
RC25302 (WAT1208-065) August 22, 2012
Computer Science

IBM Research Report

Research Issues in Supporting Data Intensive Applications
within an Exascale System

Abhirup Chakraborty, Dilma Da Silva
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598
USA

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

Research Issues in Supporting Data Intensive Applications
within an Exascale System

Abhirup Chakraborty †, Dilma Da Silva §

IBM T. J. Watson Research Center
Yorktown Heights, NY, USA 10598

†achakrab@us.ibm.com, §dilmasilva@us.ibm.com

ABSTRACT
Analyzing large graphs are crucial to a variety of applica-
tions domains, like personalized recommendations in social
networks, search engines, communication networks, compu-
tational biology, etc. In these domains, there is a need to
process aggregation queries over large graphs. Existing ap-
proaches for aggregation are not suitable for large graphs,
as they involve multi-way relational over gigantic tables or
repeated multiplication of large matrices.

In this report, we consider the top-K aggregation queries
that involve identifying top-K nodes with highest aggregate
values over their h-hop neighbors. We propose algorithms
for processing such queries over large graphs in a shared
nothing environment. We propose a hybrid algorithm that
minimizes network loads is shuffling data across the pro-
cessing nodes. The algorithm partitions the graph across the
processing nodes, and uses Floyd-Warshall algorithm within
each nodes. The nodes shuffles updates among themselves
in iterative phases; such incremental iterative processing is
similar to route discover in a large network. The algorithm
needs only a few iterations to converge to an equilibrium
state.

1. INTRODUCTION
Analyzing large graph data has seen renewed interest due to
increased interests in a number of applications such as chem-
ical data, biological data, XML data, social network data,
communication networks, etc. In each of these applications,
the underlying graphs are very big in size. There is current
trends in advanced analysis of social network graphs aiming
at evaluating the network values of customers [3, 6], link pre-
diction [7] etc. In large graph analysis tasks all the vertices
and edges of the entire graph are accessed multiple times in
a random fashion. Examples include Page-rank [8], social
network influence analysis [11], recommender systems [1],
etc.

In the graphs relevant to social and biological networks, each

node is often associated with an attribute set. The value of
each attribute for a node represents some features of the
entities represented by the node. For example, a node rep-
resenting a Facebook user may have an attribute indicating
his/her interest in a particular online game. Within the
applications domains, there is a growing need to process
standard queries efficiently over large graphs. For example,
for each node find the aggregate value of an attribute for all
its neighbor lying within h-hops in the graph. Such a query
could identify the popularity of a game within one’s social
circle. Also, such queries could help finding the influential
nodes (based on some attributes) in the social network and
help in placing online advertisements.

2. PROBLEM
The aggregation queries over graphs are relevant to a num-
ber of emerging applications in online social communities
such as book recommendation on Amazon, target marketing
on Facebook, etc. These application can unified by a gener-
alized aggregation query over a graph. In a graph G(V,E),
h-hop neighbors of a node v (i.e., aggregate score) can be
given as

F (v) =
∑

u∈Sh(v)

f(u)

Here, Sh(v) is the h-hop neighbors of a node v, and f(v)
is a relevance function that assigns a score to each node.
Top-k aggregation queries find the k nodes with the highest
aggregate scores. Such a top-k aggregation query needs to
solve three issues:

1. Evaluate individual relevance function f(u) of a node.
f(u) could be as simple as 0/1 (e.g., if a user rec-
ommends a book or not), or it can be a classification
function (e.g., how likely a user is a network expert),
or simply a constant 1 (e.g., counting the number of
neighbors).

2. Evaluate the aggregate score or collective strength of a
node F (u). Such an evaluation of an aggregation score
of a node requires the identification of all nodes that
lie within h-hops of the node u.

3. find the top-k nodes with the highest scores.

It is computationally expensive to perform aggregation over
large graphs for various types of queries. If the average de-
gree of nodes in the graph is m, the total number of edges

1

to be accessed while computing h-hop aggregation for each
node would be around mh|V |. In applications with a large-
scale graph(having billions of nodes) and high query work-
loads, such computational cost is prohibitive. Moreover, ac-
cess patterns for the edges are usually random that causes
high memory access overheads in a system. Also, for a large
graph, it is impossible to store the whole graph in mem-
ory, which renders the aggregation over large scale graphs a
challenging issue.

Using relational database queries to process aggregation over
graph is very costly. If we choose to use tabular repre-
sentations of graphs for processing (h+ 1)-hop aggregation
queries, such an algorithm should compute h-way joins over
the relational tables. For a large graph with billions of nodes
such cost is prohibitive.

The issue of processing aggregate queries over graphs has
been addressed in [12]. However, this approach does not
consider problem of finding h-hop neighbors of the nodes;
it assumes that the h-hop neighbors of the nodes are al-
ready computed. Their proposed algorithms only save com-
putations in calculating the aggregate score of each node
by pruning nodes selectively. We observe that computing
h-hop neighbors is a crucial operation in the graph aggrega-
tion, and the aggregate scores can be precomputed or mate-
rialized during neighborhood discovery; therefore, allowing
a separate phase for aggregate computations appears to be
redundant. Moreover, the proposed algorithms work only in
a single node, and does not consider the issue of distribut-
ing aggregate processing loads over a shared nothing system.
Parallelizing or distributing processing loads of the transi-
tive closure algorithm (i.e., Floyd-Warshall Algorithm [10])
over a shared nothing system is infeasible due to a large num-
ber of synchronization barriers. Reference [9] improves the
Floyd-Warshall algorithm by proposing a blocking algorithm
to reduce random memory accesses and to increase cache
utilization. Reference [5] extends the Floyd-Warshall algo-
rithm in a GPU-based system using a block-based algorithm;
the algorithm attempts to increase the instruction execution
throughput using the GPU. However, the approaches does
not show significant performance gains even in the multi-
threaded shared memory system.

In this report, we consider large-scale graphs that are too
large to fit in the memory of one processing machine. We
consider the issue of parallelizing the aggregation queries
over a shared-nothing system. In such a system, as with the
centralized scenario stated earlier, using matrix multiplica-
tion or relation joins is too costly to be affordable. Though
h-hop neighbors of nodes in a graph can be found using
Floyd-Warshall algorithm [10], such an algorithm is difficult
to parallelize even within a single node due to large syn-
chronization barriers. In this report, we propose a hybrid
scheme to compute h-hop aggregation over graphs. Such an
algorithm partitions the graph across the computing nodes.
Within each partition or processing node the algorithm ap-
plies Floyd-Warshall algorithm to find the h-hop neighbors
of the nodes. At inter-partition level, the algorithm uses
a technique similar to that with route discovery in a large
network. The algorithm proceeds in iterations; and at the
end of each iteration, it propagates the updates (observed
within a partition) to the relevant partitions.

P1 P2
P3P4

Figure 4: A partition-based hybrid approach to ag-
gregation over a graph

3. THE HYBRID AGGREGATION ALGO
RITHM

As observed earlier, the naive way to answer h-hop aggrega-
tion over a distributed system is to process self joins or ma-
trix multiplication (h-1) times. Such an approach is costly
both in terms of computation and communication. We de-
velop the hybrid approach that converges to equilibrium af-
ter a few iterations. This approach partitions the graph
across the processing nodes. The algorithm proceeds in
two phases: local-compute phase and incremental discovery
phase. During the local-compute phase, each node applies
Floyd-Warshall Algorithm locally over its partition. Dur-
ing an incremental discover phase, each partition (or node),
sends the updates to relevant partitions.

3.1 LocalCompute Phase
In local-compute phase, each node uses Floyd-Warshall Al-
gorithm to calculate the transitive closure within the parti-
tion with a given threshold(h). The algorithm updates or
adds a neighbor, if its hop-count is bounded by the given
threshold (h). The code for this algorithm is given in Fig-
ure 1. adj list is the adjacency-based representation of par-
tition. The array arr keeps the mapping from index to node
ID. Here, Index i in the adj list stores the neighbors of node
arr[i] and their hop-counts.

3.2 Incremental Discovery Phase
In incremental discovery phase, each partition sends the re-
cent updates to all the relevant partitions. Each partition
maintains, for each other partitions, two data-structures:
an out-table and an in-node-list. Within partition P , the
out-table for partition Q stores all inter-partition(cut) edges
that emanates from the partition P and are incident to

2

//apply Floyd Warshall algorithm locally

// for local nodes, insert ’index’ values in the adjacency list

// hval = maximum hop length

void Partition::local_compute(int hval){

int mik, mij, mkj;

for(int k=0; k< this->N; k++){

for(int i=0; i<this->N; i++){

if(i==k) continue;

for(int j=0; j<this->N; j++){

if(j==i || j==k) continue;

if(!adj_list->existPath(i, this->arr[j], &mij)){

mij = INT_MAX; // no path

} //end if

//if a path with a shorter hop is found

if(adj_list->existPath(i, this->arr[k], &mik) &&

adj_list->existPath(k, this->arr[j], &mkj)){

if(mik+mkj<=hval && mik+mkj<mij)

adj_list->insert(i, this->arr[j], mik+mkj);

}//end if

} //end for

}//end for

}//end for

} //end method

Figure 1: Finding all-to-all transitive closure (based on a threshold) within a partition

partition Q. On the other hand, each partition P main-
tains one in-node-list for every other partition (Q). This list
stores all nodes in partition Q that have an outgoing edge
incident to any node within partition P . Therefore, while
propagating updates, each partition should accumulate the
updates/changes in the neighbors of the nodes in the in-
node-list of other partitions, and send the updates to the
respective partitions. Thus an incremental discovery phase
should carry out an all-to-all propagate task that shuffles the
updates across the participating nodes. Each node, after re-
ceiving updates from a remote partition processes to updates
to find new neighbors or change their hop-counts. This task
requires a join operation between received updates and the
corresponding out-table, and changes the neighbors of all
intra-partition node that might have a route to the nodes in
update list. Figure 2 shows the all-to-all propagation of up-
dates within the partitions. Updates are transferred between
nodes using a bounded buffer to prohibit buffer overflow in
case the aggregate updates across all the partitions become
very large.

Incremental phase converges when no node in system has
updates to send. This algorithm discovers all the neighbors
with proper distance after once the convergence is achieved.
Is should be noted that the maximum number of iterations
in the incremental discovery phase is bounded by a pa-
rameter p. Suppose p′ indicates the number of partitions
spanned by a shortest path (with hop-count less than h) be-
tween any two nodes. The parameter p maximizes p′ over
all pairs of nodes within the whole graph. The maximum
iterations before convergence is given by log(p). Figure 4
shows the partitions of a graph with the inter-partition(cut)
and intra-partition edges. Here, the shortest path (among

all the node pairs) spanned by the maximum number of par-
titions is given by the path shown in red color. The path
spans 4 partitions. So, the algorithm will converge after 2
iterations. Although there are log(p) total iterations before
the convergence, total volume of updates shuffled across the
nodes will decrease drastically after the first few iterations,
thus saving a significant network loads.

In the code propagate updates, we use a ring-based algorithm
as proposed in [2]. In exchanging data logs, we need to
exchange meta-data (e.g., total number of update entries)
and serialize the update list over MPI. At the receiving end,
the node extract the updates and convert it to a list that
can be joined with the respective out-table.

3.3 TopK collection
Once the convergence of the iterative discovery phase is
achieved, each node computes top-k results locally. To com-
pute global top-K over all the nodes, we use a tree-based
collection mechanism where all the nodes are organized in
a binary tree structure. Each node receives top-K values
from its two children and computes top-K nodes over the
nodes received from the children and its own local top-K.
The node then sends the final local top-K to its parent. The
global top-K over the whole graph can be found at the root
node. The code for in-network processing of top-K is given
in figure 5.

4. BASELINE ALGORITHM
As a base-line algorithm over distributed nodes, we use top-
K aggregation using relational joins. To process relational
joins within distributed nodes, we use Cycle-join [4] algo-

3

int Partition::alltoall_propagate__process(int hval){

MPI::COMM_WORLD.Barrier(); // synchronization

if(no updates to send in any partition) return 0;

//for the first time, change_list is empty and get changes from adj_list

if(this->iterations ==0)

src_list = this->adj_list->entry;

else src_list = this->change_list;

this->change_flag=false; // reset

rcv_rank = (this->rank-1)>=0? this->rank-1:this->procs-1;

for(int i= (rank+1)%procs; i!= this->rank; i= (i+1)%this->procs){

scount =0; rcv_flag = true; fill_flag=false;

for(set<int>::iterator sit = this->in_node_list[this->mapper[i]].begin();

sit!=in_node_list[this->mapper[i]].end(); ++sit){

if(this->iterations==0)

sbuf[scount++] = Entry(*sit, 0); // mark the node with a valid hop count(so that the

else sbuf[scount++] = Entry(*sit, -1); // mark the node

if(scount==BUF_S) fill_flag=true;

for(map<int, int>::iterator mit=src_list[this->node_to_index(*sit)].begin();

mit!=src_list[this->node_to_index(*sit)].end(); ++mit){

if(!fill_flag){

sbuf[scount++] = Entry(mit->first, mit->second);

if (scount==BUF_S) fill_flag=true;

} else{

MPI::COMM_WORLD.Send(&scount, 1, MPI::INT, i, TAGS::META);

req=MPI::COMM_WORLD.Isend(sbuf, scount, MIX, i, TAGS::DATA);

if(rcv_flag) { // receive from the remote process

MPI::COMM_WORLD.Recv(&rcount, 1, MPI::INT, rcv_rank, TAGS::META);

MPI::COMM_WORLD.Recv(&rbuf, rcount, MIX, rcv_rank, TAGS::DATA);

changes.insert(changes.end(), rbuf, rbuf+rcount); // insert into the vector list

if(rcount<BUF_S) rcv_flag=false; // no data to receive from this MPI process

} //end if

req.Wait();

scount=0;

sbuf[scount++] = Entry(mit->first, mit->second); // BUF_S >1

fill_flag = false;

} //end else

} //end for

} //end for

//send the remaining buffer content

MPI::COMM_WORLD.Send(&scount, 1, MPI::INT, i, TAGS::META);

req=MPI::COMM_WORLD.Isend(sbuf, scount, MIX, i, TAGS::DATA);

if(rcv_flag){ // receive the remaining data

do{

MPI::COMM_WORLD.Recv(&rcount, 1, MPI::INT, rcv_rank, TAGS::META);

MPI::COMM_WORLD.Recv(&rbuf, rcount, MIX, rcv_rank, TAGS::DATA);

changes.insert(changes.end(), rbuf, rbuf+rcount); // insert into the vector list

} while(rcount==BUF_S);

} //end if

req.Wait();

this->incr_discovery(this->mapper[rcv_rank], changes, hval);

rcv_rank = (rcv_rank-1)>=0? rcv_rank-1:this->procs-1;

} //end for

this->iterations++;

return 1;

} //end method

Figure 2: All-to-all propagation of updates within the partitions4

void Partition::process_updates(int part, vector<Entry> &changes, int hval){

vector<Edge>::iterator out_it;

map<int, int> position;

map<int, int>::iterator it_a, it_b;

vector<Entry>::iterator it;

int nodeI, index, nodeB;

int node_id;

bool flag, zero_flag;

Entry ent, tmp_ent;

int c, count;

// create the structure to map from node to position in ’changes’ list

c=0;

for(it=changes.begin(); it!=changes.end(); ++it, c++){

if(it->hop == 0) position.insert(pair<int, int>(it->dest, c));

else if(it->hop == -1) position.insert(pair<int, int>(it->dest, c+1));

}//end for

for(out_it=this->out_tables[part].begin(); out_it<this->out_tables[part].end(); ++out_it){

nodeI = node_to_index(out_it->src); // index of ’src’ (in the current partition)

it_a = position.find(out_it->dest);

if(it_a==position.end()) continue; //not found

count =0;

for(int pp=it_a->second; pp<changes.size(); pp++){

ent=changes.at(pp); //get the change entry

if (ent.hop==-1) break; //end of the list for the ’dest’ node

if(ent.hop==0) count ++;

if (count==2) break; // consider the first node with hop 0, but not the next one

ent.hop++; // add one: to get the distance from the nodeI

if(ent.hop>hval) continue; // discard distant neighbors

it_a = this->adj_list->entry[nodeI].find(ent.dest); // search for the node

flag = this->adj_list->insert(nodeI, ent.dest, ent.hop);

if (!flag) continue;

add_change_list(nodeI, ent); //add to the change list

// propagate the changes

for(it_a=this->adj_list->entry[nodeI].begin();

it_a!=this->adj_list->entry[nodeI].end(); ++it_a){

//node_id = it_a->first; //get the node id

index = this->node_to_index(it_a->first); //get the index

//the node not in current partition or hop-count exceeds the threshold

if(index<0 || (it_a->second+ent.hop)>=hval) continue;

flag = this->adj_list->insert(index, ent.dest, it_a->second+ent.hop);

if(flag){ // inserted (the dest node) or change in the hop count

ent.hop += it_a->second;

add_change_list(index, ent); //add to the change list

}

} //end for

} //end for

} //end for

} //end method

Figure 3: Processing the incoming updates during the local-discovery phase

5

void Partition::in_network_topK(int kval){

Entry *left_topk, *right_topk;

int min_v;

this->loc_topk=new Entry[kval];

left_topk=new Entry[kval];

right_topk=new Entry[kval];

compute_local_topK(kval);

print_loctopk(kval); // debug;

if((this->rank*2+1) < this->procs){ //receive from left child

MPI::COMM_WORLD.Recv(left_topk, kval, MIX, this->rank*2+1, TAGS::RES);

for(int i=kval-1; i>=0; i--){ // left_res

//if a larger element encountered

if(left_topk[i].metric > loc_topk[0].metric){

loc_topk[0].node = left_topk[i].node;

loc_topk[0].metric= left_topk[i].metric ; //add the number

heapify<Entry>(loc_topk, 0, kval-1); //adjust the min-heap

} else break; // stop scanning

} //end for

} //end if

if((this->rank*2+2) < this->procs){ // receive from right child

MPI::COMM_WORLD.Recv(right_topk, kval, MIX, this->rank*2+2, TAGS::RES);

for(int i=kval-1; i>=0; i--){ //right_res

if(right_topk[i].metric > loc_topk[0].metric){

loc_topk[0].node= right_topk[i].node;

loc_topk[0].metric = right_topk[i].metric; // add the number

heapify<Entry>(loc_topk, 0, kval-1); //adjust the min-heap

} else break;

} //end for

}

if(this->rank !=0) {

MPI::COMM_WORLD.Send(loc_topk, kval, MIX, (int) ((this->rank-1)/2), TAGS::RES);

} else {

output final top-K

}

} //end method

Figure 5: In-network computation of top-k aggregates

6

rithm that partitions the dataset across the nodes. The
nodes are organized in a ring-shaped network. Each node
receives a partition from its predecessor node and joins with
its local partition. Each node circulates the partitions re-
ceived from its predecessor to its successor node. So, once
a partition has traversed all the nodes in the system, that
partition get joined with all the partitions of the dataset.
For processing top-K aggregation with hop h, we invoke the
join algorithm h − 1 times (i.e., (h-1)-way self-join). The
code for processing joins is a distributed system using MPI
is given in Appendix. To compute h-way join we invoke the
join processing code h-times within a loop.

5. CONCLUSION
In this report, we present an approach to process aggrega-
tion over graphs that can be deployed over a large number
of processing nodes. The hybrid algorithm eliminates mul-
tiple pass over local partition by using Floyd-Warshall algo-
rithm. The algorithm incrementally propagates the updates
in a separate phase. Such incremental propagation reduces
network loads. Also, the algorithm reduces synchronization
barriers by allowing each node proceed with the local compu-
tation independent of others. It is observed that though the
number of iterations is bounded by the maximum partitions
spanned by the shortest paths in the graph, the total vol-
ume of update data shuffled across the nodes would be very
low. There exists a number of open issues that we plan to
investigate further. Firstly, developing a partitioning algo-
rithm that minimizes the parameter p (maximum number of
partitions spanned by the shortest paths in the graph) is an
open research issue. Such an algorithm would decrease total
iterations before convergence, reducing the synchronization
overheads in a system with a large number of processing
nodes. Secondly, in a distributed environment with a large
number of nodes, allowing synchronization barriers at the
onset of each iteration would result in high overheads due
to unbalanced computation within nodes or noises within
computing nodes or networks. Thus, devising a lazy proto-
col for propagating updates eliminating barrier synchroniza-
tion at the end an iteration is necessary for such a system.
Such a lazy protocol will propagate or shuffle updates more
frequently across partitions having larger number of intra-
partition edges (i.e., higher out-table size) that those will
lower out-tables sizes. Such an algorithm is feasible based
on the redesign of the update propagation scheme. Also, de-
vising a distributed partitioning algorithm to partition large
graphs (i.e., tera bytes) is an open research issue.

APPENDIX

7

void Base::alltoall_propagate_process(int hval){

int rcv_rank, send_rank,*snum, *rnum, rcount, scount;

vector<Edge> rcv_changes, send_changes; //

Edge sbuf[BUF_S], rbuf[BUF_S];

MPI::Request req;

rcv_rank = (this->rank-1)>=0? this->rank-1: this->procs-1;

send_rank = (this->rank+1)%this->procs;

send_changes = this->own_changes; // copy the local table

// joins with its own table before sending to ’send_rank’

this->join_buffer(send_changes, hval);

for(int iter=0; iter<this->procs-1; iter++){

MPI::COMM_WORLD.Barrier(); // synchronization

scount =0; rcv_flag = true;

for(vector<Edge>::iterator vit = send_changes.begin(); vit !=send_changes.end(); ++vit){

sbuf[scount].src= vit->src; // copy to the array

sbuf[scount].dest = vit->dest;

scount++;

if(scount==BUF_S){

MPI::COMM_WORLD.Send(&scount, 1, MPI::INT, send_rank, TAGS::META);

req=MPI::COMM_WORLD.Isend(sbuf, scount, MIX, send_rank, TAGS::DATA);

if(rcv_flag) { // receive from the remote process

MPI::COMM_WORLD.Recv(&rcount, 1, MPI::INT, rcv_rank, TAGS::META);

MPI::COMM_WORLD.Recv(&rbuf, rcount, MIX, rcv_rank, TAGS::DATA);

// insert into the vector list

rcv_changes.insert(rcv_changes.end(), rbuf, rbuf+rcount);

if(rcount<BUF_S) rcv_flag=false;

} //end if

req.Wait();

scount=0; //reset the scount

} //end else

} //end for

//send the remaining buffer content

MPI::COMM_WORLD.Send(&scount, 1, MPI::INT, send_rank, TAGS::META);

req=MPI::COMM_WORLD.Isend(sbuf, scount, MIX, send_rank, TAGS::DATA);

if(rcv_flag){ // receive the remaining data

do{

MPI::COMM_WORLD.Recv(&rcount, 1, MPI::INT, rcv_rank, TAGS::META);

MPI::COMM_WORLD.Recv(&rbuf, rcount, MIX, rcv_rank, TAGS::DATA);

rcv_changes.insert(rcv_changes.end(), rbuf, rbuf+rcount);

} while(rcount==BUF_S);

} //end if

req.Wait();

this->join_buffer(rcv_changes, hval); // joins with adj_list

send_changes.clear();

send_changes=rcv_changes; // now have to send ’rcv_changes’ to ’send_rank’

rcv_changes.clear(); // empty the receive buffer to be ready to receive

} //end for

} //end method

Figure 6: Base-line algorithm for processing joins within distributed nodes

8

