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Visualizing Risk

Donna Gresh, Léa A. Deleris, and Luca Gasparini

Abstract—We describe the issues surrounding the visualization and communication of risk. Colloquially, “risk” has many meanings;
we define it as a probability distribution (discrete or continuous), the entirety of which is important to be understood. While the display
of uncertainty has had some measure of attention, though primarily in one dimension, the communication of risk is complicated by the
difficulty for many people to accurately understand and contemplate the idea of a probability distribution to begin with, in part due to
well-documented psychological biases. We review the scientific and experimental background of this subject and propose guidelines
for the effective presentation of risk information, in the specific application area of transportation in a metropolitan area.

Index Terms—Risk, uncertainty, probability.

1 INTRODUCTION

While the science of transforming data into graphical displays has had
a rich history over the last several decades, the presentation of risk
information has a much thinner body of work. For our purposes we
define “risk” as a situation where there is an underlying probability
distribution which must be understood in order to fully apprehend the
problem. Risk implies uncertainty, in the sense that the outcome is un-
known ahead of time, but by considering the entire probability distri-
bution we distinguish risk from the usual understanding of uncertainty
which is often expressed (at least in one dimension) using various sorts
of error bars or confidence regions, and in multiple dimensions using
a variety of novel visualization methods (see [49, 48, 32]). In addition,
uncertainty often reflects limitations of the data, in the sense that there
is a “true” value to be expressed, but that we do not know it, while
we are trying to represent a range of values which are all true, in the
sense that there is some probability of any of them occurring. In many
cases the challenge of risk visualization involves the difficulties that
humans have in processing and understanding risk information as we
will discuss below. But beyond this, reducing a probability distribu-
tion to measures such as mean and variance fails to capture aspects of
the distribution which may be important to people; and not all people
or situations may have the same utility function with respect to the
distribution. For example, for a person contemplating the distribution
of travel times to reach the airport using different travel modes, the
maximum, or perhaps a 95% confidence, time to reach the airport may
be of much more importance than the average time. Alternatively,
portions of the distribution for a financial portfolio or a hurricane pre-
diction (for example, the region of catastrophic loss) may be of more
importance than other regions.

Some potential application areas are understanding the risk in un-
dertaking a particular set of projects, which may fail or succeed to
various degrees, the balancing of short-term vs. long-term risks of
medical treatment, the evaluation of systemic risks in a food-supply
chain, or the distribution of travel times via different modes of public
transport in an urban area.

Note that the term “Risk Communication,” as used, for example, in
conference presentations of the Society for Risk Analysis, often refers
more to public policy (for example the need for communication with
stateholders and open and transparent decision-making) than to con-
crete visual representations of risk. Our interest is rather in graphical
risk communication. This paper will survey the history and science
of risk visualization from a variety of perspectives: the psychology of
risk, a brief review of some of the scientific underpinings of graphical
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display of information, a discussion of the visualization of uncertainty,
a survey of the results in one area in which significant experimen-
tal work has been done in risk visualization: the medical and health
arena, and other topics in risk visualization. Finally we will present
our recommendations for effective visual representation of risk, with
a focus on continuous probability distributions.

2 VISUALIZATION

Graphical visualizations are an invaluable tool to ease the communi-
cation of information between individuals. The most apparent advan-
tage of producing a visualization is that, if certain requirements are
met, people are able to instantaneously and effortlessly decompose it
into its constituent objects, and to understand the underlying infor-
mation very quickly. This ability is defined by Julesz [22] as preat-
tentive vision, and it has been the focal point of a number of studies
[7, 17, 4, 12].

In 1983 Jacques Bertin [4] presented a number of visual variables
that he believed would lead to good quality graphics. While de-
veloped for the printed page, Bertin’s visual variables are still used
by researchers within the area of computer generated visualizations,
whether they are aware of Bertin or not. Bertin suggested that size,
value, colour, orientation and shape were the best methods of com-
municating information in a visual framework. However each had its
advantages and disadvantages and the information you wished to com-
municate would determine which visual variable you would include in
your graphic.

The first variable presented by Bertin was size. According to Bertin
the use of size in a graphic would allow the user to visually order the
data that they were trying to communicate. However the issue with
using size to communicate information is that you are relying on your
target audience’s ability to judge the differences in size. While size can
be used to present ordered data, if your data is unordered then Bertin
suggested using colour to communicate it. To use colour to communi-
cate information Bertin was referring to the colour itself rather then the
saturation level; an extension of that is the use of value which refers
to the brightness of a colour or the intensity of the colour. Orientation
refers to the variation in the angle between marks. This variable can
be used when a researcher wishes to communicate a proportions or
quantities, for example a pie chart. The final visual variable that was
considered by Bertin was shape.

According to Bertin, visual elements could be grouped in two dif-
ferent classes of visual variables, planar and retinal. Planar variables
are mapped to spatial dimensions of the plane, while retinal variables
are encoded using different means, like color or shape. In the same
book, Bertin explicitly define two basic properties of these variables:
”Length” and ”Level of organization.” Length is defined as the num-
ber of different perceptible states: while designing a visualization, it is
crucial to map a component to a variable with at least the same number
of states of the component. Failure to comply with this would result
in the user being unable to distinguish between different values, effec-
tively degrading the performances. The level of organization of a vi-
sual variable is something more complex, and represents the different



Associative Selective Ordered Quantitative

Planar Yes Yes Yes Yes

Size Yes Yes Yes

Brightness Yes Yes If scaled

Texture Yes Yes Yes

Color (Hue) Yes Yes Limited

Orientation Yes Yes

Shape Yes Yes

Motion:Velocity Yes Yes If scaled

Motion:Direction Yes

Flicker:Frequency Yes Yes If scaled

Flicker:Phase Yes

Disparity Yes Yes

Table 1. Different levels of organization of visual variables, as proposed
by Green

levels of data which it may represent. Bertin proposes four different
aspects of organization for each variable [4]:

• Associative: represent the ability of the feature to visually group-
ing a series of elements, despite of other differences.

• Selective: permits the viewer to select a category of elements,
effectively ignoring the others.

• Ordered: let the user visually guess that some features represent
larger or smaller quantities that others, although it could not be
always possible to quantify the difference.

• Quantitative: the highest level of organization, permits the
viewer to directly extract proportions between values, without
the need of consulting a legend.

Some of these aspects are more controversial than others: in [17]
Green suggests that shape could be or not be selective, depending on
the particular shape, and that users could be trained to use preattentive
vision to select shapes that previously required cognitive effort.

In the same work, Green tries to extend the visual variables pro-
posed by Bertin [4], to include the new and more dynamic visualiza-
tion methods available now. In order to do that, motion and flicker
variables are added to the ones originally developed by Bertin. In Ta-
ble 1 we report the variables proposed by Green and Bertin, indicating
the level of organization that each one of these can represent.

In a different work, Cleveland and McGill [7] focused on the quanti-
tative level of organization, performing experiments to estimate which
aspects are best interpreted by preattentive vision. The list resulting
from their work (ordered from the most appropriate to the least) can
be used to decide whenever use one variable in place of another:

1. Position along a common scale

2. Position on identical but non-aligned scales

3. Length Angle and Slope (with θ not too close to 0, π/2, or π
radians)

4. Area

5. Volume, Density and Color saturation

6. Color hue

Whenever possible it is advisable to prefer the topmost aspect to en-
code the information, so that it can be decoded more effectively; More-
over, when defining a visualization, it is important to focus on the as-
pect of the data that needs to be communicated, and do it in the most
explicit possible way. When presenting series of data, for instance, it
is advisable to explicitly plot the difference between values if that is
a key aspect; not doing so would force the user to estimate slopes or
distance (length) in order to infer that information.

3 PSYCHOLOGY OF RISK

Psychologists have accumulated a large body of research examining
the ways that people understand and estimate risk. Most of this re-
search has been conducted within the framework of “heuristics and
biases” pioneered by Daniel Kahneman, Amos Tversky and their col-
leagues in the 1970s [43, 23]. This framework posits that, when es-
timating probabilities, people tend to rely on heuristics or “rules of
thumb” which give reasonably good approximations under some cir-
cumstances. For example, when estimating the frequency of an event
people may rely on the “availability heuristic,” in which they make
their estimate proportional to the ease by which an example of the
target event can be brought to mind [42]. This works well when the
subjective indicator (ease of recall) is correlated with the frequency
of the target event, but when it is not the availability heuristic breaks
down. The two may become uncorrelated for various reasons, such as
exposure to mass media which tend to focus on dramatic and unusual
events, such as homicide or airline accidents, and ignore more routine,
less sensational events, such as common diseases or car accidents. For
example, when asked to rate the probability of a variety of causes of
death, people tend to rate more “newsworthy” events as more likely
because they can more readily recall an example from memory [28].
These systematic deviations from estimates arrived at by our best nor-
mative theories such as the probability calculus are known as cognitive
biases.

In addition to the availability heuristic, Tversky and Kahneman
identified various other heuristics, of which the two most important are
representativeness, and anchoring and adjustment. The representative-
ness heuristic is used when a person is asked to estimate the chances
that an item belongs to a category. They observe that people tend to
use similarity to guide their judgment. For instance, an introvert and
tidy person is more likely to be associated with being a librarian than
with being a salesman or farmer because the description is closer to the
librarian stereotype. One shortcoming of this heuristic is the insensi-
tivity to prior, which means ignoring (or not adjusting enough for) the
base rate of librarians against farmers and salesmen in the general pop-
ulation, even when those rates are explicitly stated. Another reported
bias associated with the representativeness heuristic is insensitivity to
sample size, i.e., not accounting for the fact that deviations from popu-
lation statistics are more likley in small samples than in large samples.
The anchoring and adjustment heuristic corresponds to the process of
starting from a base value (either given or quickly estimated) and mak-
ing adjustments to it. This heuristic is useful when asked to provide
a numerical prediction. One limitation of this rule of thumb is that
people can be very much influenced by the base value they start from
and do insufficient adjustments. This is especially salient when the as-
sessment process suggests a starting value. For instance, Tversky and
Kahneman [43], report that when asked to estimate the percentage of
African countries within the United Nations, people from the group
that was asked first whether this number was more than 10% reported
on average significantly lower estimates that those from the group who
were asked directly.

Having identified heuristics and associated biases, psychologists are
now attempting to devise ways to help people overcome their limita-
tions. Various “debiasing” methods have been developed, with vary-
ing success. For example, Gigerenzer and Hoffrage have shown that
some cognitive biases are diminished when statistical information is
presented in terms of natural frequencies as opposed to probabilities
[16]. They argue that this is because frequency formats correspond to
the sequential way information is acquired in natural sampling, such
as in animal foraging, which our brains have been shaped to do by
natural selection. Such research suggests that new forms of data vi-
sualization could provide “corrective” representations that might help
counter the documented cognitive biases. For example, Inbar [20] dis-
cusses graphical representations of probabilities in which care is taken
to counter the documented biases in judgment and decision-making.
In particular, he designed an experiment dealing with Allais’s paradox
[2], also known as the “certainty effect,” in which people overweight
outcomes that are certain, relative to outcomes which are merely prob-



able 1. While the sample size was small, they found that graphical rep-
resentation of the expected value resulted in people making different
choices than when presented with the (original) textual description.
They speculate that the graphical presentation reduced the cognitive
load in computing the probabilities. They also investigated the Ells-
berg paradox, which is generally interpreted as uncertainty aversion.
However, in this case the graphical representation they devised did not
result in a change in participants’ behavior.

Finally, there is a prolific literature related to risk perception which
focuses on identifying the characteristics of risks that (i) make them
be over or underestimated by the general public and (ii) make some
more acceptable than others. A recent cover story of Time magazine
explores Americans’ faulty risk perceptions [25]. [38, 39] provide a
review of the work that has been carried out in that domain in the past
decades. In particular, researchers have observed that two aggregate
factors can predict the perceived risk of diverse hazards. The first one
labeled dread captures characteristics such as whether the hazard can
be catastrophic, involve fatalities, or cannot be controlled. The second
factor captures whether the risk is known and is based on whether the
hazard is observable, its effect immediate or delayed, and whether it is
known to science. Some of the findings are especially relevant to the
visual communication of risk. For instance, there is strong evidence
that the way of presenting the information, e.g., choice of unit or pre-
senting mortality rates versus survival rate, influences people’s percep-
tions of and reactions to risk. Also, a very recent study [30] explores
how people are influenced by political borders in their perception of
disasters (such as earthquakes or radioactive accidents) which do not
respect borders. They report in particular that whether to present a
map with light or dark borders had a significant effect on the perceived
risk from an environmental hazard (radioactive contamination). Peo-
ple presented with light borders provided higher estimates of risk than
those provided with a map with dark border.

4 UNCERTAINTY VISUALIZATION

In [21] Johnson and Sanderson make a strong case that the visualiza-
tion community needs to do a better job of taking seriously the need for
visual representations of data to include error and uncertainty informa-
tion. They note that the geographic information systems community
carried out some of the earliest work on two- and three-dimensional
representations of error and uncertainty in terrain models. The ex-
amples given include representations showing the differences in flow
estimation using different integration algorithms, and tubes showing
the uncertainty in a particle’s path. They point out that blurring can be
an excellent choice for conveying uncertainty, as it is intuitively asso-
ciated with uncertainty by users. However the emphasis in this work is
primarily in the scientific visualization arena, where it is often easier
to devise a “natural” representation of uncertainty, such as blending
away a color in a terrain map.

Perhaps the most thorough body of work on uncertainty visualiza-
tion is by Zuk ([49],[48]). In [49], Zuk evaluates several previously
reported methods for visualizing uncertainty using the perceptual the-
ories of Tufte, Ware, and Bertin[12, 8, 4]. The evaluations presented
in this work are primarily related to scientific visualization, where un-
certainty is manifested in lack of knowledge about the exact direction,
magnitude, size, etc. of entities in a two or three-dimensional visu-
alization. Methods used include arrows with angular extent to signify

1Specifically, people tend to prefer 1 Million (monetary units) for sure to a

lottery offering a 10% chance of winning 5 Million, a 89% chance of 1 Million

and a 1% chance of winning nothing. At the same time they prefer a lottery of-

fering a 10% chance of winning 5 Million and 90% chance of winning nothing

to a lottery offering an 11% chance of winning 1 Million and a 89% chance of

winning nothing. Such preferences are inconsistent with expected utility deci-

sion theory, when one considers that in both cases, 89% of the time exactly the

same result will occur within the choices offered (either a win of 1 Million in

the first example or a win of nothing in the second example), and the remaining

probabilities remain the same for either scenario (the person must now choose

between a 1% chance of winning nothing and a 10% chance of winning 5 Mil-

lion on one hand, vs. a sure win of 1 Million on the other). Even though the

two scenarios appear equivalent, most people make opposite choices.

uncertainty in direction, volume rendering (hence fuzziness) to encode
uncertainty in actual location of molecules, and transparency to sug-
gest the speculative nature of archaeological reconstruction. A major
contribution of Zuk is to offer the observation that, given the time-
consuming nature of full user studies, including the theories of Tufte,
Ware, and Bertin early in the design process of a visualization can
provide a “light-weight” source of guidance.

In [48], Zuk extends the analysis of [49] to also include some ad-
ditional application areas, including a medical diagnostic reasoning
application. The application involved an evidence-based-medicine
(EBM) reasoning system for pulmonary embolism (PE) diagnosis.
The situation is complicated by the combination of high mortality if
the condition is present, while a significant fraction of patients sus-
pected of PE do not actually have it, and testing and intervention can
be invasive and dangerous on its own; that is, false negatives may lead
to mortality, and false positives to unnecessary treatment with poten-
tially serious side-effects. EBM attempts to use best-practices, and
best-available historical data, to choose the optimal course of action
based on the current presented set of patient observables and test re-
sults. Naturally it is important to include base rate information in any
computation of the likelihood that a particular patient has PE. Given
the the existence of conjunction errors even with statistically savvy
participants [44], Zuk suggests that it is advantageous to build a rea-
soning system that explicity exposes the application of Bayes Theo-
rem to the situation at hand. This is similar to the “risk transparency”
of Kurz-Milcke, which is discussed in Section 5. An important point
which Zuk makes is that the diagnostic decision tree should be shown
at any point in which the physician is expected to be guided by the
predetermined strategy. Visualizing the tree may reduce unnecessary
uncertainty as to why the system makes suggestions, and increase con-
fidence when following or disregarding recommendations. He points
out that not providing this information can lead to the physician trying
to “game” the system to ensure the recommendation that the physician
already believes is the correct one. As much information as is present
should be available for the practioner to access to gain confidence in
the findings. In this work he also proposes a set of heuristics that
would inform a quality visualization (and these are applicable whether
we are speaking of uncertainty or data variables in general). These are

• Ensure visual variable has sufficient length

• Preserve data to graphic dimensionality

• Put the most data in the least space

• Provide multiple levels of detail

• Remove the extraneous

• Consider Gestalt Laws

• Integrate text wherever relevant

• Don’t expect a reading order from color

• Color perception varies with size of colored item

• Local contrast affects color and gray perception

• Consider people with color blindness

• Preattentive benefits increase with field of view

• Quantitative assessment requires position or size variation

He also presents seven “directives” to support uncertainty visual-
ization (which are of course described in detail in his thesis):

• Provide support for cognitive task simplification

• Support emphasis and de-emphasis of uncertainty information

• Support viewing of uncertainty as metadata and separately as
data



• Allow the user to select realizations of interest

• Mitigate cognitive heuristics and biases with reasoning support

• Provide interaction to assist knowlege creating

• Assess the implications of incorrectly interpreting the uncer-
tainty

In [32], Pang et al. focus primarily on the scientific visualization
arena in suggesting a variety of ways to encode uncertainty. The au-
thors describe a classification of data and its associated uncertainty.
This classification includes value of datum and its associated value un-
certianty, location of datum and its associated positional uncertainty,
extent of datum location and value, visualization extent, and axes map-
ping. The visualization methods they discuss include adding glyphs,
adding geometry, modifying geometry, modifying attributes, and ani-
mation. Of these, the last two are perhaps the most relevant to an infor-
mation visualization application. An example of modifying attributes
would be to use texture, transparency, or color to indicate more or
less uncertainty, and an example of animation would be to show two
or more versions of a graphical display with animation transitioning
between them.

Skeels et al. [37] deal specifically with the issue of uncertainty in
an information visualization context. They began with an initial taxon-
omy of uncertainty: approximation, predictions, inconsistency, incom-
pleteness, and credibility. They then recruited a set of 18 participants
who self-identified as dealing with uncertainty in their work. They
conducted extensive interviews with these people and then attempted
to classify their responses with respect to the sources of uncertainty
in their work. From this analysis they derived a new classification
scheme wherein uncertainty can be thought of as residing in three “lev-
els”: level 1 is uncertainty due to limited measurement precision, level
2 is uncertainty due to measurement incompleteness, and level 3 is un-
certainty due to modeling, predictions, or extrapolation. The concept
of disagreement spans all these levels; for example at the measure-
ment level (level 1), measurements may disagree when taken multiple
times or by different measurement devices, At the completeness level
(level 2), disagreement may come from overlapping but not identical
datasets, and at the inference level (level 3), disagreement may come
from different models used to describe the process. Another aspect of
uncertainty which spans all the levels is credibility, which is also the
most difficult to characterize precisely; credibility often comes from
past experience and built relationships. When asked about how they
visualized uncertainty, the most common response by participants was
error bars or some generalization of error bars. Some participants de-
scribed using color to indicate regions of greater or lesser uncertainty.

In [5], Bisantz et al. evaluate the relative effectiveness of several
methods of encoding the uncertainty in the true value of a stock. Par-
ticipants in the study are given the goal of maximizing their profit
based on the (imperfect) information they receive. Uncertainty is
shown as either a linguistic expression, a colored icon, or an arrow
icon. The speed of decision-making increases the “profit” of the par-
ticipant, so it is important that the information be presented in a way
that is quickly grasped. The authors found that degraded graphical
icons are a viable method for communicating uncertainty.

Sanyal et al. [34] present a user study that evaluates the percep-
tion of uncertainty amongst four methods for displaying it: error bars,
scaled size of glyphs, colormapping on glyphs, and colormapping of
uncertainty on a data surface. These techniques are again primarily ap-
propriate for scientific visualization application areas. In their study,
they applied these techniques to both one-dimensional (defined as
samples from a curve) and two-dimensional (defined as samples from
a surface) synthetic data sets, with well-defined criteria for successful
interpretation of the graphics. The application area which motivated
this work was geoscience, so for example remotely sensed data, ob-
served data a buoys, or simulated weather data. They considered both
measurement uncertainty (assumed to be normally distributed about
the true value) and systematic uncertainty in particular regions of the
data. The researchers found that some graphical methods were more

effective in searching for regions of highest uncertainty, while others
were more effective in counting the number of actual features in the
data. Overall, however, error bars performed poorly compared with
the other evaluated techniques.

Thomson et al. [41] present a typology of the various kinds of
uncertainty that must be considered in a visual presentation, with an
emphasis on the application area of intelligence analysis. They discuss
a typology of different sorts of uncertainty in a variety of application
areas and present their own list of categories, including accuracy, pre-
cision, completelness, consistency, lineage, currency, credibility, sub-
jectivity, and interrelatedness. However, they do not extend their work
to presenting visual metaphors for the different sorts of uncertainty.

In [31], Olston and Mackinlay carefully distinguish between sta-
tistical uncertainty, which can be represented with error bars, and
bounded uncertainty, which has very different properties. Unlike
statistical uncertainty, which has a potentially infinite distribution of
possible values, with a peak representing a most likely value, with
bounded uncertainty the exact value is known to lie within an interval,
though no most likely value can be defined. Error bars, a staple of
data display when there is statistical uncertainty, are typically used in
conjunction with an estimated exact value, and thus can be misleading
in the case of bounded uncertainty. The authors suggest that a method
they call ambiguation be used to represent bounded uncertainty. In
ambiguation, graphical elements are elongated in one or more direc-
tions to represent the range of possible value. For example, a scat-
terplot in two dimensions would display rectangles rather than dots,
where the extent of the rectangle in the x and y dimensions would rep-
resent the possible range of the value. The technique can be applied to
line plots, pie charts, barcharts, etc. as described by the authors, and
they give explicit direction as to how to best approximate the appro-
priate display when an exact manifestation of the bounded uncertainty
is impossible.

5 HEALTH RISK COMMUNICATION

When considering the topic of risk communication, it is natural to
consider the health domain. The practice of medicine is full of un-
certainties which need to be communicated to patients. Diagnoses are
rarely certain as symptoms can be linked to a variety of causes and are
not uniformly expressed among the population. Tests are imperfect,
yielding both false positives and false negatives. Treatments do not
necessarily have a certain outcome as they depend on a variety of fac-
tors such as existing conditions. Drugs rarely come free from potential
side effects. In other words, heath and medicine provide a wealth of
opportunities to communicate risk and uncertainty.

The website http://www.yourdiseaserisk.wustl.edu/english/ pro-
vides an example of health risk communication. There, one can take a
variety of questionnaires to assess one’s own medical risk for a diverse
set of conditions (several cancers, diabetes and heart disease among
others). In that website, they have chosen to communicate the risk as
shown in Figure 1.

One of the most salient requirements of risk communication in
the health setting is the need to have an easily comprehensible and
non-ambiguous representation of a difficult concept: probability. The
fact that in this application area probabilities are generally small com-
pounds the difficulty because of known biases related to small prob-
abilities [24]. Indeed, people have a tendency to distort their impor-
tance, either overestimating them or simply neglecting them.

One example of ill-managed communication of risk is about the
increased risk of venous thromboembolism associated with third gen-
eration birth control pills. In Britain in 1995, a public announcement
by the Committee on Safety of Medicines reported that third gener-
ation contraceptives were associated with roughly a doubling of the
adjusted odd-ratios of having thromboembolism. By this they meant
that the risk increased from 15 per 100,000 person-years for women
taking the second generation pill to 25 per 100,000 for women taking
the third generation pill. However, if simplified as “third generation
pills increase the risk of thrombolembolism by 66%” it makes it un-
clear whether the total risk is high or not and led to a widespread dis-
continuation of the pill and to thousands of unwanted pregnancies and



Fig. 1. Screen capture from http://www.yourdiseaserisk.wustl.edu/english. Figure A displays the risk of breast cancer for the hypothetical person
relative to the general population and Figure B provides some explanation as to the contributors to risk.

abortions.

5.1 Survey Papers

Lipkus and Hollands [29] provide an early survey of the work to date
in risk visualization, with a concentration on medical risk. They point
out that at a minimum, a graph illustrating risk must communicate dif-
ferent risk characteristics such as risk magnitude, relative risk, cumu-
lative risk, uncertainty and interactions or synergy among risk factors.
They summarize the literature around several different sorts of visual
displays. The risk ladder, which displays a range of risk magnitudes
such that increasing risk is portrayed higher up the ladder, was found
to help people anchor a risk between upper and lower reference points.
Perceived risk was often influenced more by the location of the risk on
the ladder than by the actual numerical value of the risk. Risk lad-
ders are especially useful to convey the risk associated with unfamiliar
events against more familiar ones. Figure 2 provides an example of
such risk scale in the case of risk of death from various causes.

Fig. 2. Example of a risk ladder.

Stone et al. [40] point out that when possible, graphs should con-
tain a reference point indicating when a hazard has reached a level that
requires action, along with advice about the action to take. They also
provide some guidelines for maximizing the effectivness of graphs: to

avoid area or volume to depict quantities due to the optical illusion is-
sues that are involved, to consider the aim of the visual representation
(is the viewer being asked to compare two risks, to assess a trend, etc.)
They also apply the work of Cleveland and McGill [7] to determine
which visual methods are most applicable to particular tasks. For ex-
ample, when you are interested in perceiving a precise risk magnitude
or to compare two risks, then line charts, bar charts, and histograms
are likely to lead to the best accuracy. They recommend minimizing
the number of mental operations, thus to directly present that which
the viewer is expected to compare.

The 2006 review by Ancker et al. [3] provides a recent survey of
the main issues related to the communication of risk in a health setting,
along with the current experimental research in this domain. They
focus more specifically on quantitative information. It is in fact an
update of Lipkus and Hollands [29]. In this paper they discuss (i)
the relationship between graphical features and the ability of people
to understand the risk (ii) the consequences of graphical features in
terms of induced risk behavior (iii) the factors (numeracy, other) that
influence the user-friendliness of graphical representations over others.

Indeed, depending on the purpose of the communication, one may
follow different objectives. A public policy pamphlet may well seek to
influence people’s behavior while in a one-to-one discussion between
a patient and his/her doctor, the focus is more likely to be on making
sure the understanding of the risk is accurate. Finally designers of a
decision support tool may also seek to identify factors that make com-
munication about risk more pleasant and thereby increase the chances
of adoption of their tool. In fact, one of the findings of the review is
that

“graphical features that improve the accuracy of quantita-
tive reasoning appear to differ from the features most likely
to alter behavior or intentions. For example, graphs that
make part-to-whole relationships available visually may
help people attend to the relationship between the numer-
ator and the denominator, whereas graphs that show only
the numerator appear to inflate the perceived risk and may
induce risk-averse behavior.”

Two other reviews are Fagerlin et al. [13], and Kurz-Milcke et al.
[26]. Kurz-Milcke et al. review best practices for communicating
risks such as the use of graphical representation over text format, the
specification of part-to-whole relationship to help scale the risk, the
use of icon arrays, and the use of simple decision trees for doctors
making emergency decisions. Several examples in the paper focus
more specifically on the communication of tests results such as HIV
tests or Down syndrome tests during pregnancy.



An extensive overview of the status of the research on risk commu-
nication to date, including a list of best practices in health risk commu-
nication can be found in Fagerlin et al. [13]. In this paper, the authors
discuss several specific examples of communication of risk, identify-
ing their advantages and limitations and suggesting improvement for
increasing the clarity of the information.

In addition to risk ladders, other common representations of risk
are icon arrays and mortality curves. An example of icon array is
presented in Figure 3.

Fig. 3. Example of an icon array.

The risk is represented by coloring a subset of the icons in a cho-
sen color so as to represent the incidence of the risk within a reference
population. As discrete representations of risk, they are more intu-
itive to comprehend. Many studies have compared icon arrays with
the more traditional bar charts. The Shapira et al. ([35]) study is based
on focus groups. The frequency representation through icon arrays
was felt easier to understand and more accessible than the bar chart
which was perceived as analytical. However, bar charts were felt to
be useful for comparison purposes. The denominator appears to have
some influence on the risk perception: larger denominators are asso-
ciated with lower risk. This finding applied in fact both to graphical
representations (icon arrays) as to text (1 in 10 versus 10 in 100). Also,
they report that random arrangements of the icons do not provide many
benefits and significantly hamper the ease of interpretation. Similarly,
results from Zikmund-Fisher et al. ([46]) shows that displaying fewer
options and displaying them in an icon array format has significant in-
fluence on the understanding of the patients (measured by increased
knowledge accuracy). Another of the advantages of icon arrays is that
they can display the part-to-whole relationship, thus ensuring a less
biased perception of the risks.

Finally, survival and mortality curves are used to indicate the evo-
lution of risk over time. The addition of a dimension (i.e. time) makes
them cognitively challenging. Figure 4 provides an example of a sur-
vival curve in the case of survival rate for various types of cancer.

Survival and mortality curves often provide part-to-whole informa-
tion but in a less straightforward way as other representations (stacked
bars or icon arrays for instance). Studies have shown that instruction
is very efficient at improving the understanding of such curves. In ad-
dition, it appears that survival curves are easier to grasp than mortality
curves [3]. The choice of timeframe to represent such risks is also im-
portant. Schapira et al. [35] report that the younger focus group had a
strong preference for 10 years while older focus group leaned toward
a lifetime risk representation.

5.2 Specific Topics in Health Risk Communication

We discuss in this section a few of the important research topics related
to health risk communication.

While many researchers focus on visual support, there also has been
research into the verbal and numerical text presentation of risk infor-
mation. In Ancker et al. [3], the authors state “Future research should

Fig. 4. Example of a survival curve.

also integrate the literature on comprehension of different number for-
mat (percentages, rates) to avoid confounding from the use of hard-
to-understand numbers in graphs”. In fact, Shapira et al. [35] study
whether to present information as frequency (1 in 10) or as a proba-
bility (10%). Investigation has shown that frequency was perceived
as simpler, easier to interpret and conveyed a “human” dimension
whereas probability was felt as mathematical but more strongly related
to personal risk. For the frequency format, some felt that a low denom-
inator conveyed an idea of lack of reliability of the data (because it was
associated with a small sample size). Stone et al. [40] investigate the
possible reasons for increased risk avoidance when graphical rather
than numerical displays are used. They found that in fact it was due
to the fact that the graphical display highlighted the number of people
harmed, introducing a “foreground salience” effect. This points to the
importance of transparency in presenting both the numerator and de-
nominator of the risk equation if one wants to communicate the true
risk of a situation. Of course if “influence” is the goal of the commu-
nication (for example, decreasing risky behavior) then the foreground
salience effect may be used to advantage. Regarding verbal represen-
tations, there is usually consensus against relying solely upon a verbal
description because of the lack of reliability of mapping terms to a
numeric scale [13].

Another specific topic in risk communication, yet less researched
than the communication of single risk estimate, is the ability to pro-
vide a fair comparison of the risk evaluations. In Zikmund-Fisher et
al. ([45]) and in Zikmund-Fischer et al. ([47] the authors consider
the problem of communicating the risk of side effects from medica-
tion. Currently, in the United States, it would be presented as: “9%
of people using Drug X experience heartburn, 5% of people in control
group experience heartburn,” thus describing for each case the total
risk. Such a framing overemphasizes the risk from the medication.
The authors postulate that presenting the baseline risk and the incre-
mental risk instead would be better. For instance “5% of people expe-
rience heartburn without medication, but an additional 4% experience
heartburn when taking Drug X”. They test their hypothesis through
two large internet-administered surveys and one with an actual patient
sample where they present side effect risk under a variety of forms (in-
cremental or total risk, text only or text + graphics, with 100 or 1000
denominator). The results confirm that presenting risk incrementally
does lower the risk perception and reduces the worry level of the pa-
tients. However, in the study on actual patients [47] they found that it
has a negative effect on the qualitative understanding of the risk (such



as being able to correctly identify what group -those taking medicine
or not- is at a higher risk of developing specific side effects). This
negative consequence can be alleviated by presenting the risk in a pic-
tograph / icon array format rather than in a numerical text format.

Finally, communicating uncertainty in risk estimates is essential in
providing patients with a fair picture of the information although it
adds even more complexity to the communication hurdle. Few studies
seem to have looked at this specific issue [3]. One exception would be
Shapira et al. [35], where the authors tested whether or not to provide
an idea of the uncertainty along with the risk estimates. Specifically,
they presented a risk either as a single point estimate or as a range. Ed-
ucational level had a strong influence there on the preferences. Less-
educated groups felt that the range representation conveyed vagueness
while complicating the understanding. On the contrary, more educated
groups felt that it did convey a notion of the scientific uncertainty re-
lated to the data and should be communicated to the patients.

In the decision analysis community, there has also been some re-
search into defining a unit for small risks related to life-and death.
Howard [19] advocates the use of the micromort, representing one
chance in a million of dying as a more natural measure than chance of
dying. While a simple rescaling, it enables a more meaningful com-
parisons among risks from those associated with commuting by car to
skydiving to medical risks. In that sense it is akin to risk ladders.

In parallel with core health risk communication research, there has
been several investigations into the link between numeracy, defined as
the quantitative skills required for understanding numerical informa-
tion, and people’s ability to correctly interpret health risk information.
Fagerlin et al. [13] report that poor numeracy skills are associated
with a higher chance of poor health outcome, because of the difficulty
of following complicated treatment instructions. This is an impor-
tant challenge for the healthcare community as it is reported [1] that
in 2003 20% of Americans have poor (below basic) numeracy skills
It has been shown in particular that poor numeracy is linked with an
over-estimation of risk and a difficulty in estimating the benefits of a
procedure. In turn, this implies that people with low numeracy are
more likely to choose a treatment option that is not aligned with their
preferences.

Given the importance of numeracy, Fagerlin et al. [14] developed
an alternative to the objective numeracy test that asks patients about
their preferences regarding the communication of numerical informa-
tion. Such test presents the advantage of being faster and more prac-
tical to administer as it can be done over the phone or the internet (no
cheating needed as there is no wrong answer) , and perceived as much
less judgmental than the objective test.

There are also tests specifically designed to evaluate functional
health literacy in patients which combine both reading and compre-
hension exercises with numeracy exercise such as (i) determining the
next time a pill should be taken if one needs to take a medicine every
six hours and has last taken it at 1pm or (ii) determining if ones vital
reading (blood pressure for instance) is within the normal range, with
the normal range being clearly specified. One such test is described
in Baker et al (1999) which according to the authors can be admin-
istered in almost half the time (from 22 minutes to 12 minutes), as
the TOFLHA [33] test with similar reliability (self-consistency) and
validity (as compared to a third health literacy test REALM [9]).

Some research has focused also on the appraisal of the commu-
nication of risks in existing decision support tools. Glasspool et al
(2010 Interactive Decision Support for Risk Management). This pa-
per presents the REACT tool that has been developed researchers
in England with the objective of communicating the risks associated
with breast cancer. In particular the REACT tools enables to gather
information- facts(demographics) and past decisions (such as taking
the birth control pill or breastfeeding)- and to evaluate their effect on
the lifetime risk, thereby providing a personalized risk profile to the
patients. The tool also provides the ability to explore the effect of spe-
cific interventions (oophorectomy for instance) on the risk profile. In
the paper, the authors report the reaction of eight genetic counselors
that used the tool as support during test interviews with actors. Over-
all, the reaction of counselors is positive in particular they appreciate

the dynamic aspect of the risk profile. However, they were also con-
cerned about whether and under what format to communicate the risk
profile, fearing that it over-estimates both the baseline risk and the ef-
fect of interventions.

Zikmund-Fisher et al. [46] describe an experiment where they com-
pared the current risk displayed provided by Adjuvant Online with al-
ternate designs. Adjuvant! Is an online calculator target at clinicians
but oftentimes used during patient-doctor discussion about adjuvant
therapy decisions (chemotherapy and/or hormone therapy) in order to
reduce the likelihood of cancer recurrence and thus mortality risk. The
current display of risk for adjuvant was a bar chart with four bars,
one for each option (no therapy, chemotherapy only, hormone ther-
apy only or combined therapy). A study on more than 2000 randomly
selected women was undertaken to compare the performance of the
current graphic with three other designs:

• Four options but displayed as icon arrays side-by-side

• Only two options (removing the no therapy and chemotherapy
only options) as bar chart

• Only two options as icon array.

Beyond improved accuracy when displaying information through
icon arrays, the results suggest that simplifying the graphics in that
manner appeared to significantly reduce the answer time. Nonetheless,
the authors conclude that the accuracy is still far from perfect (around
70%) and therefore that further improvements are required.

Before concluding this section on health risk communication, one
nuance to keep in mind is that there can be a discrepancy between peo-
ple’s preferences (in terms of how they would like to be communicated
risk) and the support that they interpret best. Elting et al. [10] found
that doctors performed worst with the format they liked best, and best
with the one they strongly disliked.

6 RISK VISUALIZATION IN GENERAL

The risk visualization literature in the medical risk area focuses on risk
primarily in the situation of a discrete probability distribution (eg. the
chance of having a particular side effect from a medicine or treatment,
vs. not experiencing such an effect, or the chance of having a disease
based on a positive result on a test, or not having such a disease).
We are interested as well in continuous probability distributions which
complicates the communication task.

Epper and Aeschimann [11] summarize the state of the art of vi-
sual risk communication with a number of examples. These exam-
ples are primarily in the area of flow charts and cause-and-effect di-
agrams which illustrate which factors may lead to particular risks, or
“metaphorical” diagrams which aim to translate a set of risks into an
image of icebergs with possibly hidden dangers below the surface.

In Li et al. [27], the authors present a model for predicting the risk
and severity of electric power outages. A statistical model is neces-
sary because weather predictions are imprecise. In addition, because
weather data is only available at discrete points, interpolation is neces-
sary, and the accuracy of the prediction will depend on the distribution
of the weather station locations. They use a texture to indicate the
uncertainty of the forecast of the number of outages, with white and
color “striping.” A higher proportion of white indicates a more impre-
cise forecast of a particular severity of outages.

Feather et al. [15] discuss a variety of risk visualizations in the ap-
plication area of a large software and hardware development project.
There are multiple sources of risk to the project, with a variety of mit-
igation strategies with varied cost and effectiveness. They explore
different ways of presenting this information to the user, including
overviews of the level of risk for different parts of the project, compar-
isons of different approaches to mitigating risk, and explorations of the
optimal boundary when considering the cost vs. the benefit extracted
within the huge range of strategies.

Finally we consider work which explicitly considers probability
distributions rather than simply binary events. Shortle and Mendel
[36] present a method for drawing probability densities. While it has



several useful properties, such as allowing recovery of event probabil-
ities, and reducing the dimensionality required to draw the plot than
other methods, it also violates one of the basic principles which we
feel are important in providing an intuitive interface: that the graphi-
cal space occupied by a visual element should correspond linearly to
the data value represented. In fact their form plot has exactly the op-
posite behavior, with the possible result that the typical user may find
it difficult and potentially misleading to interpret.

Haisley et al. study the communication of financial risk [18] and
thus also explicitly address a continuous, as opposed to a binary, prob-
ability distribution. Interestingly, they found that involving users in
a simulation where they “experienced” the risk scenario resulted in
greater risk-taking along with a more accurate understanding of the
true probability of loss.

7 ALTERNATIVE REPRESENTATIONS OF RISK

Here we make some proposals for some alternative ways to visual-
ize a probability distribution. In particular, we focus specifically on
the communication of continuous probability distributions, first in the
general case and then for a specific application area, i.e., transporta-
tion.

7.1 General Case

The most common methods of displaying continuous probability dis-
tributions are

• Probability density functions (abbreviated as pdf), as dis-
played in Figure 5(a) for a gamma distribution.

• Cumulative distribution functions (abbreviated as cdf), as
displayed in Figure 5(b) for a gamma distribution.

• Histograms, which are a discretized version of the probability
density function representation, as displayed in Figure 6(a). This
is one of the most common representations of probability func-
tions for non-scientific audiences.

• Boxplot (also called “box and whisker” plots) as shown in
Figure 6(b). They represent a summary of some of the main
statistics of the distribution: mean and quartiles. For empirical
distributions, they also highlight outliers. They are beloved of
statisticians, as they can show multiple attributes of a probability
distribution simultaneously, but they are rarely used for a more
general audience, as they require a significant amount of training
to understand.

Note that when representing sample data (rather than a theoretical
distribution), it is customary to rely on histograms and boxplots rather
than cdfs and pdfs.

Each of these representations has pros and cons with respect to de-
riving useful information in an easy and intuitive way. Typically, the
information that people seek to extract from a probability distribution
for decision making purposes is as follows:

• Central value (also called location), a single number statistical
parameter representative of the distribution. The most common
candidates for capturing central tendency are the mean, the me-
dian and the mode (most likely value).

• Notion of variability (also referred to as spread), which is of-
ten conveyed through the standard deviation, but can also be ob-
tained from the inter-quartiles range or simply from the shape of
the distribution.

• Percentiles and cumulative probabilities, where percentile is
defined as the value of the random variable below which a cer-
tain percent of observations fall, so in mathematical terms, for

a random variable X , the nth percentile is the value vn such that
P(X ≤ vn) =

n
100 . Oftentimes however, people are interested in

the likelihood of reaching at least (or at most) a certain value v,
which is simply P(X ≤ v) = F(v), i.e., the cumulative distribu-
tion function evaluated at value v.
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(a) Probability density for a gamma function.
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(b) Cumulative distribution function for a gamma function with the

same parameters as Figure 5(a).

Fig. 5. Some standard ways to a probability distribution, in this case for
a gamma distribution with α = 5 and β = 1.

Both the probability density function and the cumulative distribu-
tion function representations can provide all the information listed
above but often this is through mental calculations. For instance, while
the central value and variability can be somewhat assessed (and com-
pared) from the shape of pdfs, percentiles require estimation of the
area under the curve (integration). The cdfs, by contrast, provides di-
rect information of the percentiles but are much less intuitive in terms
of understanding central value or variability. Histograms, because they
are a discretised version of the pdfs, imply a loss of information. This
feature however makes the estimation of percentile easier, as area es-
timation is replaced by the addition of the relevant categories. Fi-
nally, boxplots, which represent a summary of the pdfs through a set
of statistics, also enable, for the trained user, a fast evaluation of cen-
tral value and variability but provide limited ability, even with mental
calculations, to obtain percentiles or their cumulative probabilities.

We are interested in alternatives which may be simultaneously eas-
ier to understand and information-rich, particularly for the typical con-
sumer of information, who is probably not scientifically-trained. For
example, we seek to find representations that enable at the same time
to estimate central value, variability and cumulative probabilities. We
feel that providing sufficient granularity is essential in a number of
real-case scenarios such as, for instance, some persons may need to
determine the probability of being more than 10 minutes late, while
another may be interested in the probability of being more than one
minute late. A graphical presentation that allows both of these to be
easily derived is advantageous.

As discussed in Section 5, icon arrays have been found to be well-
understood by people. One characteristic of icon arrays which may
contribute to their success is that the icons naturally represent a pro-
portion of the whole. When arranged in a rectangular form, they also
naturally convert the probability, or percentage, to a length. As dis-
cussed in Cleveland and McGill [7], using length within an image is
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(a) A histogram showing probability density for duration of travel

time (simulated data).
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(b) Boxplot showing the statistics of the duration of travel time

for the same data as shown in Figure 6(a). The box itself outlines

the region between the 25th and 75th percentiles, with the median

represented by the vertical line within. The plot “whiskers” extend

to the most extreme data point which is no more than 1.0 times the

interquartile range (between the 25th and 75th percentiles) from

the box. The many overlapping circles to the right represent the

“outlier” points which in this case, are all at the upper end of the

data range.

Fig. 6. Some standard ways to display the statistics of sample data.
Note how both the histogram and the boxplot capture essential details
of the distribution such as central tendancy, skew, and outliers.

appropriate for comparing quantities. We keep this fact in mind when
designing possible graphical representations of probability.

7.2 Application Area: Travel Times

As risk perception and communication greatly varies with the appli-
cation domain, we decided to focus on a particular area to provide
some practical examples. With the collaboration of a metropolitan bus
authority we researched novel ways to represent travel time within the
city bus network. Using recorded GPS traces from buses, we were able
to compute the distribution of deviation times from expected at points
along a bus’s route. Figure 7(a) shows a representation of this data.
Here we show the (cumulative) probability of different amounts of
“delay” (negative delays correspond to the bus being ahead of sched-
ule). As can be seen, the delay starts at zero at the time the bus leaves
the starting depot. This is a snapshot from an interactive visualization
in which the user can select different spots along the route; here the
mouse is at a point approximately 6km along the route, and the label
at the bottom left indicates that the median delay at this point is neg-
ative 25 seconds. The probability distribution itself is shown using a
diverging map using ColorBrewer [6], with a breakpoint at the median
of the probability distribution. We plan to integrate this visual presen-
tation with a map of the city bus system, so that the location along the
route can be interactively associated with the two-dimensional loca-
tion in the city. Figure 7(b) shows such a map which is currently in

use to highlight in real time not only the location of a particular bus,
but portions of the route for which the bus was ahead of (green) or
behind (red) schedule.

(a) Cumulative probability of delay relative to scheduled time for a particular bus

route. Color map is a diverging color map based on ColorBrewer [6]

(b) One bus route in the system. A current bus location is indicated with an icon,

and regions of advance or delay relative to scheduled time are shown in green or red

respecitvely.

Fig. 7. Screen shots from visual representations of the probability of
delay on an urban bus route.

8 CONCLUSION

We provide in this paper an overview of the literature related to the
visual communication of risk, which we understand as continuous or
discrete distributions. We focus in a large part on the healthcare do-
main which has received significant attention in terms of communi-
cating risks associated with conditions, treatments and side effects.
We observe however that most of the risk information represented is
about discrete probability distributions, while many real life situations,
whether within the medical domain or beyond, call for the communica-
tion of continuous probability distributions. We discuss standard rep-
resentations of the latter and propose a modified representation which
we feel provides relevant information more easily. Finally, we discuss
the communication of continuous distributions in the specific case of
transportation.

This paper specifically investigates the visual communication of
risk through the representation of its mathematical estimation. How-
ever, as we discussed in section 3, public perception of risk is not lim-
ited to quantities but also includes qualitative factors about the charac-
teristics of the risk. Therefore, a natural direction for future research
would be to explore how to best communicate the qualitative aspect
of the risk along with its quantitative characterization. In the case of
travel time for instance, people may want to obtain a description of
the source of the risk, whether it is traffic jams, mechanical failures,



transfers or even strikes, specially as they probably would associate
different dread and unknown grades to each of the sources.
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