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ABSTRACT
This paper presents the formulation and solution of an optimization model for

placing pressure reducing valves on water networks. A key advance is the development
of a quadratic approximation for pipe head loss minimizing the relative approxima-
tion error that provides accuracy comparable to the error of the classical equations of
Hazen-Williams or Darcy-Weisbach. This approximation enables use of a broader class
of optimization engines, provides fast and accurate solutions, and increases the net-
work size solvable by mathematical optimization. The development and utility of the
quadratic approximation is demonstrated for the problem of optimal valve placement
on benchmark networks having 25 nodes and 1900 nodes, respectively. The quadratic
approach compares favorably to EPANET results and is significantly faster than a com-
parable optimization model that uses a piecewise linearization of the head loss curve.

Keywords: Optimization, Water Networks, Pipe Friction, Modeling

INTRODUCTION
As water systems age and resources to make repairs diminish, optimization

techniques are increasingly applied to design and operational problems on wa-
ter networks. Design problems include placement of pressure reducing valves to
minimize pressure or leakage and selection of pipes and pipe sizes for minimum
cost rehabilitation. Operational problems include finding set points for pressure
reducing valves and scheduling pumps to minimize electricity costs.

These problems have in common the need to simulate a network’s hydraulic
behavior and the simulation method varies according to the optimization tech-
nique. Where meta-heuristics such as genetic algorithms are used, the optimizer
is often coupled to a classical hydraulic solver such as EPANET (Rossman 2000).
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While this approach may be the only option for large networks, there is no direct
assurance that a solution is optimal. Alternatively, mathematical optimization
methods embed hydraulic equations as constraints, and assure that solutions are
locally optimal, globally optimal or provide optimality bounds. Design problems
with binary decisions are particularly challenging for math optimization meth-
ods because the number of possibilities is exponential in the number of binary
variables.

The challenge of using hydraulic equations, in particular the energy equa-
tion for pipe flow, as a constraint is the strong non-linearity of the curve for
friction-induced head loss. Several well known models of this curve are avail-
able. The empirical formulas of Hazen and Williams and Manning give explicit
equations, but use fractional exponents (Franzini and Finnemore 1997). These
models are also often misapplied, resulting solutions with poor accuracy. The
Darcy-Weisbach equation for head loss is accurate and theoretically sound, but
requires a friction factor that is calculated from an implicit function.

In this paper, a new formulation for pipe head losses in optimization models
is developed and applied to the problem of placing pressure reducing valves in an
existing network. Valve placement is a challenging problem because it combines
binary decisions - whether to place a valve on a pipe or not - with continuous
decision variables representing nodal pressures, pipe flows and valve set points.
Once valve locations are known, their settings are of interest. Finding the set-
tings is a valve control problem and is easier because all decision variable are
continuous. The control problem is embedded in the placement problem because
settings must be chosen for a given placement.

The physical motivation for studying valve placement and control is to reduce
leakage on water networks. Leakage may occur on distribution mains, service
connections, or at the point of use. Although leakage localization and pipe re-
placement would be ideal, this is expensive and slow. Lowering system pressure
by inserting control valves can reduce, though not eliminate, leakage before the
pipes are replaced.

The valve control problem has been studied extensively using mathematical
programming starting with Sterling and Bargiela (1984), who used a Taylor-series
approximation of the head loss curve to apply sequential linear programming
(SLP). An SLP technique was also used by Germanopoulos and Jowitt (1989)
and by Jowitt and Xu (1990). Vairavamoorthy and Lumbers (1998) introduced
sequential quadratic programming (SQP) for the valve control problem. A parallel
computing technique using SQP is given by Alonso et al. (2000), who parallelized
by assigning different time steps to each node. The only work to address valve
placement using math programming is due to Hindi and Hamam (1991), where
a piecewise linearization of the head loss relationship is used. They consider
networks having 18 and 72 nodes, respectively.

Meta heuristic approaches have also been applied to valve placement and
control. Savic and Walters (1995) use a genetic algorithm to find settings of
isolating valves to minimize pressure heads. Reis et al. (1997) find optimal
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locations and settings for control valves. A multi-objective approach considering
the number, location, and setting of valves is proposed by Nicolini and Zovatto
(2009). A scatter-search algorithm is used by Liberatore and Sechi (2009).

Recent work on water network design using math optimization is also relevant
here because the same hydraulic equations are under consideration. Bragalli et al.
(2011) solve a mixed integer nonlinear program (MINLP) using a Branch-and-
Bound heuristic to find optimal pipe sizes. They use the Hazen-Williams model
for friction loss and fit a quintic polynomial over the small flow range near zero
so that the head loss curve is differentiable. Network sizes considered range from
7 to 272 nodes.

A global optimization approach for least cost design of a given water network
configuration has been proposed by Sherali and Smith (1997). It is based on
a branch-and-bound algorithm using iterations of polynomial lower and upper
bounds for the Hazen-Williams formula. This global approach has been demon-
strated on water networks with up to 10 nodes and pipes.

A recent approach for globally optimal operation of water networks is due to
Gleixner et al. (2012), who compute a pump schedule and flow distribution to
minimize energy and water procurement costs. They use a quadratic approxima-
tion for Darcy-Weisbach friction loss according to the law of Prandtl-Karman.
This approximation assumes hydraulically rough pipes and eliminates the depen-
dency of the Darcy friction factor on the flow rate. The resulting nonconvex
MINLP is solved to global optimality for networks having 25 and 88 nodes, re-
spectively.

The remainder of this paper discusses a novel quadratic approximation for
pipe head loss and uses the approximation to formulate a MINLP for valve place-
ment on water networks. The optimization problem is solved for two benchmark
networks. The MINLP model is compared to Epanet for accuracy and to a MILP
formulation for computational effort.

QUADRATIC APPROXIMATION FOR PIPE FRICTION
Friction losses in pipe systems are usually estimated using the formula of

Hazen and Williams or Darcy and Weisbach (Franzini and Finnemore 1997).
Manning’s equation may also be used, but is not discussed here. Using the Hazen-
Williams formula and SI units, the frictional head loss in a pipe is computed from
(American Water Works Association 2004)

hf = 10.65C−1.852D−4.871LQ1.85 (1)

where hf is the head lost due to friction in meters; C is the Hazen-Williams
coefficient; D is the inside diameter of the pipe in meters; L is the length of pipe
in meters; and Q is the discharge in cubic meters per second. The Hazen-Williams
formula applies only to water flowing in pipes 5cm in diameter or larger and at
speeds less than 3 m/s (Franzini and Finnemore 1997).
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The Darcy-Weisbach equation applies to any fluid and consistent system of
units and is (White 1999)

hf = f
L

D

V 2

2g
(2)

where f is the Darcy friction factor; V is the average fluid velocity; g is the
gravitational constant; and other terms are defined previously. The Darcy friction
factor f depends on the roughness (ks) and diameter of the pipe and the Reynolds
number (Re). It may be found graphically from the Moody diagram (Moody
1944) or by inverting the implicit relationship of Colebrook (White 1999):

1√
f

= −2 log10

(
ks

3.7D
+

2.51

Re
√
f

)
(3)

Although Eq. 1 and Eq. 3 are often treated as exact, they are fitted to
experimental results and therefore contain some error. Within the flow range
where tests were performed, Liou (1998) reports errors from -15% to 10% in the
Hazen-Williams formula depending on pipe material. On the Darcy-Weisbach
side, the Colebrook equation for f has an average error of 11% with respect to
Colebrook’s data (Yoo and Singh 2005).

In both Eqs. 1 and 2 the head loss is approximately proportional to the square
of the velocity, or equivalently, the discharge. This proportionality suggests that
the head loss on a particular pipe can be approximated by a quadratic function.
The advantage of making such an approximation is to facilitate the use of broader
classes of optimization methods as described below.

In developing an approximation function one must consider several factors:

• the functional form of the approximation;
• a merit function for evaluating candidates;
• the relevant range of the original function; and,
• the method for finding coefficients.

This work uses the same functional form whether Darcy-Weisbach or Hazen-
Williams is used as an underlying model:

ĥf (Q) = aQ2 + bQ (4)

with a and b as unknown dimensional coefficients. The intercept is intentionally
dropped to enforce the origin as a point on the curve. Coefficients are selected
to minimize the relative error over the approximation range. Focusing on the
relative error is a key element of this approach because large absolute errors at
low flows can alter flow distribution in the network. The exact merit function,
approximation range and method of finding coefficients differ slightly between
head loss models as discussed below.
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FIG. 1. Quadratic approximation for head loss according to the Darcy-
Weisbach formula for an example pipe where L = 1000m, D = 100mm and
ks = 0.3mm. The fit used an interval of 4000 ≤ Re ≤ 105.

Darcy-Weisbach

The preferred method for modeling head loss on water networks is the Darcy-
Weisbach law of Eq. 2. If the friction factor f were constant the head loss
curve would be purely quadratic; this is the primary motivation for developing
a quadratic approximation. The fit proposed here minimizes the sum of squared
relative errors (SSRE) over the turbulent flow range (Re > 4000).

SSRE =
∑(

ĥf − hf
hf

)2

(5)

Due to the implicit form of Colebrook’s equation for f the fit is obtained numer-
ically using weighted multiple linear regression. By using 1/h2f as the weight for
each point, the regression minimizes relative rather than absolute errors.

A quadratic fit to the Darcy-Weisbach head loss curve in a sample pipe is
shown in Fig. 1. The quadratic approximation shows good agreement over the
approximation range 4 · 103 < Re < 105. The relative error ranges from -1.9% to
8% with the largest relative errors occuring at low flow rates.

Because the quadratic fit is developed over the turbulent flow range the ac-
curacy of the approximation in the laminar and transition ranges is of interest.
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FIG. 2. Head losses at low flows for an example pipe where L = 1000m, D
= 100mm and ks = 0.3mm. The quadratic approximation uses an interval
of 4000 ≤ Re ≤ 105.

Since head losses in the laminar region are linear, the quadratic approximation
over the turbulent range does not provide a very good estimate (Fig. 2). How-
ever, the errors noted here do not affect the flow distribution in the networks
studied because head losses are low. Fig. 2 also illustrates why the transition
flow range is excluded from the approximation: trying to minimize relative errors
through the jump in the transition range sacrifices accuracy everywhere else along
the curve. Even though the quadratic approximation comes with a considerable
relative error at low flows, this does not cause significant constraint violation for
the two optimization problems of interest - valve setting and valve placement -
since the resulting absolute head loss is low.

Visual inspection of the Moody diagram shows that the friction factor varies
over a smaller range as the relative roughness of the pipe increases. This smaller
range implies that rougher pipes, such as those in aging distribution systems,
are well approximated by a quadratic function. Indeed the fit improves as pipes
become rougher (Table 1). The table also illustrates that the approximation’s
accuracy is not very sensitive to the upper bound of the fitting range. Doubling
the size of the flow range had a minimal effect on R2.

Hazen-Williams

The Hazen-Williams formula for pipe head loss applies only over a limited
range; outside this range it does not reflect the underlying physics and has con-
siderable errors compared to experimental results (Franzini and Finnemore 1997);
(Liou 1998). These deficiencies notwithstanding, the equation remains in wide
use because the explicit formulation is easy to compute. In fact, all previous
literature on valve placement in water networks of which the authors are aware
use Hazen-Williams for this reason. Since existing models of real networks often
use Hazen-Williams, a quadratic approximation is provided here.
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TABLE 1. Values of R2 for Eq. 4 with respect to Darcy-Weisbach head loss
for a pipe having length 100m and diameter 10cm. The fit is derived over
the intervals 4000 < Re < 105 and 4000 < Re < 2 · 105, which correspond to
maximum velocities of 1 and 2m/s.

ks/D R2 for Vmax=1m/s R2 for Vmax=2m/s
0.01 1 1
0.001 0.9992 0.9991
0.0001 0.9978 0.9965

A quadratic approximation to the Hazen-Williams formula can be found nu-
merically as described above for Darcy-Weisbach. However, with its explicit
functional form a quadratic approximation to the Hazen-Williams formula can
also be obtained analytically. Since both the model and approximation functions
are continuous, the relevant quantity to minimize is integral of relative errors:

F (Q1, Q2) =

∫ Q2

Q1

(
aQ2 + bQ− αQ1.85

αQ1.85

)2

dQ (6)

where Q1 and Q2 specify the range of interest and α is the part of Eq. 1 that
does not vary with flow rate (α = 10.65C−1.852D−4.871L). The integral of Eq. 6
is found and the resulting form is differentiated by a and b. These differentials
are set equal to zero, giving a 2x2 system of linear equations. Solving the system
yields expressions for a and b as functions of the approximation interval:

a = C−bA
B

b =
AC
DB
−E

D

1+ A2

DB

(7)

where
A =

Q0.3
2 −Q0.3

1

0.3α2

B =
Q1.3

2 −Q1.3
1

1.3α2

C =
Q1.15

2 −Q1.15
1

1.15α

D =
Q−0.7

2 −Q−0.7
1

0.7α2

E =
Q0.15

2 −Q0.15
1

0.15α

(8)

A quadratic approximation to the Hazen-Williams curve for a typical pipe is
shown in Fig. 3 along with the relative error curve. Several points of interest are
noted:

1. The quadratic fit provides errors within 10% over the range of flows;
2. since the relative error is minimized, there is a singularity in the relative

error at zero flow; and,
3. the shape of the relative error curve suggests a method for choosing the

approximation interval.

7



0 100 200 300 400 500 600 700

0

5

10

15

Flow (cmd)

H
ea

dl
os

s 
(m

)

R
el

at
iv

e 
E

rr
or

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4
Hazen−Williams
Quadratic Fit
10% Error
Relative Error

FIG. 3. Quadratic approximation for head loss according to the Hazen-
Williams formula for an example pipe where L = 1000m, D = 100mm and
C = 120. The fit used an interval of 8.6 to 700 cubic meters per day (cmd)
where the lower bound was chosen to give a minimum relative error of 10%.

Choosing the approximation interval [Q1, Q2] is a key step because the values
of a and b depend on the interval. One method for choosing the interval is to select
Q2 based on the details of the problem and then choose Q1 so that the minimum
of the relative error curve sits at an error tolerance. An upper bound for Q2

for each pipe is the sum of nodal demands in the network. Other approaches
to setting Q2 include choosing a maximum velocity or power dissipation in each
pipe. The location of the minimum relative error is found from calculus:

Qεmin
(Q1, Q2, α) = 0.1275

b

a
(9)

With (9) and an error tolerance, εtol, Q1 is found at the root of

G =
aQ2

εmin
+ bQεmin

− αQ1.85
εmin

αQ1.85
εmin

+ εtol (10)

This approach to setting the approximation interval is conservative in that the
worst underestimate of head losses is specified. Head losses which are over-
estimated occur only at the extreme ends of the interval. The relative error
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is largest for small flows. However, this does not cause significant absolute con-
straint violations when solving the resulting optimization problem.

OPTIMIZATION PROBLEM
One application for the quadratic approximation of pipe head loss is the prob-

lem of optimal valve placement and setting in water distribution networks. A wa-
ter network comprised of Nn nodes and Np pipes is modeled as a directed graph
with Nn vertices and 2Np edges called links. Nodes are numbered i = 1...Nn and
nodal quantities include demand di, elevation ei, and hydraulic head hi. Links
are identified by source and target node and link quantities include flow rate Qi,j,
head loss hf (Q)i,j, and a valve indicator vi,j. The optimization problem is to
place Nv pressure reducing valves on the network links and to determine their
set points, such that the pressure distribution is minimized. The setting of each
valve is found from the pressure at the downstream node.

This objective can be expressed in several ways, the simplest of which is
minimizing the sum of total pressures.

minimize F (p) =
∑

pi (11)

where pi is the nodal pressure at node i. Other objective functions are reasonable
to consider including the weighted average pressure on each pipe

minimize F (p) =
∑

wi,j
pi + pj

2
(12)

The objective is minimized subject to the constraints of mass conservation
around each node and energy conservation around each pipe. Mass conservation
for the ith node is written ∑

k

Qk,i −
∑
l

Qi,l = di (13)

where Qk,i the inbound flows and Qi,l the outbound flows for node i. Energy
conservation for the pipe i, j is written as two constraints:

Qi,j(pi + ei − pj − ej − hf (Q)i,j) ≥ 0 (14)

pi + ei − pj − ej − hf (Q)i,j −Mvi,j ≤ 0 (15)

If Qi,j > 0 and vi,j = 0, (14)-(15) is simply Bernoulli’s equation. With an
expression for hf that is quadratic in Q, (14) is a polynomial inequality constraint
of degree three and (15) is a quadratic inequality constraint. One effect of placing
a pressure reducing valve on a link from i to j is that the energy constraint (15)
is disabled, i.e. friction loss will be greater than predicted by pipe losses alone.
Placing a valve on a link is indicated by a binary variable vi,j ∈ {0, 1} and
the switch is implemented as a ”big M” constraint in Eq. 15. In numerical
experiments, M was chosen as small as possible depending on the parameters for
each pipe.
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There is a trade-off in formulating the energy constraints: by introducing bi-
nary variables to indicate the flow direction in each pipe, the energy conservation
laws could be modeled by a set of quadratic inequality constraints. However, this
results in doubling the number of binary variables in the optimization problem.
One advantage of the formulation (14)-(15) is that the optimization problem of
setting valves does not involve any binary decision variables, once the location of
the valves is known or given. As shown in (Sherali and Smith 1997), under the
constraints (14)-(15) a solution where both Qi,j > 0 and Qj,i > 0 is infeasible.

Pressure reducing valves are modeled as a binary variable associated with each
link, but there can only be one such valve on any pipe in the network and no
more in total than allowed by the user.

vi,j + vj,i ≤ 1∑
(i,j)∈E vi,j ≤ Nv

(16)

The user must also specify a minimum pressure as a service requirement.

pmin ≤ pi ≤ pmax (17)

Because the pipe head loss curve is estimated over a range a maximum flow is
also needed.

0 ≤ Qi,j ≤ Qmax (18)

Advantages of this formulation include the small number of binary variables–
there is only one for each link–and the linear objective. The constraints are also
linear except for the head loss constraint (14)-(15). We denote optimal valve
placement and setting problem to minimize (11) under the constraints (12) - (18)
as VP-MINLP (mixed integer nonlinear program). In case the location of the
pressure reducing valves is fixed and the sole decision is the optimal setting of
these valves, VP-MINLP reduces to a continuous optimization problem where vi,j
are input parameters. This reduced problem of valve setting is denoted as VS-
NLP. Due to constraints (14)-(15) both, VP-MINLP and VS-NLP, are nonconvex
problems. VP-MINLP is a polynomial optimization problem of degree three and
dimension Nn + 4Np, VS-NLP (nonlinear optimization problem) is a polynomial
optimization problem of degree three and dimension Nn + 2Np.

Due to the scale of water networks of interest in this paper - with Nn = 1893
and Np = 2469 for the largest instance - we solve VP-MINLP and VS-NLP by
branch-and-bound and interior point methods using the solvers Bonmin (2011)
and Ipopt (2011), respectively. Since both optimization problems nonconvex,
these solvers are not guaranteed to find globally optimal solutions. However, we
follow the recommendations in (Bragalli et al. 2011) for nonconvex MINLP to
choose the Bonmin Branch-and-Bound options. Moreover, as a global solver for
nonconvex MINLP we considered Couenne (2011).

We compare the performance of this non-linear programming approach for
optimal valve placement to simulation results obtained by Epanet and to a MILP
(mixed integer linear programming) formulation. The MILP is obtained when
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choosing a piece-wise linear approximation for the head loss and indicating flow
direction by an additional binary variable for each pipe. The MILP is solved
using IBM-ILOG-CPLEX v12.4 (2011).

In order to make an accurate comparison between piecewise linear and quadratic
approximations of the head loss curve, the quadratic estimate is generated first
and then the piecewise linear approximation is developed to have error statistics
that are roughly equivalent. The piecewise linear approximation is found using an
adaptive bi-section algorithm. The algorithm bisects part of the head loss curve,
adding an element to the piecewise approximation, only if the relative error is
larger for the linear approximation than the quadratic one. In this way, the level
of approximation for each pipe is similar and flatter parts of the curve receive
fewer linear segments.

RESULTS AND DISCUSSION

25 Node Network

The first network considered here is the benchmark network of Sterling and
Bargiela (1984) that has also been studied by Jowitt and Xu (1990), Reis et al.
(1997), Vairavamoorthy and Lumbers (1998) and Nicolini and Zovatto (2009)
among others. The network layout is shown in Fig. 4, c.f. Vairavamoorthy and
Lumbers (1998) or Sterling and Bargiela (1984) for the pipe and node information.
Valve placement on this network is challenging because there are three sources
and the network is highly connected. Head loss is modeled using Hazen-Williams.
Quadratic approximations for the head loss curve of each pipe were developed
using the methods described above. The optimization problem was modeled
using AMPL (Fourer et al. 2003) and solved by Bonmin v. 1.5 (2011) and Ipopt
v. 3.10 (2011).

The optimal valve placements for minimizing the sum of pressures are on
pipes 1, 5 and 11 (Fig. 4 ). Notably, this result differs from the valve locations in
the original version of the problem of Sterling and Bargiela (1984) where optimal
settings were sought. A different placement, on pipes 1, 11 and 20, is obtained
by Nicolini and Zovatto (2009) using a different objective.

The accuracy of the quadratic approximation on simulation results was as-
sessed by comparing flows and pressures from the optimization model with EPANET
2.0 (Rossman 2000). The flows and pressures from the MINLP solution are very
consistent with Epanet (Fig. 5). Differences between pressures in Bonmin and
Epanet were small, with the largest relative error of 1% or .2m at node 19. In
the flow solution relative errors had a median of 0.5% and relative errors in the
middle 90% of the data ranged from -8.8% to 12%. In the remaining 10% of pipes
absolute errors ranged from -0.33 to 0.0006 L/s. As expected, high relative errors
occurred at low flows and had a negligible impact on the overall mass balance.

The valve placement problem was also solved using a piecewise linear approx-
imation for head loss. The linear method yielded the same valve placement and
essentially the same settings. Flow accuracy was slightly better (errors of -7.2%
to 4.8% for the middle 90%) since the linearization was generated to be at least
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FIG. 4. Twenty five node network due to Sterling and Bargiela (1984) with
three pressure reducing valves placed in optimal locations as found in the
present paper. Elevation contours shown in the figure are computed from
nodal values.

TABLE 2. Computational experience and instance sizes for the benchmark
network of Sterling and Barglia (1984) having 25 nodes and 37 pipes (see
Fig. 4). The MILP model used a piecewise approximation for the head loss
curve having equivalent accuracy to the quadratic fit in the MINLP model.

Continuous Binary Solution
Problem Model Solver Variables Variables Constraints Time (s)
Valve Setting MILP CPLEX 506 444 753 360

MINLP Ipot 99 0 99 8

Valve Placement MILP CPLEX 506 518 852 1128
MINLP Bonmin 99 74 198 555

as accurate as the quadratic. Computations for this network were performed on a
machine with 4GB of RAM and a processor speed of 2.5GHz, running Microsoft
Windows 7. The MINLP model run terminated after 685s, while the MILP run
required 1128s (Table 2). Results for the the reduced problem of valve setting
are also shown in Table 2.

As a global solver for nonconvex MINLP we applied Couenne to the VS-
MINLP. However, using the same optimization model, Couenne terminated with-
out finding an optimal solution.
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FIG. 5. Comparison of pressures (a) and flows (b) for the 25 node network
as calculated by Bonmin with quadratic head loss and EPANET 2.0.

1893 Node Network

To illustrate the scalability of a the quadratic approximation, we also consider
the Exnet water system first mentioned by Farmani et al. (2004). The system
includes 1893 nodes and is suggested as a realistic benchmark network by Uni-
versity of Exeter Centre for Water Systems (2012). Previous work on the Exnet
system studied optimal network design using genetic algorithms. In the present
work, optimal locations for three new pressure reducing valves are found.

Since the problem addressed here differs from the problem originally posed
for the network, several small modifications were needed to make the system
applicable for valve placement:

1. In the downloaded file, node 1610 was disconnected from the network and
so was removed;

2. the head of both reservoirs was increased to 80m to create positive pres-
sures everywhere in the network;

3. the valve labeled ”prv” was removed and elevations of the valve’s nodes
were increased from zero to match their adjacent nodes.

The Exnet system studied here includes 1893 nodes and 2469 pipes with 1
existing pressure reducing valve. Head losses are modeled by the Darcy-Weisbach
method. Quadratic approximations for pipe head loss were developed for each
pipe as described above. An equivalently accurate piecewise linear approximation
required a total of 318,000 segments for the entire network. As an illustrative case,
optimal placements for three new pressure reducing valves were found in addition
to the optimal setting for the existing valve. The simulation used a minimum
pressure of 8m.

Optimal locations for three additional pressure reducing valves are shown in
Fig. 6. As before, flows and pressures calculated by the optimization model
compared favorably to the Epanet solution (Fig. 7). In the pressure solution,
errors ranged from -0.18% to 4.4% and averaged 0.29%. In the flow solution
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TABLE 3. Computational experience and instance sizes for the Exnet net-
work of Farmani et al. (2004) having 1893 nodes and 2469 pipes (see Fig
6). The MILP model used piecewise approximation with 10% accuracy.

Continuous Binary Solution
Problem Model Solver Variables Variables Constraints Time (s)
Valve Setting MILP CPLEX 45,823 41,464 63,085 >150,000

MINLP Ipot 6,825 0 6,825 121

Valve Placement MILP CPLEX 45,823 46,396 69,910 —
MINLP Bonmin 6,825 4,932 13,650 461,500

relative errors had a median of zero and relative errors in the middle 95% of the
data ranged from -6.8% to 4.9%. In the remaining 5% of pipes absolute errors
ranged from -0.75 to .47 L/s.

Computations for the Exnet system were performed running Red Hat Linux
on a blade server with with 100GB of RAM and a processor speed of 3.5GHz.
The VP-MINLP model run terminated after 461,500s (Table 3). In the case the
location of the three additional valves is fixed and one is interested in the optimal
setting of all four valves in the network only, the resulting VS-NLP is solved by
Ipopt within 121s.

For both cases, optimal valve placement and optimal valve setting, the MILP
model of equivalent approximation accuracy for the head loss could not be solved
by CPLEX. Even when reducing the approximation accuracy to a relative error
of 10% for each pipe - which means ca. 40,000 breakpoints for the piecewise
linearization - a solution within a reasonable integer tolerance for CPLEX was not
found. Only for very coarse discretizations - basically linearization of the headloss
curve in each pipe - integral solutions were obtained for CPLEX with an integer
tolerance smaller than 1e-2. However, these solutions are not meaningful since
they do not adhere to the hydraulic model of the network. The observed trade-off
between accuracy of the piecewise linear approximation and integer tolerance in
CPLEX required to solve the resulting MILP is in line with the effect reported
by Bragalli et al. (2011).

CONCLUSIONS
This paper has proposed a quadratic approximation for pipe head loss curves

and applied the approximation to find optimal valve locations on water networks.
The method applies whether a network model has been parameterized by Hazen-
Williams or Darcy-Weisbach coefficients. A key feature of the approach is minimal
relative approximation error. By focusing on the relative rather than absolute
error, the approximation stays more consistent over the range of possible flows.
The accuracy of the approximation depends on the range of pipe flow rates and
the pipe roughness. Because rougher pipes develop fully turbulent flow at lower
Reynolds numbers, the friction factor varies over a smaller range and a quadratic
approximation is more accurate. This result means that the approximation is

14



New 
Valve

New 
Valve

New 
Valve

Existing 
Valve

FIG. 6. The Exnet network modified from Farmani et al. (2004) having
1893 nodes and 2469 pipes. Optimal locations for three new valves are
shown.
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FIG. 7. Comparison of pressures (a) and flows (b) for the Exnet system as
calculated by Bonmin with quadratic head loss and EPANET 2.0.
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especially well suited to older water systems where pipes tend to be rougher.
Computational results showed that the approximation is fast and accurate.

For the two benchmark networks studied here, optimization models achieved ac-
curacy comparable to standard hydraulic solvers. Models based on quadratic
head loss were also faster than similar models using piecewise linearizations. The
increase in speed is due to the dramatic reduction in the number of binary vari-
ables. This speedup is important as optimization models begin to find use in
making operational decisions on water networks.

Since the design decision of installing additional valves is a one-time decision, a
long run time to find an optimal placement - as for the large-scale Exnet system
- seems acceptable. The operational decision to optimally set the valves in a
network may need to be addressed on a daily or even hourly basis. Thus, a
runtime to find an optimal setting within minutes is crucial. The results presented
here underline that the given approach is promising for both optimal design and
operation of real world water networks at scale.

Moreover, due to graphs representing a water network often being sparse,
both, VP-MINLP and VS-NLP, are sparse polynomial optimization problems.
Thus, sparse, convex relaxation techniques proposed by Waki et al. (2006) and
Lasserre (2006) may be promising to derive global optimality bounds for the
solutions obtained by Bonmin and Ipopt, and to derive starting points for these
local methods - in particular for the continuous VS-NLP or the NLP relaxations
at each node in the Branch-and-Bound tree.

Although this paper has focused on the valve placement problem, quadratic
approximations for pipe head loss are applicable for other problems on water
networks where an explicit polynomial form is desirable and an estimate of the
relevant flow range is available. As with any approximate method, care is re-
quired to obtain proper results. When used carefully, the approach developed
here increases the size of network that is tractable for mathematical optimization
methods.
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Notation
a dimensional coefficient,
b dimensional coefficient,
di water demand at node i,
ei elevation at node i,
f Darcy friction factor[–],
g gravitational acceleration[m/s/s],
hf frictional head loss [m],

ĥf approximation of frictional head loss [m],
ks roughness height [m],
vi,j valve indicator,
A− E constants used to compute a and b for Hazen-Williams,
C Hazen-Williams C-value,
D Pipe diameter [m],
F Objective function,
L Pipe length [m],
Nn Number of nodes in the network,
Np Number of pipes in the network,
Nv Number of valves in the network,
Q Flow rate [m3/s],
Q1 Flow rate at lower end of approximation interval [m3/s],
Q2 Flow rate at upper end of approximation interval [m3/s],
Re Reynold’s number,
V Average fluid velocity [m/s],
α Constant part of Hazen-Williams formula
ε relative error
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