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Abstract

Infrastructure-as-a-Service (IaaS) cloud computing is gaining significant interest in industry and

academia as an alternative platform for running HPC applications. Given the need to provide

fault tolerance, support for suspend-resume and offline migration, an efficient Checkpoint-Restart

mechanism becomes paramount in this context. We propose BlobCR, a dedicated checkpoint

repository that is able to take live incremental snapshots of the whole disk attached to the virtual

machine (VM) instances. BlobCR aims to minimize the performance overhead of checkpoint-

ing by persisting VM disk snapshots asynchronously in the background using a low overhead

technique we call selective copy-on-write. It includes support for both application-level and

process-level checkpointing, as well as support to roll back file system changes. Experiments at

large scale demonstrate the benefits of our proposal both in synthetic settings and for real-life

HPC applications.

Keywords: IaaS clouds, high performance computing, checkpoint-restart, fault tolerance,

virtual disk snapshots, rollback of file system changes

1. Introduction

Infrastructure-as-a-Service (IaaS) clouds have gained significant attention over the last couple

of years due to the proposed pay-as-you-go model that enables clients to lease computational re-

sources in form of virtual machines from large datacenters rather than buy and maintain dedicated

hardware. With increasing interest in High Performance Computing (HPC) applications (both in

industry and academia) such clouds have the potential to provide a competitive replacement for

leasing time on leadership-class facilities where HPC applications are typically run. This poten-

tial results from the fact that leadership-class facilities rely on expensive supercomputers, which

are not readily available for the masses.

Despite efforts to define a HPC cloud market paradigm [39] and adopt it in practice (such as

Amazon Web Services’ HPC offering [7] or science cloud initiatives [3, 40]), the HPC commu-

nity has been reluctant to embrace cloud computing. To date, the mainstream cloud application

patterns have typically been “embarrassingly parallel.”
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This is not without good reason: porting HPC applications to clouds is a challenging task.

Although there is evidence of increasing improvement in the scalability and performance of

cloud-based HPC systems [25, 23], many obstacles are still problematic, because of architectural

differences specific to IaaS clouds: multi-tenancy, overhead due to the virtualization layer, poor

networking performance [28], lack of a standardized storage stack, etc. These differences lead to

a situation where well established HPC approaches cannot be easily adapted to IaaS clouds and

need to be redesigned.

One critical challenge in this context is fault tolerance. With increasing demand in scale and

the emergence of exa-scale, the number of components that can fail at any given moment in time

is rapidly growing. This effect is even more noticeable in IaaS clouds [45], since they are mostly

build out of commodity hardware [7]. Thus, an assumption about complete reliability is highly

unrealistic: at such large scale, hardware component failure is the norm rather than the exception.

Checkpoint-Restart (CR) [17] is a popular approach to provide fault-tolerance for HPC appli-

cations. Fault tolerance is achieved by saving recovery information periodically during failure-

free execution and restarting from that information in case of failures, in order to minimize the

wasted computational time and resources. Although HPC alternatives to CR based on redun-

dancy [18]) have been considered before, such approaches have rarely been adopted in practice

due to high performance overhead and an explosion of resource usage. This is even more con-

cerning in our context, as we target to minimize operational costs.

Furthermore, the potential benefits of CR in the context of IaaS clouds go well beyond its

original scope, enabling a variety of features that bring substantial reduction in operational costs

under the right circumstances: suspend-resume (i.e. suspending the computation when the price

of resources fluctuates and they become expensive or the budget is tight), migration (i.e. moving

a computation to a new cloud provider without losing progress already made and paid for),

debugging (i.e. reducing application development and testing costs by capturing and replaying

subtle bugs at large scale close to the moment when they happen).

In this paper we propose BlobCR (BlobSeer-based Checkpoint-Restart), a checkpoint-restart

framework specifically optimized for HPC applications that need to be ported to IaaS clouds. Our

solution introduces a dedicated checkpoint repository that is able to take incremental snapshots of

whole disks attached to the virtual machine (VM) instances where the HPC application is writing

its checkpointing data. This mechanism can be leveraged either at application-level by directly

requesting virtual disk snapshots, or at system-level by using modified transparent checkpointig

protocols normally implemented in the middleware that is employed by the application (e.g.

message passing libraries such as MPI [21]).

We summarize our contributions below:

• We present a series of design principles that facilitate checkpoint-restart on IaaS clouds and

show how they can be applied in IaaS cloud architectures. Unlike conventional approaches,

our proposal introduces support for an important feature: the ability to roll back I/O opera-

tions performed by the application.

• We complement our previous work [35] with support for live snapshotting. In this context,

we contribute with a scheme specifically optimized for asynchronous transfers of check-

pointing data.

• We introduce an algorithmic description and show how to implement and integrate it in

practice on top of BlobSeer, BlobSeer, a versioning storage service specifically designed

for high throughput under concurrency [31, 33].
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• We demonstrate the benefits of our proposal in a series experiments, conducted on hundreds

of nodes provisioned on the Grid’5000 testbed, using both synthetic benchmarks and real-

life applications.

2. Checkpoint-restart on IaaS clouds

In short, CR is a mechanism that periodically saves the state of an application to persistent

storage (referred to as checkpoints) and offers the possibility to resume the application from such

intermediate states.

2.1. Application model

CR treats an application as a collection of distributed processes that communicate through

a network in order to solve a common problem. Communication is performed by exchanging

messages between the processes using a message passing system.

In addition to message passing, the processes have access to a persistent storage service (typ-

ically a parallel file system, such as Lustre, GPFS, PVFS, etc.) that is guaranteed to survive

failures and is used by the application to read input data, write output data and possibly save

logging information or other intermediate data.

The CR mechanism also relies on the storage service to save the state of the application in a

persistent fashion. Upon restart, it is assumed that the machines where the application is launched

have access to the intermediate state previously saved on the storage service in order to initialize

the application from it.

2.2. Desired features of CR

Several important properties need to be considered when designing CRmechanisms. We detail

these properties below:

Performance. CR does not come for free: saving the application state periodically to persistent

storage inevitably introduces a runtime-overhead and consumes storage space. Therefore, it is

crucial to design a CR mechanism that aims to minimize the interruption time of the application

during normal execution, as well as the amount of information necessary to capture the appli-

cation state. Moreover, a restart needs to be able to quickly initialize the application from a

previously saved checkpoint with minimal overhead.

Scalability. An important property of CR approaches is scalability: the ability to control and

keep the performance overhead of the checkpointing process at acceptable levels, even when the

application grows in size and complexity. Note that this property is independent of the scalability

of the application itself: a poorly designed CR system can easily turn an otherwise scalable

application into a non-scalable application.

Transparency. There are two basic approaches to CR: application-level and system-level. In

the case of application-level checkpointing, it is the responsibility of the user to explicitly decide

what variables need to be saved for each process and when the right moment has come to do so.

In this case, a careful design can minimize the application state that needs to be saved for each

checkpoint and thus overall overhead of both checkpointing and restart. However, with great

power comes great responsibility: writing efficient CR code is a laborious and error-prone task

that is becoming increasingly difficult as the application gains in complexity. At the opposite end
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is system-level checkpointing: this approach is completely transparent and requires no modifi-

cation at application-level. However, since no information is available about the application, all

variables and and data structures need to be saved for each process. This can lead to suboptimal

checkpoint sizes and increased runtime overhead, but greatly simplifies application design. Over-

all, advocating for one approach or another is not trivial and is highly application-dependent. For

this reason, it is important to provide support for both approaches.

Portability. Using CR for migration raises portability issues: the checkpoints should be easy to

move from one platform to another. This does not simply imply being able to run the CR mech-

anism on a different platform: what is really needed is the ability to checkpoint the application

on one platform, transport the checkpoints to a different platform and then restart the application

there. In the context of IaaS clouds, this problem is not trivial: there are differences in hardware

and virtualization technologies employed by cloud providers. This can introduces incompatibil-

ities (e.g. incompatible virtual machine image formats due to different hypervisors) that must be

dealt with.

Manageability. In order to optimize the checkpointing process, many approaches introduce op-

timizations that decompose the checkpoints into smaller, inter-dependent pieces [46, 38]. This is

done in order to speed up the checkpointing performance, at the expense of having to reconstruct

the checkpoint at restart time. Since restarts are considered to occur much more seldom than

checkpointing, it is an acceptable trade-off. However, many small pieces and their dependencies

are difficult to manage. For example, if a piece is accidentally lost, all checkpoints that depend

on that piece become corrupted and cannot be used to successfully restart the application. This

can become a complex issue, especially when storage space needs to be reclaimed by deleting

old checkpoints. Thus, in order to ease the management of checkpoints it is desirable to work

with checkpoints as first-class objects, i.e. single independent entities.

Rollback of changes to persistent storage. Applications often interact during the computation

with the persistent storage to save logging information or other intermediate data. On restart, all

these interactions with the “outside world” become undesired side-effects of the computation that

followed after the checkpoint. In some cases, these side-effects are harmless (e.g. the application

will overwrite files with the same contents). However, this is not always the case: for example, a

common pattern is to append data to files as the computation progresses (such as status updates

in log-files), which can lead to inconsistencies that affect the final results. Thus, a CR mechanism

should be able to support rollback of changes to the underlying storage.

3. Challenges of CR on IaaS clouds

IaaS clouds are typically built on top of clusters made out of loosely-coupled commodity

hardware [7]. Each node is equipped with local disk storage in the order of several hundred GB,

while interconnect is provided by main-stream networking technology, such as Ethernet. Users

leverage these resources in form of virtual machine instances (VMs) that are hosted on the nodes

of the cluster. Each node typically has hardware virtualization support and runs a hypervisor that

takes advantage of it for VM hosting.

Given this configuration, there are two challenges that play an important role in the design of

CR mechanisms.
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3.1. How to provide persistency.

In order to provide persistent storage, clouds typically employ a dedicated repository that is

hosted separately, either in a centralized or distributed fashion. At a first glance, it may seem as

if the cloud repository could play the role of a parallel file system and provide persistency for the

application.

However, repositories on clouds mostly offer a different access model for user data (e.g. key-

value stores using a REST-ful access API [8], database management systems [26], message

queues [13] etc.). Such differences in access model can pose a serious problem: they may require

significant changes to the application, which are not always feasible, either because of technical

issues (e.g. no support for Fortran, which is widely used for HPC applications) or prohibitive de-

velopment costs. This problem is also accentuated by the lack of standardization: different cloud

providers offer different data access models that limit portability. Furthermore, cloud repositories

do not offer out-of-the-box support to roll back changes, which (as explained in Section 2.2) is

an important feature.

Thus, there is a need for a persistency option that overcomes these obstacles.

3.2. How to capture the state of the application.

In the most general case, the state of the computation is defined at each moment in time by two

main components: (1) the state of application process; and (2) the state of the communication

channels between them (opened sockets, in-transit network packets, virtual topology, etc.).

Since the applications we consider rely on message passing, there complex inter-process de-

pendencies that makes it difficult and expensive to capture the state of the communication chan-

nels into the global state. For this reason, (2) is typically avoided in favor of alternative schemes.

In the case of application-level CR, a synchronization point is typically used right before check-

pointing in order to guarantee that all messages have been consumed. A similar technique is also

widely leveraged in practice for system level checkpoining that uses a coordinated protocol [14],

both for the blocking and non-blocking case. More recently, uncoordinated checkpointing proto-

cols, which previously received little attention in practice due the cost and complexity introduced

by message logging [6] have been increasingly considered for certain classes of HPC applica-

tions [22].

In this paper we do not focus on the techniques used to deal with (2), as they are widely covered

in the literature and can be used to complement our work. Thus, for the purpose of our work we

focus only on (1): we assume the global application state is reduced to the sum of the states of all

its processes. There are two approaches to capture the state of a process in a transparent fashion:

Take a snapshot of its virtual machine instance. Several methods have been established in the

virtualization community to capture the state of a running VM instance (RAM, CPU state, state

of devices, etc.). An advantage of this option is the fact that it captures not only the state of

the process itself, but the context of the operating system as well, which ultimately means that a

reinitialization of the environment is avoided on restart (boot VM instance, configure application,

etc.). However, at the same time it has an important disadvantage: the VM instance snapshots

can explode to huge sizes (e.g. saving 2 GB of RAM for 1,000 VMs consumes 2 TB of space),

which can lead to undesired consequences: (1) unacceptably high storage space utilization for a

single one-point-in-time checkpoint; (2) performance degradation because of large data transfers

to and respectively from persistent storage.
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Use a process-level checkpointer. In this case, only the process state (process context, allocated

memory regions, etc.) is saved, while the context of the virtual machine instance is discarded.

Several approaches have been proposed to achieve this (e.g. BLCR [16]): essentially they dump

the whole process state into a regular file (called process image) and are able to restore the process

from that file. Since the state of the virtual machine instance is discarded, there is an additional

overhead on restart, as the virtual machine instance needs to be redeployed. However, a much

smaller checkpoint size is generated, which has a three-fold benefit: (1) it lowers overall storage

and bandwidth costs; (2) during checkpointing it reduces the performance overhead because of

smaller data transfers to persistent storage; (3) during restart it compensates for the overhead of

rebooting the VM instances by having to read less data from persistent storage.

Our previous work [35] shows that using a process-level checkpointer can save storage space

in the order of hundreds of MB per VM instance, with a checkpointing overhead of up to 8x

smaller. Furthermore, it can reach an overall restart speed-up of up to 6x, despite the need to

reboot VM instances. Starting from these findings, we advocate for the use of process-level

checkpointers for system-level CR.

4. Our approach

This section details our approach: Section 4.1 insists on the key ideas of our approach; Sec-

tion 4.2 illustrates how our approach integrates in an IaaS infrastructure; Section 4.3 provides an

algorithmic description for the proposed design principles; finally, Section 4.4 insists on some

implementation details.

4.1. Design principles

Our approach relies on a series of key design principles, detailed below.

4.1.1. Rely on virtual machine disk-image snapshots

The key idea of our proposal is to save both the output data and state of the application to

the virtual disks attached to the VM instances and then take persistent snapshots of the images

corresponding to those disks. This approach solves both challenges presented in Section 3 si-

multaneously, as discussed below.

First, it provides a persistency solution (as discussed in Section 3.1) by enabling each pro-

cess to rely on the file system of their virtual machine instance for all I/O. This option is not

completely equivalent to using a parallel file system: in addition to message passing, processes

running on different nodes could theoretically also synchronize by sharing files, a feature that is

not available in our case. However, in practice this feature is not needed: for scalability reasons

(in particular to avoid I/O bottlenecks), each process typically manipulates its own set of files

independently of the other processes.

Starting from this assumption, the requirements identified in Section 3.1 are satisfied: (1)

transparency is guaranteed because the file system of each VM instance is implicitly POSIX-

compliant and thus there need to change the application; (2) portability is guaranteed because

the filesystem is under the direct control of the guest operating system, which is independent

of the physical host where the VM is running (e.g. the virtual disk can be safely migrated to a

different cloud provider without raising incompatibility issues); and (3) reverting to a virtual disk

snapshot implicitly rolls back all file system changes made after the snapshot was taken.
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Second, it provides an efficient means to capture the application state, both in the case of

application-level checkpointing and system-level checkpointing. This is achieved in a two-stage

procedure: first the process state is saved as files into the file system of the VM instance, then a

snapshot of the virtual disk is taken immediately after. In the case of system-level CR, we rely on

a process-level checkpointer to capture the process state into a file. As discussed in Section 3.2,

this choice saves considerable amount of storage space and bandwidth, while bringing important

performance improvement when compared to full VM instance snapshots.

Synchronizing the VM instance with its host: the CHECKPOINT primitive. Note that the virtual

disk must be snapshotted outside of the VM instance, while the application is running inside the

VM instance. These two environments run concurrently and are isolated one from another. Thus,

it is impossible to determine from the outside when it is safe to take a snapshot (i.e. when the

first stage of the checkpointing procedure has completed). To solve this issue, a synchronization

mechanism is necessary that enables each VM instance to request a snapshot of its disk to the

outside and then wait for an acknowledgment to know when it is safe to continue. To fill this role,

we introduce the CHECKPOINT primitive, which must be integrated into the checkpoint protocol

and must be called either directly at application-level (for application-level CR) or inside the

message passing system (for system-level CR).

4.1.2. Leverage local disk storage available on compute nodes

In most cloud deployments [7, 4, 5], the disks locally attached to the compute nodes are not

exploited to their full potential. These disks have a capacity of hundreds of GB that normally

serves as scratch space for the VM instances, yet only a fraction of it is actually used. Start-

ing from this observation, we propose to aggregate parts of the storage space from all compute

nodes in order to build a distributed checkpoint repository specifically design to store VM disk-

image snapshots persistently. Each snapshot is stored in a striped fashion: it is split into small,

equal-sized chunks that are evenly distributed among the local disks of the checkpoint repository.

Using this load-balancing strategy effectively distributes the I/O workload among the local disks,

guaranteeing that no local disk becomes a bottleneck due to heavier load compared to others.

Furthermore, each snapshot is locally mirrored: it is presented to the hypervisor as a regular

file accessible from the local disk. Read and write accesses to the file, however, are trapped

and treated in a special fashion. A read that is issued on a fully or partially empty region in the

file that has not been accessed before (by either a previous read or write) results in fetching the

missing content remotely from the VM repository, mirroring it on the local disk and redirecting

the read to the local copy. If the whole region is available locally, no remote read is performed.

Writes, on the other hand, are always performed locally.

Using this scheme, our approach achieves the high scalability requirement presented in Sec-

tion 2.2. First, one can observe that a growing number of compute nodes automatically leads

to a larger checkpoint repository, which is not the case when using dedicated storage resources.

Furthermore, there is no limit on the total I/O bandwidth except the limit of the interconnect

between compute nodes itself. Second, data striping greatly enhances the scalability of read and

write accesses under concurrency, as the global I/O workload is evenly distributed among the

local disks. Finally, local mirroring conserves overall I/O bandwidth because data is stored on

the local disk and written remotely only when the CHECKPOINT primitive is invoked.

Since virtual disk snapshots need to be stored in a persistent fashion, fault tolerance becomes

a critical concern. Considering that we use unreliable local disks to store the chunks, there is

a need to introduce a resilience mechanism. One simple solution is to rely on replication, i.e.
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store the same chunk more than once on different local disks. Besides addressing fault tolerance,

replication also increases chunk availability, because concurrent reads can be served by different

local disks independetly. However, one major drawback of replication is the extra storage space

and network bandwidth necessary to store and maintain multiple chunk copies, which implicitly

also leads to higher checkpointing overhead. In the context of CR, this drawback is particularly

important, because checkpoints are frequently written but only seldom read back (i.e. only during

restart). Furthermore, there is no need to read the same checkpoint concurrently, because each

VM needs to access its own checkpoint. For this reason, replication can lead to an inefficient

use of available resources without bringing significant benefits for CR through high availability.

To address this issue, we explored in our previous work [20] the use of erasure codes to provide

resilience. Compared to replication, such an approach can reach up to 50% higher checkpointing

throughput and 2x lower bandwidth / storage space consumption for the same reliability level.

4.1.3. Live incremental snapshotting using selective copy-on-write

Not all parts of the VM disk are touched between consecutive checkpoints. Therefore, saving

the full disk for each VM instance unnecessarily generates duplicated data, leading to an ex-

plosion of storage space utilization, as well as an unacceptably high snapshotting time and I/O

bandwidth consumption. To avoid this issue, a well known optimization is incremental snapshot-

ting, i.e. to store persistently only the chunks that have changed since the previous snapshot.

Even when relying on such an optimization, the modified chunks have to be replicated and

stored remotely, which can become a lengthily process. If the VM instance is permitted to run at

the same time while this is happening, some chunks may be modified before they are persisted,

which in turn may lead to inconsistencies. Therefore, an important property that needs to be

obeyed by snapshotting is atomicity. A simple solution to provide atomicity is offline snapshot-

ting, i.e. to stop the VM instance for the duration of the snapshotting. However, this approach

can lead to high downtime, which negatively impacts application performance. Therefore, it is

important to be able to take snapshots atomically without interrupting the execution of the VM

instance. We refer to this ability as live snapshotting.

Live snapshotting is still an open issue. One potential solution to address it is copy-on-write:

whenever a chunk needs to be modified, it is copied to an alternate location and all modifications

are performed on the copy. The advantage of this approach is a minimal impact on application

performance: the application is never interrupted, only writes are delayed by the time required to

copy the chunks. However, there is also a disadvantage: copying the chunks to alternate locations

increases fragmentation, which in turn decreases the performance of subsequent I/O, as there is

need to jump from one location to another in order to access the required chunks. This may not

even possible in some scenarios if the chunks are expected to be in a contiguous region, which

can further complicate the adoption of copy-on-write (e.g. it may require some additional copies

to create contiguous regions, which again has a negative impact on performance of I/O).

In order to deal with this disadvantage, we propose a principle that we call selective copy-on-

write. Our goal is to eliminate fragmentation but still take advantage of the benefits provided by

copy-on-write. To achieve this goal, we leverage the fact that the snapshotting process does not

access all chunks simultaneously. Therefore, when a write conflicts with a chunk that has not

been persisted yet, two cases are possible: either the chunk is actively accessed by the snapshot-

ting process or it is scheduled for access in the future. In the first case, it is necessary to wait

for the snapshotting process in order to avoid an inconsistency. However, in the second case this

can be avoided: it is still necessary to copy the chunk to an alternate location, but this time the

snapshotting process can be redirected to the copy while the write can modify the original chunk.
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Thus, fragmentation is avoided at the expense of dealing with the first case. Since the first case

is a rare occurrence, this can reduce the space overhead and provide better optimization oppor-

tunities compared to traditional copy-on-write. We detail an algorithmic description of how this

works in Section 4.3.

4.1.4. Shadowing and cloning

Copy-on-write is typically implemented in traditional approaches through custom VM image

file formats [19]: the incremental differences are stored as a separate file, while leaving the

original file corresponding to the base disk image untouched and using it as a read-only backing

file. Such copy-on-write images can depend themselves on other copy-on-write images, thus

representing successive snapshots as a long chain of “patches”.

This approach has the advantage of being easy to implement on top of conventional file sys-

tems, however, at the same time it presents two important disadvantages. First, it generates a

chain of files that depend on each other, which, as discussed in Section 2.2, raises a lot of issues

related to manageability. For example, accidental removal of one file in the chain essentially

corrupts the whole set of incremental snapshots, rendering the checkpoints unusable. Second, a

custom image file format is not portable and limits the migration capabilities: if the destination

host where the VM needs to be migrated runs a different hypervisor that does not understand the

custom image file format, migration is not possible.

Thus, an approach is needed that addresses both the manageability and portability require-

ments. To this end, we leverage two features used by versioning systems: shadowing and

cloning [31].

Shadowing means to offer the illusion of creating a new standalone snapshot of the object for

each update to it, but to physically store only the differences and manipulate metadata in such

way that the illusion is upheld. This effectively means that from the user’s point of view, if a

small part of a large file needs to be updated, shadowing enables the user to see the effect of the

update as a second file that is identical to the original except for the updated part.

Cloning means to duplicate an object in such way that it looks like a stand-alone copy that can

evolve in a different direction from the original but physically shares all initial content with the

original. It is similar in concept to the fork system call.

With this approach, snapshotting can be performed in the following fashion. The first time a

snapshot is built, for each VM instance a new checkpoint image is cloned from the initial backing

image. Subsequent local modifications are written as incremental differences to the checkpoint

image and shadowed as a new snapshot. For the rest of this paper, we denote this process using

two primitives: CLONE and, respectively, COMMIT. In this way all snapshots of all VM instances

share unmodified content among one another and still appear to the outside as independent, first-

class disk-images. Thus, they hide all dependencies introduced by incremental snapshotting

from the user, which makes them much easier to manage. Furthermore, when using a simple

raw image file as the initial backing image, all snapshots will themselves represent raw images,

which are understood by most hypervisors and thus make our approach highly portable.

4.1.5. Lazy transfers and adaptive prefetching

Since our approach avoids saving the whole state of the VM instances, a restart implies that

the instances are re-deployed and rebooted using the disk snapshots of the last checkpoint, after

which the state of the processes is restored from the files. To optimize the performance of this

process, both in terms of run-time and I/O bandwidth consumption, we introduce two optimiza-

tions.
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Figure 1: Our approach (dark background) integrated in an IaaS cloud.

First, as VM instances typically access only a small fraction of the VM image throughout

their run-time, fetching only the necessary parts on-demand can reduce this overhead consider-

ably [34]. Therefore, we propose the use of a “lazy” transfer scheme that fetches only the hot

content of the disk image (i.e. the checkpoint files and any other files directly accessed at runtime

by the guest operating system and the application).

Second, since the disk snapshots store only incremental differences, large parts of the images

are shared and potentially need to be read concurrently by the VM instances during the boot

process. In order to limit the negative impact of this issue, we exploit small delays between the

times when the VM instances access the same chunk from the checkpoint repository (due to jitter

in execution time) in order to prefetch the chunk for the slower instances based on the experience

of the faster ones [37].

4.2. Architecture

The simplified architecture of an IaaS cloud that integrates our approach is depicted in Fig-

ure 1. The typical elements found in the cloud are illustrated with a light background, while the

elements that are part of our proposal are highlighted by a darker background.

A checkpoint repository that survives failures and supports cloning and shadowing is deployed

on the compute nodes. The checkpoint repository aggregates part of the storage space provided

by the local disks of the compute nodes and is responsible to persistently store both the base and

the disk images snapshots.

The cloud client has direct access to the checkpoint repository and is allowed to upload and

download the disk images. Typically the user downloads and uploads base disk images only,

however, thanks to shadowing and cloning, our approach enables the user to see and download

checkpoint images as standalone entities as well. This feature that can become useful in a sce-

nario where the checkpoints need to be inspected and even manually modified. Moreover, the

cloud client interacts with the cloud middleware (the frontend of the user to the cloud) through

a control API that enables deployments of a large number of VM instances starting from an

underlying set of disk images.

Each compute node runs a hypervisor that is responsible to launch and execute the VM in-

stances. The VM instances run in a modified guest environment that implements an extended

CR protocol, which is able to ask the hosting environment to take a snapshot of its virtual disk.

This is done through the checkpointing proxy, a special service that runs on the compute nodes

and accepts checkpoint requests. Both for security and scalability reasons, the checkpointing
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proxy is not globally accessible: it accepts checkpoint requests only from the VM instances that

are hosted on the same compute node.

All reads and writes issued by the hypervisor are trapped by the mirroring module, respon-

sible to fetch the hot contents of the base disk image remotely from the repository and cache it

locally. Local modifications to the base disk image triggered by writes are stored on the local

disk as incremental differences. Whenever a checkpoint request is issued for the first time, the

checkpointing proxy asks the mirroring module to create a checkpoint image that is derived from

the base image (CLONE). This initial checkpoint image shares all contents with the base image.

Then, the local modifications are committed to the checkpoint image as an incremental snapshot

(COMMIT). Any subsequent checkpoint request will commit the local modifications recorded

since the last checkpoint request as a new incremental snapshot into the checkpoint disk image.

Thanks to shadowing, it is possible to garbage-collect old local modifications that were over-

written by newer ones, despite the chain of dependencies introduced by the incremental snap-

shots. To this end, the CR protocol implementation can mark old snapshots as obsolete, which

in turn enables the garbage collector to delete all changes that no subsequent snapshots depend

upon.

A mapping between each successful checkpoint request and the resulting incremental snapshot

together with its corresponding checkpoint image is maintained by the cloud middleware. In case

of a failure or when the whole application needs to be terminated and resumed at a later point,

all VM instances are re-deployed using a recent snapshot from their corresponding checkpoint

image as the underlying virtual disk. It is the responsibility of the CR protocol implementation to

pick a set of snapshots for the VM instances such that the application can roll back to a globally

consistent state.

4.3. Algorithms

This section materializes the design principles presented in Section 4.1 into a series of algo-

rithms that describe the interactions between the various building blocks presented in the previous

section.

As a convention, we consider each disk-image snapshot as a set of chunks, each of which

covers a well defined region of the virtual disk, delimited by offset and size. The initial image,

configured by the user and used to deploy the virtual cluster is denoted BaseImage. This initial

image is mirrored locally on the host of the virtual machine instance by the mirroring module.

The set of chunks that were either read or written during the lifetime of the VM instance is

denoted LocalMirror. Each chunk of the LocalMirror is in a state that describes its relationship

to the snapshotting process: it is either Idle (i.e. it is not part of any snapshotting request in

progress), S cheduled (i.e. a snapshotting request runs in the background and the chunk is part

of it, but the chunk was not accessed by the snapshotting process so far), or Pending (i.e. a

snapshotting request runs in the background and actively accesses the chunk). All chunks are

initially in the Idle state.

The CHECKPOINT primitive, exported by the checkpointing proxy is presented in Algo-

rithm 1. Essentially it invokes remotely on the mirroring module the COMMIT primitive, re-

sponsible to commit all modified chunks since the last checkpoint request as a new snapshot of

CheckpointImage, which in turn is cloned from BaseImage if the checkpoint request was issued

for the first time.

Both CLONE and COMMIT are exported by the mirroring module. The CLONE primitive in-

volves only a minimal metadata overhead that essentially gives the base image another name and
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Algorithm 1 Request a disk-image snapshot the VM instance

1: function CHECKPOINT

2: if first checkpoint request then

3: CheckpointImage← CLONE(BaseImage)

4: end if

5: M ← ∅

6: for all c ∈ LocalMirror such that c was modified since last checkpoint request do

7: M ← M ∪ {c}

8: end for

9: return COMMIT(M)

10: end function

enables it to evolve in a different direction. We do not detail this primitive here. The COMMIT

primitive is detailed in Algorithm 2. It adds all chunks that were modified since the last check-

point request to the S cheduledS et set, changing their state to S cheduled. After this step com-

pleted, it creates a new snapshot of CheckpointImage that is uniquely identified in the system by

snapshotid. Then it starts the snapshotting process (represented by the BACKGROUND PERSIST

primitive) in the background. Finally, it informs the checkpointing proxy of the snapshot cor-

responding to its checkpoint request through the return value snapshotid. Having obtained this

value, the checkpoint proxy acknowledges the checkpoint request back to the VM instance, sig-

naling it that it is safe to continue.

Algorithm 2 Commit local modifications into a new VM disk-image snapshot

1: function COMMIT(M)

2: S cheduledS et ← M

3: for all c ∈ S cheduledS et do

4: state[c]← S cheduled

5: end for

6: snapshotid ← generate new id

7: start BACKGROUND PERSIST(snapshotid)

8: return snapshotid
9: end function

At this point, the snapshotting process run concurrently with the VM instance inside the mir-

roring module. Its role is to store all chunks in the S cheduledS et set persistently to the check-

point repository. This is presented in Algorithm 3 as an iterative process: a chunk is extracted

from the set, put into the Pending state, transferred and replicated to the checkpoint repository

and finally put into the Idle state. After all chunks have been successfully persisted, they are con-

solidated as a new snapshot of CheckpointImage using shadowing, after which the checkpoint is

marked as stable and can be used for a restart from that point on.

A graphical illustration of the calls issued in parallel by the entities during a checkpoint re-

quest, from the initial checkpoint request of the VM instance to the moment when the checkpoint

becomes stable, is depicted in Figure 2. Each call is represented as an arrow. Solid arrows are

used to represent interactions between different entities, while a dotted pattern is used to repre-

sent interactions between components that run whithin the same entity.

To enable live snapshotting, write requests use selective copy-on-write, as explained in Sec-
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Algorithm 3 Persist committed modifications to the checkpoint repository

1: procedure BACKGROUND PERSIST(snapshotid)

2: while S cheduledS et , ∅ do

3: c← extract chunk from S cheduledS et

4: state[c]← Pending

5: write c persistently to repository

6: S cheduledS et ← S cheduledS et\{c}

7: state[c]← Idle

8: end while

9: consolidate chunks using shadowing

10: mark snapshotid as stable

11: end procedure
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Figure 2: Overview of the checkpointing process

tion 4.1. More precisely, before modifying any chunk c that is involved in the write request, first

a verification is made to check whether c needs to be persisted by the snapshotting process. If

this is the case and c is in the Pending state, then the write request waits for the snapshotting

process to finish persisting c. Otherwise, c is copied to an alternative location c′, which replaces

c in S cheduledS et, while the write continues normally on c itself. This process is illustrated in

Algorithm 4.

For the rest of this section, we briefly analyze the proposed algorithms with respect to the

performance overhead they incur on the application.

Let’s denote the total checkpointing overhead Tt. In our context, Tt = Tp+Tc+Tw+T j, where

Tp is the “preprocessing” overhead (i.e. the overhead of writing checkpointing data to the virtual
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Algorithm 4 Write using selective copy-on-write

1: function WRITE(buffer, offset, size)

2: for all c ∈ LocalMirror such that c ∩ (offset, size) , ∅ do

3: if c ∈ S cheduledS et then

4: if state[c] = Pending then

5: wait until state[c] = Idle

6: else if state[c] = S cheduled then

7: c′ ← copy of c

8: S cheduledS et ← S cheduledS et\{c}

9: S cheduledS et ← S cheduledS et ∪ {c′}

10: end if

11: end if

12: write from buffer to c ∩ (offset, size)

13: end for

14: return success

15: end function

disks), Tc is the downtime caused by calling the CHECKPOINT primitive, Tw is the downtime

of write requests due to selective copy-on-write and T j is the jitter caused by the background

snapshotting. Tc can be traced down to cloning a base image if necessary and putting all locally

modified chunks into the S cheduled state. Since these operations incur only a minimal metadata

overhead compared to the rest of the snapshotting process (tens to hundreds of ms), we consider

Tc negligible.

Therefore, Tt ≈ Tp + Tw + T j. Based on this result, we conclude that three main factors

dominate the checkpointing overhead perceived by the application: (1) how long it takes to dump

the checkpointing data to the virtual disk (Tp); (2) the amount of snapshotted data overwritten

by the application in the time window between the moment when a snapshot is requested and the

moment when it has been persistently stored – in other words writes that cover chunks still in the

S cheduledS et set (proportional to Tw); and finally (3) the amount of data written to the virtual

disk since the last checkpoint (which determines how long it takes to persist the chunks in the

background and thus is proportional to T j).

4.4. Implementation

We implemented our approach into the preliminary BlobCR prototype introduced in [35]. In

this section, we briefly describe its building blocks (presented in Section 4.2).

The distributed checkpoint repository was implemented on top of BlobSeer [31, 33], a dis-

tributed storage service specifically designed to efficiently support incremental updates by means

of cloning and shadowing. BlobSeer offers out-of-the-box fault tolerance either by means of

replication or erasure coding at chunk level.

The mirroring module was implemented on top of FUSE (File System in UserspacE) [2], and

relies on our previous work presented in [34]. It exposes each checkpoint image as a directory and

the associated snapshots as files in that directory, accessible from the outside using the regular

POSIX access interface. Internally, the module keeps track of the content that is available locally,

as well as the local modifications. CLONE and COMMIT are implemented as ioctl calls. The

selective copy-on-write strategy presented in Section 4.3 was implemented at this level.
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The checkpointing proxy was implemented as a service that listens on a specified port for in-

coming TCP/IP connections originating from VM instances that resides on the same compute

node where the proxy is deployed. If application-level checkpointing is desired, the checkpoint-

ing proxy can be directly contacted from within the application code. In order to enable process-

level checkpointing, the user must install a modified MPI [21] library implementation based on

mpich2. The checkpointing protocol itself is an extension of the original implementation avail-

able in mpich2. It uses the scheme presented in Section 3.2, relying on blcr [16] to dump the

checkpoint of the MPI processes into files. We added extra code to this checkpointing protocol

that flushes all guest caches to the virtual disk and then invokes the CHECKPOINT primitive right

after BLCR has finished saving the process image.

5. Evaluation

This section evaluates the benefits of our proposal both in synthetic settings and for real-life

applications.

5.1. Experimental setup

The experiments were performed on Grid’5000 [11], an experimental testbed for distributed

computing that federates nine sites in France. We used 90 nodes of the graphene cluster from

the Nancy site, each of which is equipped with a quadcore Intel Xeon X3440 x86 64 CPU with

hardware support for virtualization, local disk storage of 278 GB (access speed ≃55 MB/s using

SATA II ahci driver) and 16 GB of RAM. The nodes are interconnected with Gigabit Ethernet

(measured 117.5 MB/s for TCP sockets with MTU = 1500 B with a latency of ≃0.1 ms).

The hypervisor running on all compute nodes is Qemu/KVM 1.0, while the operating system

is a recent Debian Sid Linux distribution. For all experiments, a 4 GB raw disk image file based

on the same Debian Sid distribution was used as the guest operating system. Inside this guest OS,

we installed a modified mpich2 library (based on the 1.3.x development branch) that integrates

our approach.

5.1.1. Methodology

The experiments we perform involve a set of VM instances, each of which is running on

a different compute node. Inside the VM instances, we run either a synthetic benchmark or

a real application that is checkpointed at regular intervals. The checkpointing process has an

application-specific part (detailed for each experiment) that writes checkpointing data to the vir-

tual disks, after which it calls the CHECKPOINT primitive for each VM to initiate the snapshotting

process. We compare five snapshotting approaches, listed below:

Live incremental disk snapshotting using our approach. In this setting we rely on BlobCR to

store base disk image and on the FUSE-based mirroring module to expose a locally modifiable

view of the disk image to the hypervisor. BlobSeer is deployed on all compute nodes and stores

the initial base disk image (4 GB) in a distributed fashion, using a stripe size of 256 KB (which

from our previous experience is large enough to avoid excessive fragmentation overhead, yet

small enough to avoid contention under concurrent read accesses). All chunks are replicated

three times in order to guarantee resilience. Any CHECKPOINT request is handled using selective

copy-on-write, as presented in Section 4.3. For the rest of this paper, we refer to this setting as

our−approach.
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Live incremental disk snapshotting using traditional copy-on-write. This setting is very similar

to the previous setting, except for the way the CHECKPOINT primitive is handled: rather than

using selective copy-on-write, we use traditional copy-on-write. More specifically, writes that

occur during the snapshotting process create a copy of the involved chunks and perform the

writes there. After the snapshotting process has completed, all newly generated chunks replace

the old chunks. We refer to this setting as live−cow.

Live incremental disk snapshotting using local pre-copy. The same configuration is used for

this setting as well, however this time we avoid copy-on-write altogether in favor of a full local

pre-copy strategy: all modified chunks are first copied to the local disk and then persisted to the

checkpoint repository in the background. This way, writes never conflict with the snapshotting

process and can be treated normally. We refer to this setting as live−precopy.

Offline incremental disk snapshotting. This setting differs from the previous configuration only

in that chunks are directly persisted to the checkpoint repository rather than copied locally and

persisted in the background. It essentially avoids any jitter caused by background transfers at the

expense of higher downtime. We refer to this setting as offline−disk.

Offline incremental full VM snapshotting. Finally our last setting takes a complete incremental

snapshot of the VM, including memory and CPU state besides the disk. In order to store these

VM snapshots, we deploy PVFS, a highly popular parallel file system. We fix the the chunk size

to 256 KB, the same size used for BlobSeer. To achieve incremental snapshotting, we build a

derived qcow2 image for each VM instance and then use the savevm QEMU monitor command

when the CHECKPOINT primitive is called. We refer to this setting as offline−full.

These approaches are compared based on the following metrics:

• Average snapshotting downtime: is the average time per VM instance required to execute the

CHECKPOINT primitive (i.e. Tc). This metric is important because it shows the degree by

which the application execution can be overlapped with the VM disk snapshotting process.

Such an insight is helpful in understanding what the maximal theoretical benefit of live

approaches is when compared to offline approaches in an ideal situation where there is no

interference because of background transfers (i.e. T j = Tw = 0).

• Impact on application performance: represents the increase in application execution time

compared to the baseline (i.e. when no checkpointing happens). This metric shows the

real benefits of each approach when taking all overhead sources into consideration. More

specifically, it offers an insight into the degree by which T j (zero for offline, nonzero for live)

and Tw (potentially non-zero for our−approach and live−cow, zero for the rest) influence the

application execution (T j + Tw = Impact - Tc).

5.2. Synthetic benchmarks

The first series of experiments evaluates the scalability of our proposal in controlled synthetic

settings.

To this end, we implemented a simple benchmarking application that consists of a config-

urable number of processes, each of which runs in a dedicated VM instance. Each process

independently allocates a fixed amount of memory as a data buffer and fills it with random data.

The checkpointing process itself consists in saving the memory buffer to the virtual disk, after

which the CHECKPOINT primitive is called. In order to create a non-trivial context that generates
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Figure 3: Benchmarking results using a 1 GB data buffer per VM instance. Memory size is 4 GB/instance

conflicts between the snapshotting process and subsequent writes, we start a second iteration

immediately after returning from the CHECKPOINT primitive.

The experiment itself consist in deploying an increasing number of VM instances and then

concurrently launching a benchmarking application process in each of the instances.

Results are shown in Figure 3. As expected, the downtime (Figure 3(a)) caused by

CHECKPOINT is almost negligible for our−approach and live−cow: it remains close to constant

in the order of hundreds of milliseconds. In the case of live−precopy, we observe a close to con-

stant downtime too, however it stabilizes at almost two orders of magnitudes higher (around 10s)

due to the initial local copy of modifications. Finally, for offline−disk and offline−full an explo-

sion of downtime is clearly visible, with an increasing trend due to growing I/O pressure under

concurrency on the checkpointing repository and PVFS respectively.
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due to chunks that triggered copy-on-write (chunk

size is 256KB)

Comparing the increase in application execu-

tion time to complete the benchmark reveals that

all live snapshotting approaches have a large ad-

vantage over the offline approaches, thanks to the

fact that the background transfers are overlapping

with the benchmark execution. At the extreme,

our−approach is almost 4x faster than offline−full

and 80% faster than offline−disk. Furthermore,

compared to live−cow, we achieve a smaller over-

head due to the fact that we avoid fragmentation:

in this case, our approach is almost 20% faster. To

better understand this effect, Figure 4 depicts the

aggregated size of all chunks from all VMs that

triggered a copy-on-write in the case of live−cow,

leading to fragmentation. As expected, we can see

an increasing fragmentation in the system, which

has a negative impact on the performance of the benchmark. Thanks to selective copy-on-write,

our approach avoids this fragmentation alltogether, which explains the lower increase in execu-

tion time when compared to live−cow.
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Finally, we measured the storage space and bandwidth consumed by the checkpointing pro-

cess. All BlobCR approaches generate VM disk snapshots of little more than 1 GB, which is

more than 3x less than offline−full. Since these have to be stored remotely, the consumed band-

width is proportional to the checkpoint size.

5.3. Real life application case study: CM1

Our next series of experiments illustrates the behavior of our proposal in real life. For this

purpose we have chosen CM1, a three-dimensional, non-hydrostatic, non-linear, time-dependent

numerical model suitable for idealized studies of atmospheric phenomena. This application is

used to study small-scale processes that occur in the atmosphere of the Earth, such as hurricanes.

CM1 is representative of a large class of scientific applications that model a phenomenon

in time which can be described by a spatial domain that holds the value of fixed parameters

in each point (temperature, pressure, etc.). Starting from such an initial spatial domain, the

application calculates the evolution of the values of the parameters in each point according to a

set of governing equations that involves the previous values of the parameters in that point and

eventually its neighborhood. The problem is solved iteratively in a distributed fashion by splitting

the spatial domain into subdomains, each of which is managed by a dedicated MPI process. At

each iteration, the MPI processes calculate the values for all points of their subdomain, and then

exchange the values at the border of their subdomains with each other.

CM1 is able to take application-level checkpoints by synchronizing theMPI processes to dump

the contents of the subdomains into files. Each MPI process independently writes its own check-

point file. Furthermore, at each fixed number of iterations, all MPI processes write intermediate

summary information about the subdomains, again into independent files. For the purpose of this

work, we have chosen a 3D hurricane that is a version of the Bryan and Rotunno simulations [12].

We study the weak scalability of our approach by solving the same problem using a different

precision, in such way that the size of the subdomain solved by each process remains constant

at 200x200, which roughly corresponds to 1 GB of new application-level checkpointing data per

VM. The experiment consists in deploying an increasing number of quad-core VM instances,

each of which hosts 4 MPI processes, one per core. We take three global checkpoints evenly

spaced throughout the execution time and compute the average downtime and increase in execu-

tion time.

Results are shown in Figure 5. Again, the average downtime (Figure 5(a)) due to checkpointing

is negligible in the case of our−approach and live−cow, growing to two orders of magnitude higher

in the case of live−precopy. In all live approaches, a stable trend is noticeable, which hints at

excellent scalability. On the other hand, offline−disk experiences a sharp increase in downtime

due to remote I/O pressure on the checkpoint repository, which is hidden in the case of live

snapshotting by the background transfers. Since CM1 is a memory-hungry application, the VM

snapshot size obtain by offline−full was almost 5x larger than the rest, which in turned caused

unacceptably high downtime that led to communication errors inside CM1. For this reason, the

curve for offline−full was omitted.

Finally, Figure 5(b) depicts the performance overhead of all three live approaches compared

to offline−disk. As can be observed, the reduction in downtime compared to offline−disk cannot

be fully leveraged to reduce the performance overhead, because the asynchronous background

transfers negatively impact the performance of the application: not only do they cause jitter

and/or trigger copy-on-writes, but they also steal bandwidth away from the MPI processes them-

selves. Since CM1 is a bandwidth-hungry application, the three live approaches perform closer
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Figure 5: Results using a real life HPC application: CM1. Each VM instance runs 4 MPI processes. Subdomain size per

process is 200x200. Memory size is 4 GB/VM instance

than in the synthetic setting. Nevertheless, at less than 66% of the overhead of offline−disk, our

approach leverages the downtime up to 20% better than live−cow which is very closely followed

by live−precopy. With respect to scalability we note a downward trend in all three approaches,

which hints at better opportunities to leverage the downtime as the I/O pressure on the checkpoint

repository increases. We also note an increasing difference between our−approach and live−cow.

This happens because of longer background snapshotting, which increases fragmentation over-

head.

6. Related work

There are previous efforts to build a dedicated checkpoint repository specifically designed to

optimize for the CR access patterns, such as PLFS [10] proposed by Bent et al. Unlike our

approach, PLFS is a layer of indirection that remaps an application’s preferred data layout into

one which is optimized for the underlying parallel file system. Thus, it is heavily dependent on

the performance characteristics of the underlying file system and its limitations.

Optimizations such a incremental checkpointing are commonly used both at application level

and system level. However, unlike our approach, differences to previous checkpoints are stored

as separate files, which raises manageability issues. Approaches such as [46], attempt to com-

pensate for this effect using a hybrid CR mechanism that relies on incremental checkpoints to

complement full checkpoints, with the purpose of avoiding indefinite accumulation of differ-

ences. Our approach avoids this problem altogether, thanks to shadowing.

The idea of departing from synchronous checkpointing in order to overlap the application exe-

cution with the checkpointing process has been exploited in several contexts. Quasi-synchronous

checkpointing algorithms such as Manivannan et al. [27] limit contention to stable storage by

staggering checkpoint requests in order to diminish the degree of concurrent I/O transfers. An-

other widely used approach is multi-level checkpointing [9, 30, 15], i.e. dump the checkpointing

data on fast local storage and then asynchronously flush this data to globally persistent storage.

In the context of virtualization, several CR approaches based on full VM snapshots have been

proposed [44, 43, 47]. This choice however comes at a high price: in addition to a large per-
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formance overhead, it generates an explosion of storage space and bandwidth utilization. To our

best knowledge, we are the first to propose a CR framework for HPC applications based on incre-

mental disk snapshots, which has the potential to drastically reduce the storage space utilization

at the cost of minimal intervention inside the guest environment.

Many hypervisors provide native copy-on-write support using custom VM image file formats,

such as qcow2 [19] andMirage [41]. This enables base images to be used as read-only templates

for multiple VM disk snapshots that store per-instance modifications. However, unlike our ap-

proach, support for live incremental snapshotting is currently not available. Furthermore, lots of

files representing incremental differences need to be generated and shared through a parallel file

system, which raises manageability and performance issues at large scales.

Several other approaches have been proposed in order to snapshot virtual disks, however we

are not aware of any work that specifically targets CR. Lithium [24] is one such approach that

supports fork-consistent, instant volume creation with lazy space allocation, instant creation of

writable snapshots, and tunable replication. While this can prove a valuable building block

that offers a viable alternative to cloning and shadowing, it is based on log-structuring [42],

which can potentially incur a high read overhead the more incremental snapshots are taken.

Parallax [29] enables compute nodes to share access to a single, globally visible block device,

which is collaboratively managed to present individual virtual disk images to the VMs. While this

enables efficient frequent snapshotting, unlike our approach, sharing of images is intentionally

not supported in order to eliminate the need for a distributed lock manager, which is claimed to

dramatically simplify the design. Amazon EBS [1] provides block level storage volumes that

can be attached to Amazon EC2 [7] instances. Such volumes outlive the VM instances that

mount and use them, which makes them a potential target to store the process state and all other

intermediate files. Snapshotting is supported, however it is implemented over Amazon S3 [8], a

key-value store not specifically optimized for this purpose.

7. Conclusions

With increasing interest in HPC applications among the mainstream community, cost-effective

solutions that are affordable to the masses are highly desirable. In this context, IaaS clouds

are a promising alternative to leadership-class supercomputers. However, due to differences

in architecture and consumer needs, porting HPC applications to IaaS clouds is a challenging

task that requires rethinking of several well established HPC approaches. One challenge in this

context is the need to provide a high-performance, resource-friendly and scalable Checkpoint-

Restart mechanism.

We proposed BlobCR, a dedicated checkpoint repository that is able to take live incremental

snapshots of the whole disk attached to the virtual machine (VM) instances. Our approach sup-

ports both application-level and process-level checkpointing and includes the unique ability to

implicitly roll back file system changes.

Compared to approaches that capture the whole VM state, our approach shows large perfor-

mance gains and much lower bandwidth/storage space utilization. Based on our results with real

life HPC applications, we incline to believe that full incremental VM snapshots at large scale

are unfeasible in practice. Furthermore, by persisting VM disk snapshots asynchronously in the

background, we show large reductions in checkpointing downtime (up to two orders of magni-

tude) compared to offline disk snapshotting. Finally, we show how to efficiently leverage this

reduction in downtime to improve performance by means of selective copy-on-write: it signifi-

cantly reduces the negative impact on the application due to background transfers compared to
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conventional copy-on-write. All these benefits are demonstrated not only using synthetic bench-

marks but also through a real-life HPC application case study.

In future work we plan to explore the use of adaptive compression schemes [32] and/or dedu-

plication bring further reductions in overhead and resource utilization of CR. Furthermore, we

are interested in the possibility of complementing checkpoint-restart with pro-active live migra-

tion: if failures can be predicted with a relatively high confidence level, then we could reduce the

checkpointing frequency in favor of migrating unstable VMs to more safer nodes. We already

explored the possiblity of live migration of local storage [36] with encouraging results.
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