment. In our work we consider allocation demands, i.e., not
actual usage, therefore no resource monitoring framework is required. Adopting
monitoring tools to report resource usage is common practice.

Optimizations: First, we foresee being able to merge and split cold spots in
order to produce cold spots with specific characteristics for different workloads.
Second, when VNIs are destroyed, we do not keep track of their placement
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scheme. This could be used to improve the placement efficiency of future VNIs.
Third, the placement algorithm could be improved by using A* algorithms so
that partial placement decisions are based on estimations of the final resource
fragmentation. This enhancement has the potential of pruning paths in the
search space even further and achieve better placement outcomes.

7 Conclusions

We have considered the problem of placing virtual infrastructures with com-
pute, network and availability constraints in the Cloud. Unlike previous ap-
proaches, that address the placement problem from either the network or com-
puter resources perspective, our approach factors in both in one integrated solu-
tion. We have developed a novel placement framework which makes the problem
tractable and is generic enough to support increasing complexity. The center
of our technique lies in the introduction of cold spots, defined as resource con-
structs that reduce the combinatorial complexity of the problem, while enabling
the load balancing of resources. We have shown the effectiveness and efficiency
of our approach with a rich set of workloads over extensive simulations.
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