
RC25297 (WAT1207-049) July 23, 2012
Computer Science

IBM Research Report

User Friendly Web Application Firewall with
Client Pre-Checking

Vugranam Sreedhar
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Peng Ji
399 Keyuan Road

Zhangjiang Chuangxin
No. 10 Building, Zhangjiang High Tech Park

Shanghai 31 201203
P.R. China

Lin Luo, Shun Yang, Yu Zhang
IBM Research Division

China Research Laboratory
 Building 19, Zhouguancun Software Park

8 Dongbeiwang West Road, Haidian District
Beijing, 100193

P.R.China

Mary Ellen Zurko
IBM Software Group

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

User Friendly Web Application Firewall with Client Pre-checking

Vugranam Sreedhar
IBM TJ Watson Research Center, Yorktown Heights, NY 10598

Peng Ji
IBM China Research Lab, Shanghai, China, SH 201203

Lin Luo
Shun Yang
Yu Zhang

IBM China Research Lab, Beijing, China, BJ 100094
Mary Ellen Zurko

IBM Software Group

July 23, 2012

Abstract

In this article we present our experience in developing a user friendly Web Application Firewall (WAF) feature,
called SERFS, that provide a useful and friendly feedback to the end user when one or more requests are filtered or
blocked by the WAF. SERFS provides appropriate friendly templates and rules to make the client/server interactions
as transparent as possible. When dealing with forms, SERFS will back fill legitimate values and provide hints to
illegal values. An application rule developer can either use SERFS’s friendly templates or develop new templates to
ensure that the usable security mechanisms are consistent with existing application logic. To improve the response
time SERFS also issues JavaScript components to the client browser for pre-checking client requests. If a pre-
checked request still contains non-compliant requests, SERFS will identify them as being suspicious and perform
further analysis to either block the request or ask the end user to re-authenticate the session. We have implemented
SERFS, and we present preliminary empirical results to validate our user friendly features.

1 Introduction
A Web Application Firewall (WAF) is often used to provide a transparent protection and immediate patching for
back-end Web applications when a vulnerability is exposed. A WAF should prevent suspicious requests and allow
legitimate requests. Unfortunately, a WAF is not perfect in discriminating between suspicious and legitimate requests,
which means that it will sometimes allow suspicious requests and deny legitimate requests. When a request is denied
often a WAF will throw one of the standard HTTP error pages [11], such as 500 internal server error.
Typically when a back-end Web application processes bad requests, it will provide a more user friendly and possibly
customized response for such requests, rather than throw a default error page. User experience is extremely important
for Web application in order to attract good end users to visit the Web pages of a Web application.

There are several key challenges for ensuring that a WAF is user friendly: (1) How to provide a friendly error
message that is transparent to the end user and the semantics of the error message should be close to what a back-end
application would respond? (2) How to develop user friendly response features without unduly burdening the rule
developer to implement complex mechanism for customizing friendly responses? (3) How to ensure that the filtering
rules does not compromise the security of the application? In other words, the WAF filtering rules must not expose
security vulnerability details to the end user for which the application might need to keep obscured. (4) Finally, how
to ensure that the response time of error messages does not affect the end user experience?

1

Figure 1: Rule development tool in WASP

It is important to keep in mind that there two ways to think about user friendliness. First is the technical dimension
of mapping error message to a specific context so that the user can recognize, diagnose and recover from the error.
Second is the user experience dimension by ensuring that the user continues with his/her original process, e.g., filling
in a form. By transparent we mean that the user is oblivious as to whether the message came from firewall or the
back-end application, and also the WAF filtering rules must not expose security details to the end user.

In this article we describe the design and implementation of user friendly features of a WAF, called WASP (Web
Application Security Protector), that addresses the above challenges. Our user friendly feature, called SERFS (Smart
Error Response Feedback Service), does not require any modification to back-end Web application. SERFS is based
on three design principles: (1) user friendly responses should be easy to develop and should be customizable, (2)
user friendly responses should be easy to deploy and enabled, and (3) user friendly responses should not degrade the
performance of a WAF.

SERFS contains two main parts:

• The user friendly response feature is typically initiated when a client enters a session with a back-end application,
such as when a login page is visited. The user friendly feature is enabled by first issuing a stand alone AJAX-
based JavaScript (JS) component to a client browser. The JS component is then used to retrieve the friendly
templates from the server-side WASP periodically, and the templates are then stored in the browser cache. When
some violation is detected by the WASP an error message with specified format is returned to the client browser.
The error message is then parsed and processed by the issued client-side JS component. The JS component then
generates the user-friendly security response and back fills user’s legitimate inputs of the application forms
that was previously entered by the user. The backfilling is needed to ensure that the user experience is not
compromised and that the user can continue his form filling process. An interesting aspect of our SERFS
design is that an application developer who wants to patch a vulnerability using WASP can customize the
template and error messaging to be consistent with the existing application logic and client-side logic without
modifying the back-end application.

• To improve the performance when enabling the user friendly response in WASP the SERFS.js components
will perform a number of pre-checking and partial validations on the client side. If a request is pre-checked

2

"Rule":[{
"_id_": "R01",
"name": "Rule01",
"ruledescription": "Checking URL pattern",
"condition" : {
"conditiondescription": "URL pattern condition",
"value" :
"REGEX.NONMATCH(WASPPattern_URL, Request.

Body.Parameter["homepage"])" },
"action" : [{"actionType" :
"FriendlyErrorMessage(’templatedID’,’Request.
Body.Parameter["homepage"]’,’Checking URL Pattern’)"}]

}]

Figure 2: An example of a rule in JSON

and the request still contains suspicious pattern, it will be tagged for further analysis by the WASP engine.
In SERFS design we ensure that the client pre-checking and validation does not compromise the security of
WASP back-end checking. The pre-checking helps in identifying malicious users from friendly users who may
enter non-compliant values in forms due to carelessness. One thing we ensure that if an attacker tampers with
the information used at the client side then that information is invalidated when it is sent to the server side
application.

We have implemented SERFS in WASP and deployed in Apache server with reverse proxy.1 We will report
some initial user experience and also evaluate its user friendly features and the performance. The rest of the article is
organized as follows: Section 2 presents the overview design of SERFS and the WASP rule language and develop-
ment tool. Section 3 describes the detail design of user friendly response in SERFS. Section 4 describes the design
of pre-checking mechanism in SERFS. The user experience and performance evaluation experiment in SERFS are
presented in Section 5. The related work is discussed in Section 6. We will conclude our work in Section 7.

2 SERFS Overview
In this section we give an overview of SERFS and also highlight some of the key components of SERFS. The
development of user friendly response feature in SERFS consists of the following key steps:

• A rule developer will use WASP Rule Development Tool (RDT) and develop one or more security rules with
user friendly response enabled (Figure 1). An application rule developer can also customize the user friendly
response or develop new template that is consistent with back-end application error response. We will show
how to back fill legitimate form values and flag illegal form values.

• When a client user visits the login page of an application, SERFS-enabled WASP injects an AJAX-based
JavaScript component (SERFS.js) along with the response page of the Web application. In this article we
assume that the back-end application response page is a form that the end user will fill and submit back to the
back-end application.2

• The SERFS.js then interacts back with the WASP server engine to retrieve other useful information such as
templates for rendering, pre-checking component, etc.

1We have both C language version and J2EE complaint WASP implementation. In this article we used C language version and deployed as an
Apache module.

2This would be a challenge for mobile application, and we have not addressed mobile application challenges as yet.

3

Figure 3: HTTP Message Model

• When the client submits the form back, SERFS.js will interact with WASP engine to enable user friendly
response when some violation is detected by the WASP engine.

The design and implementation of WASP is based on two key concepts: (1) hierarchical and fine-grain rule
schema with first-class support for URI (Uniform Resource Indicator) templates and REST; and (2) a flexible RDT
and scalable rule execution engine with user friendly responses.

2.1 Hierarchical Rule Schema
We have designed and implemented a fine-grain hierarchical rule schema for WASP to address the problem of fine-
grain protection of Web application without modifying the vulnerable application and preventing loss of any its func-
tionality. The HRS is based on two design principles: (1) Ability to support fine-grain rules to protect hierarchical Web
resources and services and (2) Late binding of rules to message types. A typical Web applications based on AJAX
and REST maintain a large collection of hierarchical resources and services. HRS and rule instances are implemented
and stored as JSON (JavaScript Object Notation) objects and the rules are managed using REST (Representation State
Transfer) services. The JSON representation allows one to enrich the rule schema to include meta-data and other
information. To enable usability for application rule developer, we have seamlessly integrated customizable friendly
responses in our HRS.

The HRS consists of three main parts: (1) HTTP Message Model that define the core model of HTTP message
structure (see Figure 3). The HTTP message model identifies all of the elements of HTTP request and response
messages and their relationships. Our HTTP message model is tailored for writing WAF rules. (2) Rule Model that
can be used for writing firewall rules (see Figure 4). A simple firewall rule is of the form if (condition) then (action),
where condition is one or more constraints on instances of HTTP message model and action is what the security

4

Figure 4: Rule and Rule Set Model

administrator will want to take when the condition is satisfied. (3) Message Rule Binding is necessary to determine
the set of rules that should be triggered at runtime for a given message. The following is an example of a rule:

R01: if (REGEX.NONMATCH(WASPPattern_URL,
Request.Body.Parameter["homepage"]))

then Action.FriendlyErrorMessage (templatedID,
Request.Body.Parameter["homepage"],
"Checking URL pattern")

The JSON representation of the above rule is illustrated in Figure 4. The HTTP message model is used to identify
key elements of a HTTP request. For instance, in the above rule Request.Body.Parameter ["homepage"]
identifies a particular “body parameter” and checks if its value matches the regex WASPPattern URL. The parameter
element is a name-value pair, and in the above rule, the name is homepage and Parameter["homepage"]
returns its value. If a user’s input value does not match the WASPPattern URL, a friendly error message is returned
with friendly templateID to the client based on the definition of Action.FriendlyErrorMessage(). The
parameters of the FriendlyErrorMessage are needed for enabling friendly response, and will be explained in
detail later. The action FriendlyErrorMessage() is also a hint to the WASP engine to enable SERFS friendly
response, and at this point, if SERFS.js is not cached in client browser side, the WASP engine send this JS component
to the client browser.

5

Figure 5: Key components of SERFS

2.2 WASP and SERFS Components
Figure 5 shows the key components of WASP for enabling SERFS. WASP consists of three main parts: (1) SERFS
enabled WASP client, (2) SERFS enabled WASP server, and (3) WASP central processor. In this article we mainly
focus on those parts of WASP that are relevant for enabling SERFS. The WASP Store House contains information
that are needed for enabling rules, such as security rules developed by rule developers, violation logs that can used for
analysis, and pre-checking policy that can be used for pre-checking user requests on the client side (to be explained
later in the article). The WASP runtime engine executes rules and performs other on-line activities, such as sending
SERFS.js component to the client side. The runtime engine checks each request based on the conditions in the
pre-defined rules and will trigger the actions if some violation is detected. It will then construct an error message
with friendly template ID based on the rules and send it back to the client browser. The runtime engine will insert
a stand-alone SERFS JavaScript component (SERFS.js) into the application response page when the user initially
logs in to the application. The dispatched SERFS.js component enables client-side functionalities that are needed for
user friendly response (see the next section). The functionalities include retrieving friendly templates from WASP
periodically, capturing and caching the input values of users, etc. When some violation is detected on the server-
side WASP the specified error message from runtime engine will be returned to SERFS.js. A user friendly error
message will be rendered, and where possible legitimate user input values will be back filled. Furthermore, based
on the violation statistic, partial validation logic in WASP will be dispatched to the SERFS.js component to do
pre-checking. This can help users to reduce mistakes when filling the form. If a pre-checked request still contains
non-compliant content, it will be identified as a possible attack by the runtime engine and the violation is logged. The
runtime analysis module can then use the logged information for further processing, such as to update the IP block list
or to re-authenticate the user session. It is important to remember that the rendering of user friendly responses and back
filling of legitimate values are done by WASP, without modifying any of the back-end applications. Interestingly, Scott
and Sharp point out that Web application vulnerabilities are inherent in the Web application code and is independent

6

{"ID":"090601","name":"overlay_mode",
"content":"<div class=’flash success’ id=’flash’>
<a href=’javascript;’

onclick=’SERFS_hide($(’flash’));
’class=’close’>x

<%ruledescription%>,<%violationFieldName%></div>"}

Figure 6: A example of SERFS template in JSON for friendly
response

<script src="http://wasp.research.com/SERFS.js"\>
<script> SERFS_fillTemplate(09060001,/*template ID*/
"Checking URL pattern",/* rule description */
"homepage")/* parameter that violated a rule */

</script>

Figure 7: Error message from WASP that includes the
SERFS.js and invokes fillTemplate function

of host and the network technologies [12]. So our pre-checking rules and the corresponding firewall rules is agnostic
to network and host technologies.3

3 User Friendly Response
The user friendly response features of SERFS consists of two main parts: (1) design of friendly templates and error
messages that are needed to render the friendly response when a violation of a rule occurs, and (2) design of SERFS.js
component that is dispatched to a client browser and cached in the browser.4 SERFS.js component has a number of
functionalities including retrieving the friendly template from server-side WASP and back filling forms with legal
values of the form previously entered by the end user, etc.

3.1 Friendly Templates and Error message
SERFS provides support for rendering a message in a more meaningful and esthetic manner using pre-defined and
customizable templates and error message formats. Figures 12 to 15 illustrates a few examples of the rendering
templates that are available in SERFS. An application rule developer can customize the style of friendly templates
based on the requirements of different applications. The template files can be cached in the browser to improve the
performance. We use JSON representation to model templates and each template consists of a template ID, template
name, and template content. A simple example of SERFS template using JSON is shown in Figure 6.

When a WASP rule containing user friendly actions such as Action.FriendlyErrorMessage() is enabled,
a friendly error message with the specified format is returned to the client browser. The error message consists of a
JavaScript function (e.g., SERFS fillTemplate) that includes the template ID, rule description and violation
parameter (Figure 7). Once an error message is sent to the client browser, it will trigger the function in SERFS.js
component to retrieve the template from browser cache and render the friendly response in the client browser.

3Another aspect that we have not addressed here is that how pre-checking rules might impact and interact with automated vulnerability testing,
or even bugs in the client side code. This is a topic for future research.

4Although we have not implemented globalization for error messages, this can easily be added in our implementation to render error message
in different languages using either cookies or user preferences.

7

var SERFS = document.createElement(’script’);
SERFS.setAttribute(’src’,
’http://wasp.research.com/SERFS.js’);
document.body.appendChild(SERFS);

Figure 8: SERFS JS element inserted to Web pages

Table 1: Functions of SERFS JS component
retriveTemplates Retrieve the friendly templates by AJAX method from server

side periodically, and cache the templates in browser
fillTemplate Parse the error message from WASP when some violation is

detected, retrieve the friendly template from cache based on the
template ID, fill the template with the violation content

fillBackLegitInputs Fill back the legitimate input values into the browser document
onSubmitMonitor Capture and cache the input values when the user submits the

form to the back-end application
retrivePrechecking Retrieve the pre-checking policy by AJAX method from server

side periodically, and cache the pre-checking policy in browser
onProperty ChangeMonitor Monitor the user input based on the pre-checking policy to help

user reduce to input non-compliant content

3.2 Design of SERFS JavaScript Component
In this section we describe the key functionalities of SERFS.js component that is sent to a client browser. Figure 5
and Table 1 illustrates the key functions of SERFS.js on the client side to enable friendly response with back-fill
mechanism. The back-fill mechanism is needed to automatically fill in the legitimate entries of the form; and the
friendly error message is rendered for illegal form values. A detailed message sequence of the SERFS.js component
and the server-side WASP engine is illustrated in Figure 9, and it includes the following steps:
Step 1: The SERFS.js is injected into the application response page by the WASP engine when a user is first
presented with a login page.5

Step 2: SERFS.js is cached in client browser. Several functions of SERFS.js shown in Table 1 are added to the
browser document.
Step 3-5: The AJAX function retriveTemplates retrieves the appropriate friendly templates and caches them in
browser.
Step 6-7: When a user fills in the application form and submit the request to Web applications, the
onSubmitMonitor event is invoked to capture the user inputs. The user inputs are cached in the browser memory
for subsequent back filling of legal values.
Step 8: The user request is then intercepted by server-side WASP engine, and it is validated based on the security rules.
If no violation is detected, the request will be forwarded to the back-end applications, otherwise an error message, as
shown in Figure 7 with specified template format will be returned by the WASP engine, and the client-side SERFS
will render the error message on the client browser.
Step 9-11: The fillTemplate in client side will parse the error message that was sent by the WASP server,
retrieves the template from browser cache, backfills the legitimate input values of the user in the browser document
and then renders the friendly error message. Note that the legitimate back fill values are stored in the browser session
memory, and our SERFS.js will use these values to back fill with legitimate values.

5SERFS.js can also be injected with other pages too, depending on WASP configuration.

8

Figure 9: Sequences to provide user-friendly error reporting, input backfill and pre-checking in SERFS

4 Pre-Checking Mechanism
To improve the performance when enabling user friendly response in WASP we implemented partial validation logic
in the SERFS.js component to enable client-side pre-checking. This mechanism can help legitimate users to reduce
“typo errors” when forms are filled. It can also block suspicious users if a request that should have been pre-checked
is sent to the WASP engine with illegal form values. An attacker, who intercept the user request and modify the form
content will typically bypass the pre-checking logic that validate the requests.6. In such cases WASP pre-checking
analysis module (see Figure 5) can either re-authenticate the user session or even block IP from such requests. It
is important to keep in mind that IP blocking has limitations. In some cases, because of outgoing proxies, entire
organizations might seem to be coming from one IP address.

The pre-checking policy and the validation logic that is issued to client browser represented using JSON format
and is cached in client browser (as shown in Figure 10). For example, the input field named as “homepage” in the
form “profile” should match the regex pattern ”http://([\w-]+\.)+[\w-]+ (/[\w- ./?%&=]*)?”; the
input field named as “address” in the form “profile” should not contain the risky character defined in the regex pattern
”<>=’$\"\;!--”. To enable such client-side pre-checking, we add two additional functions in the SERFS.js
component as shown in Table 1, for retrieving the pre-checking policy and monitoring the onPropertyChange
event to validate the user inputs based on the pre-checking policy.

The pre-checking analysis module shown in Figure 5 is used to update the pre-checking policy on-the-fly based on
the statistic of the violation logs detected in WASP. For instance, if the violation ratio for the input field “homepage” is
higher ,than the predefined threshold value, the regex pattern to validate the “homepage” field can be used to updated
the pre-checking policy and the policy is then issued to client side. For security reasons not all rules will be pre-
checked by the client-side SERFS.js. For instance, the pre-checking rule may not have been developed and deployed
until the violation ratio exceeds a threshold for certain filtering rules. For security reason if the server side rules were
insufficient, they could be fully analyzed more easily and rapidly by an attacker. Or if one site was covering up a

6http://www.owasp.org/index.php/Category:OWASP WebScarab Project

9

{"ID":"090701","field":"email","operator": "match",
"pattern":"http://([\w-]+\.)+[\w-]+

(/[w- ./?%&=]*)?", "form":"profile"},
{"ID":"090702","field":"address","operator":"nonmatch",
"pattern":"<>=’$\"\;!--","form": "profile"}

Figure 10: SERFSpre-checking policy

vulnerability in an application also run by another site, which did not know about the exposure. In addition, they
provide little to no utility to a ”good” end user; they would just catch ”cut and paste” attacks client side.

It is important to keep in mind we can indeed pre-check any invalid URL pattern on the client-side, but for security
reasons, we have limited pre-checking patterns to those that a legitimate users would make inadvertent mistakes, rather
than an attacker sending malicious URLs. Also, if the pre-checking logic includes complex patterns, then an attacker
can learn those patterns; and so we perform complex checking on the server-side.

Instead, the SERFS engine will collect the user input values which trigger the negative pattern often, such as
“<script>” and “javascript”, to update to the pre-checking policy, and then do simple string pattern matching
in client-side SERFS.js component for pre-checking. The corresponding operation sequences between the SERFS.js
component and server-side WASP engine are updated in Figure 9 and marked with dashed box. The updated operation
sequence consists of:
Update for Step 2-5: The SERFS pre-checking policy will be retrieved together with friendly templates using the
AJAX method in the JS component, and then cached in the client browser.
Update for Step 6: When a user fills the application form, the onPropertyChange event will be triggered to check
the user inputs based on the pre-checking policy.
Update for Step 8: When a pre-checked request that is sent back to WASP engine still contains non-compliant
content, the client IP address will be identified as suspicious and further analysis will be done by the runtime analysis
module to either block the IP or re-authenticate the user session. It is important to note that a legitimate pre-checked
request can be modified by a man-in-the-middle attacker and our WASP run time analysis will verify if the request
still contains illegal values and mark it as possibly being malicious.

5 Experiment Evaluation
In this section we describe our experience with SERFS, focusing on user experience and performance evaluation.

5.1 User Experience Evaluation
Even though there are several well published techniques for evaluating user experience, it is often difficult to get
accurate result. There are many ways to evaluate user experience, and each has its place in the lifecycle. We selected
heuristic evaluation by experts in order to get early feedback on the broader user experience issues. For our purpose
we chose two of the ten Nielson’s heuristic metric for evaluating SERFS user experience [9].

• User control and freedom: This heuristic is based on the observation that users often make mistakes and want
clearly marked “exit” that allow them to leave without going through unwanted dialogue.

• Help users recognize, diagnose, and recover from errors: Error messages should be expressed in plain lan-
guage that precisely indicate the problem. It should also provide useful suggestion for addressing the problem.

We borrowed concepts based on the above two Nielsen’s metrics to design our survey questionnaires and also
since they highlight two key features of SERFS: (1) legitimate end users often make simple errors, such as typing
errors when filling forms and so a firewall should not penalize such errors, and (2) when such mistakes are made end
users expect that the legitimate form values are correctly back filled and friendly responses are provided for the errors.

10

Figure 11: WASP and ModSecurity deployment in Apache server

To evaluate SERFS we deployed WASP in a Apache server and also enabled Apache reverse proxy functionality as
illustrated in Figure 11. We used the applications in LotusLive Labs as the demo applications to evaluate SERFS, that
is accessed through the Apache proxy server. The HTTP traffic is validated by WASP engine. The SERFS friendly
templates and JS component are dispatched to client browser by WASP to enable the friendly error message with
back-fill mechanism. To compare the user experience of SERFS with another WAF, we also set up the open source
ModSecurity WAF in our experiment [11]. We set up the following three scenarios for evaluation:
Scenario 1: Deploy ModSecurity in Apache Web server to provide security protection. When some violation is
detected, a static error page 500 Internal Server Error is returned to clients (see Figure 12). Even though
this scenario seems unfriendly response, we often find that many Web site do indeed provide such common response
for error message due to convenience or to hide obscurity of of Web application logic.
Scenario 2: Deploy WASP in Apache Web server and enable the friendly hints to clients. When some violation is
detected in WASP engine provide friendly response (see Figures 13 and 14).
Scenario 3: Deploy WASP in Apache Web Server and enable the back-fill mechanism to maintain the legitimate
input value when some violation is detected in WASP engine (see Figure 15).

To evaluate the two Nielsen’s heuristic metric we invite 11 tester who have Web development, user experience and
testing background. We designed a simple set of survey questions such as:

Does the system provide sufficient information to explain the error?
Does the system provide sufficient guidance to help you fix the error?
Does the loss of content caused by ill-formed input affect the whole

process?
What is your user experience for re-entering the content after fixing the

error"
For each question we asked the user to provide a rating from 1 to 5, with zero indicating a highly negative experi-

ence and 5 indicating a highly satisfied positive expereince. For the first evaluation metric, the mechanism of SERFS
friendly response we got on average of 3.6 value for SERFS compared to 1.5 for ModSecurity experience, indicating
that most of the users for SERFS were highly satified when compared to ModSsecurity experience. For the second
evaluation metric, the back fill mechanism that maintain the legitimate inputs with SERFS experience was on average
3.4 where as for ModSecurity we obtained an average score of 1.2, once again indicating that the user experience is
improved with the friendly error message and backfill mechanism in SERFS. To limit user experience bias, we se-
lected half of the users to first use ModSecurity and then use SERFS, and the second half of the users to use SERFS
first and then ModSecurity.

11

Figure 12: Static error page

Figure 13: Friendly error message with overlay style

12

Figure 14: Friendly error message with hints style

Figure 15: Friendly error message with hints and backfill

13

Figure 16: Total transactions Vs. different sizes of
SERFS templates

Figure 17: Average response time Vs. different sizes
of SERFS templates

Figure 18: Cumulative transaction completed ratio Vs.
different sizes of SERFS templates

Figure 19: Average response time for different attack
ratios

Figure 20: Average response time for ModSecurity
and WASP with SERFS pre-checking

Figure 21: Transactions for ModSecurity and WASP
with SERFS pre-checking14

5.2 Performance Evaluation
To evaluate the performance impact of SERFS, we conducted our experiments on a 4-node machine connected via a
high-speed LAN. All of the nodes are Intel Core2 6700 2.66GHz, 3G RAM machines with Window XP professional
operating system. The nodes are connected to the Internet through a 1000M bps connection. One node is deployed
with LoadRunner (version 8.0) and mimics client browsers, simulating multiple users by sending concurrent HTTP
requests to server application. Two of the nodes are used on the server side to process HTTP requests. WASP is
deployed on one of the nodes in the Apache server (version 2.24); and the other node is deployed with a Tomcat server
(version 5.5) and IBM DB2 server (version 9.0). SERFS analysis module (see Figure 5) is deployed on the fourth
node to update the pre-checking policy and IP blocking policy by analyzing the violation logs from WASP engine.
The fourth node is also used to update the SERFS templates for friendly report to end users. No other tasks were
running on each node.

5.2.1 Different Sizes of Friendly Templates

To evaluate the performance of SERFS, we used LoadRunner to generate 4,000 bytes of HTTP POST requests with
6 different parameters. One of the parameters contains a large textarea for users to input comments. For WASP
runtime engine in Apache server, the initial configuration for WASP validation rules is set up with 148 rules in total,
containing 55 positive rules (such as the regex pattern for ”EMAIL”, ”URL”, etc.) and 93 negative rules (such as the
regex pattern for ”XSS”, ”SQL-I”, etc.). These sets of positive and negative are a snap shot that we collected while
implementing and testing WASP.

The pattern matching cost for the negative security rules is typically higher than for the positive security rules due
to longer and more complex signatures in the negative rules. For each request, we first validate with positive security
rule, and if it fails the request is then validated with negative rules. A user friendly error message is generated and
returned to client if the security rule blocks the request. We deployed a simple Web application in the Tomcat container
to verify the security protection of WASP runtime engine. SERFS analysis module periodically updates the IP block
lists and pre-checking policy based on the analysis of the violation logs. The pre-checked policy is then sent to the
client-side SERFS.js by WASP runtime engine.

In a second experiment, we evaluated the performance impact with different size of SERFS templates. We ini-
tialized the LoadRunner with multiple users and increased the number of users gradually to send concurrent requests,
and we ignored think time. We varied the size of SERFS templates as [0k, 30k, 60k, 90k] and plotted four curves
for different sizes of the template, as shown Figures 16, 17 and 18. Figure 16 shows the plot for total number of
transaction and Figure 17 shows the plot for average response time. We can see that the total number of transactions
per second decreases by 19 points, and the response time varied from 442ms to 507ms when the SERFS templates
size is increased from 0k to 90k. Figure 18 plots the cumulative completed transaction ratio against time. We can see
that after 500 ms, the success transaction completed ratio decreases from 100% for 30k templates size to 68% for 60k
template sizes.

5.2.2 SERFS Pre-checking

In order to improve the system performance when enabling friendly error message mechanism in server-side WASP
we evaluated the performance improvement by dispatching SERFS pre-checking policy to the client browser. The
WASP engine performs several different security actions to prevent the anomalous request as well as guarantee the user
experience, including checking the request against vulnerability signature, generating friendly templates, dispatching
SERFS.js components, and logging violation etc. We initialize 100 users in LoadRunner node and send concurrent
requests to server side. For the 100 users, we simulate the malicious requests with attack characters and vary the ratio
of malicious users as [0%, 10%, 50%, 70%]. We plot four curves for the average response time in Figure 19 with each
represents a different attack ratio. As the number of suspicious users increase, the average response time increases as
[444ms, 495ms, 517ms, 554ms]. This illustrates that the suspicious request will trigger more actions in WASP engine
and cost more CPU utilization.

The SERFS pre-checking policy mechanism is designed to issues partial validation logic to do client-side pre-
checking. If a pre-checking request still contains non-compliant characters, it will be identified as suspicious input

15

and be directly blocked by WASP. In Figure 20 and Figure 21, we compare the average response time and system
transactions for ModSecurity and WASP with SERFS pre-checking mechanism.

Next we want to evaluate the impact of pre-checking as we increase the number of bad requests. Initially with no
bad requests, there is a small pre-checking cost. As the ratio of bad requests to good requests is increased to 70%, the
average response time of ModSecurity increases to 680 ms rapidly in Figure 20, and the transaction per second drops
to 48 points in Figure 21. For SERFS pre-checking mechanism, the average response time is controlled within 500
ms, and the transactions per second is 69 points. Using pre-checking method, we can see that friendly responses are
not needed for suspicious request, thereby improving the performance of the server-side WASP engine.

6 Related Work
The focus of this article is on providing smart and user friendly responses to clients whose requests have been filtered.
In SERFS we do not modify any of the back-end application. To the best of our knowledge ours is the first work
where we address one usability aspect of a WAF in some detail. There are several works on Web security that focus
on different phases of software life cycle, including development [15], testing [2, 3], and runtime [7, 10, 13, 11] and
analysis [8, 6] phases.

From the usability point of view, it is important to bridge the gap between a firewall and back-end applications [12].
There are few WAFs, such as ModSecurity, BroswerShiled, and F5 etc. [10, 13, 11] that adopt server-side application-
level firewall to offer immediate assurance of security, which mainly have two challenges: one is the usability issue
and the other one is performance issue. We found that when some non-compliant requests are detected these firewalls
throw a static error page [11] to the end user, which breaks the user friendly behavior of application logic and provide
bad user experience. Adaptive Security Dialog [4] and JSONR7provide user friendly programming model for the
development of rules.

From the performance point of view, it is important to maintain the response time at acceptable level. Chong et
al. describe a partition framework to distribute the security function among client browsers and servers automatically
to balance security and performance requirement [1]. AJAXScope provides a mechanism to remotely monitor the
client-side performance of JavaScript code [5]. Michiaki and Suzumura [14] use HTTP templates to separate the
webpage presentation from its underlying business logic, and then off-load HTML generation tasks to Web clients
to improve performance. In SERFS partial validation logic is issued to client side for the client-side pre-checking.
If a pre-checked request still contains non-compliant requests, they will be identified as suspicious input and hence
directly blocked without friendly services. By this way, the server side cost will be saved.

7 Conclusion
In this article we presented the design, implementation, and experience of user friendly feature of a Web application
firewall. Using SERFS we showed how to enable user friendly response without modifying any of the back-end
application, and with out revealing any of the sensitive security rules to end users. To improve performance we
enabled client-side pre-checking of end user violation. The pre-checking also allows us to update security policy
and use them to either block suspicious requests via IP address blocking or re-authenticate the session with the end
user. In other words, if a pre-checked request still contains non-compliant requests, they will be identified as potential
suspicious input and hence directly blocked without friendly message. We also presented several empirical results
to illustrate capabilities of our approach that include both user experience and performance improvements with pre-
checking features.

Acknowledgement
We thanks Ying Xin Pan for helping us with User Experience part of the experiments.

7http://laurentszyster.be/jsonr/index.html

16

References
[1] Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi, K. Vikram, Lantian Zheng, and Xin Zheng. Secure web

applications via automatic partitioning. SIGOPS Oper. Syst. Rev., 41:31–44, October 2007.

[2] M. Gegick, E. Isakson, and L. Williams. An early testing and defense web application framework for malicious
input attacks. Technical report, North Carolina State University, 2006.

[3] Stefan Kals, Engin Kirda, Christopher Kruegel, and Nenad Jovanovic. Secubat: a web vulnerability scanner. In
Proceedings of the 15th international conference on World Wide Web, WWW ’06, pages 247–256, New York,
NY, USA, 2006. ACM.

[4] Frederik Keukelaere, Sachiko Yoshihama, Scott Trent, Yu Zhang, Lin Luo, and Mary Ellen Zurko. Adaptive
security dialogs for improved security behavior of users. In Proceedings of the 12th IFIP TC 13 International
Conference on Human-Computer Interaction: Part I, INTERACT ’09, pages 510–523, Berlin, Heidelberg, 2009.
Springer-Verlag.

[5] Emre Kiciman and Benjamin Livshits. Ajaxscope: a platform for remotely monitoring the client-side behavior of
web 2.0 applications. In Proceedings of twenty-first ACM SIGOPS symposium on Operating systems principles,
SOSP ’07, pages 17–30, New York, NY, USA, 2007. ACM.

[6] V. Benjamin Livshits and Monica S. Lam. Finding security vulnerabilities in java applications with static analysis.
In Proceedings of the 14th conference on USENIX Security Symposium - Volume 14, pages 18–18, Berkeley, CA,
USA, 2005. USENIX Association.

[7] Alexander Moshchuk, Tanya Bragin, Damien Deville, Steven D. Gribble, and Henry M. Levy. Spyproxy:
execution-based detection of malicious web content. In Proceedings of 16th USENIX Security Symposium on
USENIX Security Symposium, pages 3:1–3:16, Berkeley, CA, USA, 2007. USENIX Association.

[8] Florian Nentwich, Nenad Jovanovic, Engin Kirda, Christopher Kruegel, and Giovanni Vigna. Cross-site scripting
prevention with dynamic data tainting and static analysis. In In Proceeding of the Network and Distributed System
Security Symposium (NDSS07, 2007.

[9] Jakob Nielsen and Rolf Molich. Heuristic evaluation of user interfaces. In Proceedings of the SIGCHI conference
on Human factors in computing systems: Empowering people, CHI ’90, pages 249–256, New York, NY, USA,
1990. ACM.

[10] Charles Reis, John Dunagan, Helen J. Wang, Opher Dubrovsky, and Saher Esmeir. Browsershield: Vulnerability-
driven filtering of dynamic html. ACM Trans. Web, 1, September 2007.

[11] Ivan Ristic. ModSecurity Handbook. Feisty Duck, United Kingdom, 2010.

[12] D. Scott and R. Sharp. Abstracting application-level web security. In Proceedings of the 11th World Wide Web,
2002.

[13] David Scott and Richard Sharp. Abstracting application-level web security. In Proceedings of the 11th interna-
tional conference on World Wide Web, WWW ’02, pages 396–407, New York, NY, USA, 2002. ACM.

[14] Michiaki Tatsubori and Toyotaro Suzumura. Html templates that fly: a template engine approach to automated
offloading from server to client. In Proceedings of the 18th international conference on World wide web, WWW
’09, pages 951–960, New York, NY, USA, 2009. ACM.

[15] S. Vries. A modular approach to data validation in web applications. Technical report, 2006.

17

