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Control Design along Trajectories with Sums of Squares Programming

Anirudha Majumdar1, Amir Ali Ahmadi2, and Russ Tedrake1

Abstract— Motivated by the need for formal guarantees on
the stability and safety of controllers for challenging robot
control tasks, we present a control design procedure that
explicitly seeks to maximize the size of an invariant “funnel”
that leads to a predefined goal set. Our certificates of invariance
are given in terms of sums of squares proofs of a set of
appropriately defined Lyapunov inequalities. These certificates,
together with our proposed polynomial controllers, can be
efficiently obtained via semidefinite optimization. Our approach
can handle time-varying dynamics resulting from tracking a
given trajectory, input saturations (e.g. torque limits), and can
be extended to deal with uncertainty in the dynamics and state.
The resulting controllers can be used by space-filling feedback
motion planning algorithms to fill up the space with significantly
fewer trajectories. We demonstrate our approach on a severely
torque limited underactuated double pendulum (Acrobot) and
provide extensive simulation and hardware validation.

I. INTRODUCTION

Challenging robotic tasks such as walking, running and
flying require control techniques that provide guarantees on
the performance and safety of the nonlinear dynamics of the
system. Much recent progress has been made in generating
open-loop motion plans for high-dimensional kinematically
and dynamically constrained systems. These methods include
Rapidly Exploring Randomized Trees (RRTs) [13], [11]
and trajectory optimization [4], and have been successfully
applied for solving motion planning problems in a variety of
domains [11], [12] . However, open loop motion plans alone
are not sufficient to perform challenging control tasks such as
robot locomotion; usually, one needs a stabilizing feedback
controller to correct for deviations from the planned trajec-
tory. Popular feedback control techniques include methods
based on linearization such as the Linear Quadratic Regulator
(LQR) [14] and partial feedback linearization [21]. While
these approaches are relatively easy to implement, they are
unable to directly reason about nonlinear dynamics and
input saturations (e.g. torque limits). The resulting controllers
can require a large degree of hand-tuning and importantly,
provide no explicit guarantees about the performance of the
nonlinear system.

Another popular approach for feedback control is linear
Model Predictive Control (MPC) [6]. While this method can
deal with input saturations, it is again unable to provide
guarantees on the stability/safety of the resulting controller
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Fig. 1. The “Acrobot” used for hardware experiments.

on the nonlinear system. Dynamic programming has also
been used for controlling robots [3]. Although this approach
does reason about the natural dynamics of the system and
can provide guarantees of the safety of the resulting closed
loop system, it requires some form of discretization of the
state space and dynamics. Thus, discretization errors and
the curse of dimensionality have prevented this method
from being applied successfully on challenging control tasks.
Differential dynamic programming [8] seeks to address some
of these issues, but is local in nature and thus cannot provide
guarantees on the full nonlinear system.

In this paper, we provide an alternative approach that
employs Lyapunov’s stability theory for designing controllers
that explicitly reason about the nonlinear dynamics of the
system and provide guarantees on the stability of the result-
ing closed loop dynamics. The power of Lyapunov stability
theorems stems from the fact that they turn questions about
behavior of trajectories of dynamical systems into questions
about positivity or nonnegativity of functions. For example,
asymptotic stability of an equilibrium point of a continu-
ous time dynamical system, ẋ = f (x), is proven (roughly
speaking), if one succeeds in finding a Lyapunov function
V satisfying V (x) > 0 and −V̇ (x) = −〈∇V (x), f (x)〉 > 0;



i.e., a scalar valued function that is positive and mono-
tonically decreases along the trajectories of the dynamical
system. Except for very simple systems (e.g. linear systems),
the search for Lyapunov functions has traditionally been
a daunting task. More recently, however, techniques from
convex optimization and algorithmic algebra such as sums-
of-squares programming [20] have emerged as a machinery
for computing polynomial Lyapunov functions and have had
a large impact on the controls community [7]. The sums-of-
squares (SOS) approach relies on our ability to efficiently
check if a polynomial can be expressed as a sum of squares
of other polynomials. Since both of Lyapunov’s conditions
are checks on positivity (or nonnegativity) of functions,
one can search over parameterized families of polynomial
Lyapunov functions which satisfy the stronger requirement of
admitting sums of squares decompositions. This search can
be cast as a semidefinite optimization program and solved
efficiently using interior point methods [20]. Although there
is in general a gap between nonnegative and sum of squares
polynomials, the gap has shown to be small in practical
applications that apply these techniques to Lyapunov stability
theorems. A theoretical study of this gap has also recently
appeared [2, Chap. 4].

While a large body of work in the controls literature
has focused on leveraging these tools for the design and
verification of controllers, the focus has almost exclusively
been on controlling time-invariant systems to an equilib-
rium point; see e.g. [10], [9]. While this is of practical
importance in many areas of control engineering, it has
limited applicability in robotics since most tasks involve
controlling the system along a trajectory instead of to a fixed
point. There has been recent work on computing regions of
finite time invariance (“funnels”) around trajectories using
sums-of-squares programming, but this work has focused
on computing funnels for a fixed time-varying controller
[25]. In this paper, we seek to build on these results and
use sums-of-squares programming for the design of time-
varying controllers that maximize the size of the resulting
“funnel”; i.e. maximize the size of the set of states that
reach a pre-defined goal set. Our approach is able to directly
handle the time-varying nature of the dynamics (resulting
from following a trajectory), can obey limits on actuation
(e.g. torque limits), and can be extended to handle scenarios
in which there is uncertainty in the dynamics.

We hope that our sums-of-squares based control design
technique will have a large impact on control synthesis meth-
ods that rely on the sequential composition of controllers
(first introduced to the robotics community in [5]). More
recently, the LQR-Trees algorithm [24] has been proposed
for filling up a space with locally stabilizing controllers
that are sequentially composed to drive a large set of initial
conditions to a goal state. This has also been extended to an
online planning framework where one does not have access
to kinematic constraints (e.g. obstacles) till runtime and is
also faced with uncertainty about the dynamics and state
while performing a task [18]. Both of these frameworks make
use of fixed controllers (e.g LQR, H-Infinity) that are not

specifically designed to maximize the size of the funnels
computed. Thus, by employing controllers that explicitly
seek to maximize the size of the verified funnels, the space-
filling algorithms will be able to achieve more with fewer
planned trajectories.

We demonstrate our approach through extensive hardware
experiments on a torque limited underactuated double pen-
dulum (“Acrobot”) performing the classic “swing-up and
balance” task [22]. To our knowledge, these experimental
results provide the first hardware validation of sums-of-
squares programming based “funnels”.

II. TIME INVARIANT CONTROLLER DESIGN

In this section, we present our method for designing time-
invariant controllers that stabilize a system to an equilibrium
point. This approach is similar in many respects to previous
work [10], [9]. However, we still present it here as it
helps motivate the time-varying controller design section and
differs from prior work in some details of implementation.
We also use this method for balancing the Acrobot about the
upright position in Section VI.

Given a polynomial control affine system, ẋ = f (x) +
g(x)u, in state variables x∈Rn and control input u∈Rm, our
task is to find a controller, u(x), that stabilizes the system to
a fixed point. Without loss of generality, we assume that the
goal point is the origin. In order to make our search amenable
to sums-of-squares programming, we restrict ourselves to
searching over controllers that are polynomials in the state
variables, i.e., u(x) is a polynomial of some fixed degree.

A natural metric for the performance of the stabilizing
controller is the size of the region of attraction of the
resulting closed loop system. The region of attraction is the
set of points that asymptotically converge to the origin. Thus,
we will seek to design controllers that produce the “largest”
region of attraction. If we can find a function V (x), with
V (0) = 0, and a sub-level set, Bρ = {x | V (x) ≤ ρ}, that
satisfies:

x ∈ Bρ , x 6= 0 =⇒ V (x)> 0, V̇ (x)< 0,

we can conclude that Bρ is an inner approximation of the true
region of attraction. This representation also yields a natural
metric for the “largeness” of the resulting verified region
of attraction. We aim to design controllers that maximize ρ

subject to a normalization constraint on V (x). (If one does
not normalize V (x), ρ can be made arbitrarily large simply
by scaling the coefficients of V (x)).

Denoting the closed loop system by fcl(x,u(x)), we can
compute:

V̇ (x) =
∂V
∂x

T

ẋ =
∂V
∂x

T

fcl(x,u(x)).

Then, the following sums-of-squares program can be used
to find a controller that maximizes the size of the verified



region of attraction:

maximize
ρ,L(x),V (x),u(x)

ρ (1)

subject to V (x) SOS (2)
−V̇ (x)+L(x)(V (x)−ρ) SOS (3)

L(x) SOS (4)

V (∑
j

e j) = 1 (5)

Here, L(x) is a non-negative “multiplier” term and e j is the
j-th standard basis vector for the state space Rn. It is easy to
see that the above conditions are sufficient for establishing
Bρ as an inner estimate of the region of attraction for the
system. When x ∈ Bρ , we have by definition that V (x)< ρ .
Then, since L(x) is constrained to be non-negative, condition
(3) implies that V̇ (x) < 0.1 Condition (5) is a normaliza-
tion constraint on V (x) and is a linear constraint on the
coefficients of V (x). Note that this normalization does not
introduce conservativeness since if a valid Lyapunov function
exists, one can always scale it to satisfy this normalization
constraint.

The above optimization program is not convex in general
since it involves conditions that are bilinear in the decision
variables. However, the conditions are linear in L(x) and
u(x) for fixed V (x), and are linear in V (x) for fixed L(x)
and u(x). Thus, we can efficiently perform the optimization
by alternating between the two sets of decision variables,
(L(x),u(x)) and V (x) and repeat until convergence in the
following two steps: (1) Fix V (x) and search over u(x) and
L(x), and (2) Fix u(x) and L(x) and search over V (x). In both
steps, we can optimize ρ , albeit in slightly different ways.
In Step (1), ρ appears linearly in the constraints (since L(x)
is fixed) and thus we can optimize it directly in the SOS
program. In Step (2), we can perform binary search over ρ

in order to maximize it. Each iteration of the alternation is
guaranteed to obtain an objective ρ∗ that is at least as good
as the previous one since a solution to the previous iteration
is also valid for the current one. Combined with the fact
that the objective must be bounded above for any realistic
problem with a bounded region of attraction, we conclude
that the sequence of optimal values produced by the above
alternation scheme converges.

Our approach requires one to have a good initial guess
for the Lyapunov function. For this, one can simply use a
linear control technique like the Linear Quadratic Regulator
that provides a candidate V (x) (and scale it to satisfy the
normalization constraint).

Finally, an important observation that will help us in
designing time-varying controllers in Section III is that by
eliminating the non-negativity constraint on L(x) in the above
SOS program, one can design controllers that make Bρ

an invariant set instead of a region of attraction. Relaxing

1SOS decompositions obtained form numerical solvers generically
provide proofs of polynomial positivity as opposed to mere non-negativity
(see the discussion in [1, p.41]). This is why we claim a strict inequality
on V̇ .

constraint (4) has the effect of checking condition (3) only
on the boundary of the set Bρ . This is because condition
(3) now implies that V̇ (x) < 0 when V (x) equals ρ . Thus,
trajectories that start in the set remain in the set for all time.

III. TIME VARYING CONTROLLER DESIGN

We now extend the ideas presented in Section II in order
to design controllers that stabilize systems along pre-planned
trajectories. This approach builds off of the work presented in
[25], which seeks to compute regions of finite time invariance
(“funnels”) around trajectories for a fixed feedback controller.
Here, our aim is to design time-varying controllers that
maximize the size of the funnel, i.e., maximize the size of
the set of states that are stabilized to a pre-defined goal set.

More formally, let ẋ = f (x)+g(x)u be the control system
under consideration. Let x0(t) : [0,T ] 7→ Rn be the nominal
trajectory that we want the system to follow and u0(t) :
[0,T ] 7→Rm be the nominal open-loop control input. (In this
section, we do not focus on how one might obtain such
nominal trajectories and associated control inputs. This is
briefly discussed in Section V-B). Defining new coordinates
x̄ = x−x0(t) and ū = u−u0(t), we can rewrite the dynamics
in these variables as:

˙̄x = ẋ− ẋ0(t) = f (x0(t)+ x̄)+g(x0(t)+ x̄)(u0(t)+ ū)− ẋ0(t)

Then, given a goal set B f , we seek to compute inner estimates
of the time-varying sets Bρ(t) that satisfy the following
invariance condition ∀t0 ∈ [0,T ]:

x̄(t0) ∈ Bρ(t0) =⇒ x̄(t) ∈ Bρ(t) ∀t ∈ [t0,T ]. (6)

Letting Bρ(T ) = B f , this implies that any point that starts off
in the “funnel” defined by Bρ(t) is driven to the goal set. Our
task will be to design time-varying controllers that maximize
the size of this funnel.

Proceeding as in Section II, we describe the funnel as a
time-varying sub-level set of a function V (x̄, t):

Bρ(t) = {x̄ | V (x̄, t)≤ ρ(t)}

and require:

V (x̄, t) = ρ(t) =⇒ V̇ (x̄, t)< ρ̇(t) (7)

It is easy to see that this condition implies the invariance
condition (6). Here, V̇ (x̄, t) is computed as:

V̇ (x̄, t) =
∂V (x̄, t)

∂ x̄
˙̄x+

∂V (x̄, t)
∂ t

In principle, we can parameterize our function V (x̄, t) as
a polynomial in both t and x and check (7) ∀t ∈ [0,T ].
However, as described in [25], this leads to expensive sums-
of-squares programs. Instead, we can get large computational
gains with little loss in accuracy by checking (7) at sample
points in time ti ∈ [0,T ], i = 1 . . .N. As discussed in [25], for
a fixed V (x̄, t) and dynamics (and under mild conditions on
both), increasing the density of the sample points eventually
recovers (7) ∀t ∈ [0,T ]. This allows us to check the answers
we obtain from the sums-of-squares program below by
sampling finely enough.



Thus, we parameterize V (x̄, t) and ū by polynomials Vi(x̄)
and ūi(x̄) respectively at each sample point in time.2 Using
∑

N
i=1 ρ(ti) as the cost function, we can write the following

sums-of-squares program:

maximize
ρ(ti),Li(x̄),Vi(x̄),ūi(x̄)

N

∑
i=1

ρ(ti) (8)

subject to Vi(x̄) SOS (9)
−V̇i(x̄)+ ρ̇(ti)+Li(x̄)(Vi(x̄)−ρ(ti)) SOS

(10)

Vi(∑
j

e j) =Vguess(∑
j

e j, ti) (11)

Similar to the SOS program in Section II, the Li(x̄) are
“multiplier” terms that help to enforce the invariance con-
dition (note that there is no sign constraint on these multi-
pliers). Condition (11) is a normalization constraint, where
Vguess(x̄, t) is the candidate for V (x̄, t) that is used for
initializing the alternation scheme outlined below. We use
a piecewise linear parameterization of ρ(t) and can thus
compute ρ̇(ti) =

ρ(ti+1)−ρ(ti)
ti+1−ti

. Similarly, we compute ∂V (x̄,t)
∂ t ≈

Vi+1(x̄)−Vi(x̄)
ti+1−ti

.
The above optimization program is again not convex in

general since it involves conditions that are bilinear in the
decision variables. However, the conditions are linear in Li(x̄)
and ūi(x̄) for fixed Vi(x̄) and ρ(ti), and are linear in Vi(x̄) and
ρ(ti) for fixed Li(x̄) and ūi(x̄). Thus, in principle we could
use a similar bilinear alternation scheme as the one used for
designing time-invariant controllers in Section II. However,
in the first step of this alternation, it is no longer possible
to do a bisection search on ρ(t) since it is parameterized
with a different variable at each sample point in time
(it is possible in principle to perform a bisection search
over multiple variables simultaneously, but is prohibitively
expensive computationally). We could simply make the first
step a feasibility problem (instead of optimizing a cost
function), but this prevents us from searching for a controller
that explicitly seeks to maximize the desired cost function,
∑

N
i=1 ρ(ti), since in the second step of the alternation, we

do not search for a controller. We get around this issue by
introducing a third step in the alternation, in which we fix
Li(x̄) and Vi(x̄) and search for ūi(x̄) and ρ(ti) and maximize
∑

N
i=1 ρ(ti). The steps in the alternation are summarized in

Algorithm 1. By a similar reasoning to the one provided in
Section II, we can conclude that the sequence of optimal
values produced by Algorithm 1 converges.

Section V-A discusses how to initialize Vi(x̄) and ρ(ti) for
Algorithm 1.

IV. INCORPORATING ACTUATOR LIMITS

A. Approach 1

An important advantage of our method is that it allows
us to incorporate actuator limits into the control design

2Throughout, a subscript i next to a function will denote that the
function is parameterized only at sample points in time. The notation V (x̄, t)
will denote that the function is defined continuously for all time in the
specified interval.

Algorithm 1 Time-Varying Controller Design
1: Initialize Vi(x̄) and ρ(ti), ∀i = 1 . . .N
2: ρprev(ti) = 0, ∀i = 1 . . .N.
3: converged = false;
4: while ¬converged do
5: STEP 1 : Solve feasibility problem by searching for

Li(x̄) and ūi(x̄) and fixing Vi(x̄) and ρ(ti).
6: STEP 2 : Maximize ∑

N
i=1 ρ(ti) by searching for ūi(x̄)

and ρ(ti), and fixing Li(x̄) and Vi(x̄).
7: STEP 3 : Maximize ∑

N
i=1 ρ(ti) by searching for Vi(x̄)

and ρ(ti), and fixing Li(x̄) and ūi(x̄).
8: if ∑

N
i=1 ρ(ti)−∑

N
i=1 ρprev(ti)

∑
N
i=1 ρprev(ti)

< ε then
9: converged = true;

10: end if
11: ρprev(ti) = ρ(ti), ∀i = 1 . . .N.
12: end while

procedure. Although we examine the single-input case in
this section, this framework is very easily extended to handle
multiple inputs.

Let the control law u(x) be mapped through the following
control saturation function:

s(u(x)) =


umax if u(x)≥ umax

umin if u(x)≤ umin

u(x) o.w.

Then, in a manner similar to [24], a piecewise analysis of
V̇ (x̄, t) can be used to check the Lyapunov conditions are
satisfied even when the control input saturates. Defining:

V̇min(x̄, t) =
∂V (x̄, t)

∂ x̄

T

( f (x̄)+g(x̄)umin)+
∂V (x̄, t)

∂ t
(12)

V̇max(x̄, t) =
∂V (x̄, t)

∂ x̄

T

( f (x̄)+g(x̄)umax)+
∂V (x̄, t)

∂ t
(13)

we must check the following conditions:

u(x̄)≤ umin =⇒ V̇min(x̄, t)< ρ̇(t) (14)
u(x̄)≥ umax =⇒ V̇max(x̄, t)< ρ̇(t) (15)
umin ≤ u(x̄)≤ umax =⇒ V̇ (x̄, t)< ρ̇(t) (16)

The SOS program in Section III can be modified to enforce
these conditions with extra multipliers, Mu(x̄) (similar to
[24]). The addition of the new multipliers means that we can
no longer search for the controller in Step 1 of Algorithm
1. This is because searching for the new multipliers and the
controller at the same time makes the problem bilinear in the
decision variables. Thus, in Step 1, we only search for all
the multipliers (with a fixed ūi(x̄), Vi(x̄) and ρ(ti)). In Step
2, we hold Vi(x̄) and all the multipliers constant and search
for ūi(x̄) and ρ(ti). In Step 3, we fix the controller and Li(x̄)
and search for Vi(x̄), ρ(ti) and Mu(x̄) (we can do this since
the controller is fixed).

B. Approach 2

Although one can handle multiple inputs via the above
method, the number of SOS conditions grows exponentially



with the number of inputs (3m conditions for V̇ are needed
in general to handle all possible combinations of input
saturations). Thus, for systems with a large number of
inputs, we propose an alternative formulation that avoids this
exponential growth in the size of the SOS program at the cost
of adding conservativeness to the size of the funnel. Given
element-wise limits on the control vector u∈Rm of the form
umin,k < uk < umax,k,∀k = 1 . . .m, we can ask to satisfy:

x̄ ∈ Bρ(ti) =⇒ umin,k < uk(x̄)< umax,k, ∀t1 . . . tN

This constraint implies that the applied control input remains
within the specified bounds inside the verified funnel (a con-
servative condition), and can be imposed in each of the three
steps in Algorithm 1 with the addition of new multipliers.
The number of extra constraints grows linearly with the
number of inputs (since we have one new condition for every
input), thus leading to smaller optimization problems.

V. IMPLEMENTATION DETAILS

A. Initializing Vi(x̄) and ρ(ti)

Obtaining an initial guess for Vi(x̄) and ρ(ti) is an im-
portant part of Algorithm 1. In [24], the authors use the
Lyapunov function candidate associated with a time-varying
LQR controller. The control law is obtained by solving a
Riccati differential equation:

−Ṡ(t) = Q−S(t)B(t)R−1BT S(t)+S(t)A(t)+A(t)T S(t)

with final value conditions S(t) = S f . Here A(t) and B(t)
describe the time-varying linearization of the dynamics about
the nominal trajectory x0(t). Q and R are positive-definite
cost-matrices. The function:

Vguess(x̄, t) = (x− x0(t))T S(t)(x− x0(t)) = x̄T S(t)x̄

is our initial Lyapunov candidate. Vguess(x̄, tN)= x̄T S f x̄, along
with a choice of ρ(tN) can be used to determine the goal set,
B f (Section III) since we have:

B f = {x̄ | x̄T S f x̄≤ ρ(t f )}.

We find that setting ρ(ti) to a small enough constant works
quite well in practice.

B. Trajectory generation

An important step that is necessary for the success of
the control design scheme described in this paper is the
generation of a dynamically feasible open-loop control input
u0(t) : [0,T ] 7→ Rm and corresponding nominal trajectory
x0(t) : [0,T ] 7→ Rn. A method that has been shown to work
well in practice and scale to high dimensions is the direct
collocation trajectory optimization method [4]. While this
is the approach we use for the results in Section VI, other
methods like the Rapidly Exploring Randomized Tree (RRT)
or its asymptotically optimal version, RRT? can be used too
[13], [11].

VI. EXPERIMENTAL VALIDATION

We validate our approach with experiments on a severely
torque limited underactuated double pendulum (“Acrobot”)
[22]. The hardware platform, shown in Figure 1, has no
actuation at the “shoulder” joint θ1 and is driven only at
the “elbow” joint θ2. A friction drive is used to drive the
elbow joint. While this prevents the backlash one might
experience with gears, it imposes severe torque limitations
on the system. This is due to the fact that torques greater
than 5 Nm cause the friction drive to slip. Thus, in order to
obtain consistent performance, it is very important to obey
this input limit. Encoders in the joints report joint angles
to the controller at 200 Hz and finite differencing and a
standard Luenberger observer [17] are used to compute joint
velocities.

The prediction error minimization method in MATLAB’s
System Identification Toolbox [15] was used to identify
parameters of the model presented in [22]. The dynamics
were then Taylor expanded to degree 3 in order to obtain a
polynomial vector field.3

Fig. 2. A comparison of the guaranteed basins of attraction for the time-
invariant LQR controller (blue) and the cubic SOS controller (red) designed
for balancing the Acrobot in the upright position.

We designed an open-loop motion plan for the swing-up
task using direct collocation trajectory optimization [4] by
constraining the initial and final states to [0,0,0,0]T and
[π,0,0,0]T respectively. We then designed a time-invariant
nonlinear controller (cubic in the four dimensional state
x= [θ1,θ2, θ̇1, θ̇2]

T ) using the method from Section II for bal-
ancing the Acrobot about the upright position ([π,0,0,0]T ]).
Figure 2 compares projections of the SOS verified funnels for
the LQR (blue) and cubic (red) controllers onto the θ2−θ1
subspace. As the plot demonstrates, the cubic controller has
a significantly larger guaranteed basin of attraction. Other
projections result in a similar picture.

A linear time-varying controller was designed using the
approach presented in Section III and IV-A in order to

3Taylor expanding the dynamics is not strictly necessary since sums-of-
squares programming can handle trigonometric as well as polynomial terms
[19]. In practice, however, we find that the Taylor expanded dynamics lead to
trajectories that are nearly identical to the original ones and thus we avoid
the added overhead that comes with directly dealing with trigonometric
terms.



(a) θ2 − θ1 projection of SOS funnel (red) compared to LQR
funnel (blue)

(b) θ̇1 − θ1 projection of SOS funnel (red) compared to LQR
funnel (blue)

(c) θ2−θ1 projection of set of initial conditions, Bρ(0), driven
to goal set by SOS controller (red) compared to corresponding
set for the LQR controller (blue)

(d) θ̇1−θ1 projection of set of initial conditions, Bρ(0), driven
to goal set by SOS controller (red) compared to corresponding
set for the LQR controller (blue)

Fig. 3. Comparison of verified SOS funnels for the SOS and LQR controllers

maximize the size of the funnel along the swing-up tra-
jectory, with the goal set given by the verified region of
attraction for the time-invariant controller. 105 sample points
in time, ti, were used for the verification. For both the time-
invariant balancing controller and the time-varying swing-
up controller, we use Lyapunov functions, V , of degree 2.
LQR controllers were used to initialize the sums-of-squares
programs for both controllers.

We implement our sums-of-squares programs using the
YALMIP toolbox [16], and use SeDuMi [23] as our semidef-
inite optimization solver. A 4.1 GHz PC with 16 GB RAM
and 4 cores was used for the computations. The time taken
for Step 1 of Algorithm 1 during one iteration of the
alternation was approximately 12 seconds. Steps 2 and 3 took
approximately 36 and 70 seconds (per iteration) respectively.
39 iterations of the alternation scheme were required for
convergence, although we note that a better method for
initializing ρ(ti) than the one presented in Section V-A is
likely to decrease this number.

Figures 3(a) and 3(b) compare projections (onto different
subspaces of the full 4-d state space) of the funnels obtained
from sums-of-squares for both the SOS controller and for
the time-varying LQR controller. To obtain the funnel for

the LQR controller, we simply solve the SOS program in
Section III without searching for the controller (the approach
taken in [25]). As the plots show, the funnels for the SOS
controller are significantly bigger than the LQR funnels. In
fact, by solving a simple SOS program, we found that the
verified set of initial conditions, Bρ(0), driven to the goal
set by the LQR controller is strictly contained within the
corresponding set for the SOS controller. Projections of the
two sets are depicted in Figures 3(c) and 3(d).

We validate the funnel for the controller obtained from
SOS with 30 experimental trials of the Acrobot swinging up
and balancing. The robot is started off from random initial
conditions drawn from within the SOS verified funnel and
the time-varying SOS controller is applied for the duration of
the trajectory. At the end of the trajectory, the robot switches
to the cubic time-invariant balancing controller. Figures 4(a)
- 4(c) provide plots of this experimental validation. Plots 4(a)
and 4(b) show the 30 trajectories superimposed on the funnel
projected onto different subspaces of the 4-dimensional state
space. Note that remaining inside the projected funnel is a
necessary but not sufficient condition for remaining within
the funnel in the full state space. Plot 4(c) shows the value
of V (x̄, t) achieved during the different experimental trials



(a) θ2−θ1 projection of experimental trajectories superimposed
on funnel.

(b) θ̇1−θ1 projection of experimental trajectories superimposed
on funnel.

(c) V (x̄, t) for 30 experimental trials (d) V (x̄, t) for 100 simulated trials

Fig. 4. Results from experimental trials on Acrobot.

(V (x̄, t)< ρ implies that the trajectory is inside the funnel at
that time). The plot demonstrates that for most of the duration
of the trajectory, the experimental trials lie within the verified
funnel. However, violations are observed towards the end.
This can be attributed to state estimation errors and model
inaccuracies (particularly in capturing the slippage cause by
the friction drive between the two links) and also to the fact
that the Lyapunov function has a large gradient with respect
to x̄ towards the end. Thus, even though the trajectories
deviate from the nominal trajectory only slightly in Euclidean
distance (as plots 4(a) and 4(b) demonstrate), these deviations
are enough to cause a large change in the value of V (x̄, t).
We note that all 30 experimental trials resulted in the robot
successfully swinging up and balancing. Figure 4(d) plots
V (x̄, t) for 100 simulated experiments of the system started
off from random initial conditions inside the funnel. All
trajectories remain inside the funnel, suggesting that the
violations observed in Figure 4(c) are in fact due to modeling
and state estimation errors. Section VII-A discusses how the
method presented in this paper can be extended to deal with
model inaccuracies and state estimation error.

VII. DISCUSSION

While we found that a cubic time-invariant controller and
a linear time-varying controller for the swing-up task gave

substantial improvements in the size of the SOS verified
funnels over LQR, the use of higher degree controllers
may provide even better results. Also, one can use higher
degree Lyapunov functions in order to get tighter estimates
of the true regions of attraction and funnels. This requires
no modification to the approach presented in Section II
and III. Several straightforward extensions to the framework
presented in this paper are also possible. These are discussed
below.

A. Robustness

As observed in Section VI, modeling and state estimation
errors can cause the guarantees given by our control design
technique to be violated in practice. While the violations
are small in the hardware experiments presented in Section
VI, this may not be the case in application domains where
the dynamics are difficult or impossible to model accurately
(e.g. collision dynamics of walking robots, UAV subjected to
wind gusts). In such scenarios, we must explicitly account
for the uncertainty in the dynamics (and possibly in state
estimates that the controller has access to). The control
design framework presented in this paper allows us to do
this. Given a polynomial system, ẋ = f (x,u,w), where w ∈
W is a bounded disturbance/uncertainty term that enters



polynomially into the dynamics, the following condition is
sufficient for checking invariance of the uncertain system:

V (x, t) = ρ(t) =⇒ V̇ (x, t,w)≤ ρ̇(t),∀w ∈W. (17)

Here, W must be a semi-algebraic set. The SOS programs
in Sections III and IV can be modified (via the addition of
multiplier terms) to check this condition (similar to [18],
which computes funnels for systems subjected to distur-
bances and uncertainty for a fixed controller). While one
cannot guarantee in general that we can compute a SOS
funnel for the uncertain dynamics, we are more likely to
obtain funnels when we search for the controller. Also, the
size of the guaranteed funnels (and indeed the magnitude of
the allowable disturbances) will be larger when we search
for the controller.

B. Obstacles and Kinematic Constraints

Obstacles and other kinematic constraints (such as joint
limits) can also be incorporated into the control design
procedure. Given a polytopic obstacle defined by half-plane
constraints A jx ≥ 0 for j = 1, ...,M, we can impose the
following condition:

A jx≥ 0,∀ j =⇒ V (x, t)> ρ(t).

This ensures that the computed funnel does not intersect the
obstacle (since inside the obstacle, we have V (x, t)> ρ(t)).

VIII. CONCLUSIONS

We have presented an approach for designing time-varying
controllers that explicitly optimizes the size of the guaranteed
“funnel”, i.e., the set of initial conditions driven to the
goal set. Our method uses Lyapunov’s stability theory and
sums-of-squares programming in order to guarantee that all
trajectories that start off inside the funnel are driven to
the goal state, and is able to handle time-varying dynamics
and constraints on the inputs. We demonstrate our approach
on the “swing-up and balance” task on a severely torque-
limited underactuated double pendulum (Acrobot). To our
knowledge, our hardware experiments constitute the first
experimental validation of funnels computed using sums-of-
squares programming. The size of the guaranteed funnels we
obtain on the Acrobot by searching for a controller show a
significant improvement over funnels computed when one
fixes the controller to a time-varying LQR controller. In
practice, this means that a space-filling algorithm like LQR-
Trees [24] or an online planning algorithm such as the one
presented in [18] can fill the space with significantly fewer
trajectories. Our basic approach can also be extended to deal
with uncertainty in the dynamics, state estimation error and
kinematic constraints (e.g. obstacles).
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