
RC25313 (WAT1210-019) October 3, 2012
Computer Science

IBM Research Report

Optimization of Reverse Time Migration
For Fast and Scalable Seismic Imaging on Blue Gene

Ligang Lu, Lurng-Kuo Liu, Karen Magerlein,
Pascal Vezolle*, Michael Perrone

IBM Research Division
Thomas J. Watson Research Center

P.O. Box 208
Yorktown Heights, NY 10598

USA

*IBM France

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Optimization of Reverse Time Migration
For Fast and Scalable Seismic Imaging on Blue Gene

Ligang Lu, Lurng-Kuo Liu, Karen Magerlein, Pascal Vezolle*, Michael Perrone

Computational Science Center, IBM Research
Yorktown Heights, NY 10598

*IBM France

Abstract—We present our optimization work on a Reverse

Time Migration (RTM) code for fast and scalable seismic

imaging on Blue Gene. RTM is a seismic imaging algorithm

increasingly used in industry for oil exploration. Our work is

novel not only in that it uses the Blue Gene supercomputing

systems torus network, high inter-node communication

bandwidth, and large resident memory in each node to convert

an embarrassingly parallel problem into one that can be

efficiently solved using massive domain partitioning; but it is

also novel in that it develops effective schemes to keep

intermediate data snapshots in internal memory and fast

interpolation for sub-sampling that eliminate bottlenecks in the

forward and backward pass and significantly improved

performance while maintained image quality. With further

optimizations in boundary condition calculation, OpenMP,

load balance, MPI communications, etc., our final code

achieved ~10X overall performance improvement over the base

line code. The success of our optimization can be easily

extended to next-generation imaging algorithms currently

being developed. In the workshop, we will include a BG/Q

architecture overview and comparative BG/Q results

depending on availability.

Keywords- Seismic Imaging, Reverse Time Migration

Optimization;Finite Difference Methods, Data Movement

I. INTRODUCTION

 Reverse Time Migration (RTM) is increasingly used in
oil industry for petroleum exploration. Because the drilling
success rate is vital to the oil companies, complex variations
of algorithms are being developed and used. To reduce the
time to oil, high performance computers are widely
employed. To be cost effective, optimal performance is
critical to oil companies. In this paper, we present our
optimization work on a Reverse Time Migration (RTM)
code for fast and scalable seismic imaging on Blue Gene.
RTM is a seismic imaging algorithm increasingly used in
industry for oil exploration. Our work is novel in that it not
only took the advantages of the Blue Gene supercomputing
systems in 3D torus network, high inter-node
communication bandwidth, and large resident memory in
each node to convert an embarrassingly parallel problem
into one that can be efficiently solved using massive domain
partitioning, but also developed effective schemes to keep
the wavefield snapshots in internal memory and fast
interpolation for sub-sampling that eliminated the
bottlenecks in the forward pass and backward pass and
significantly improved performance while maintained the

image quality. With further optimizations in boundary
condition calculation, OpenMP, load balance, MPI
communications, etc, our final code achieved ~10X overall
performance improvement over the base line code. The
success of our optimization can be easily extended to next-
generation imaging algorithms currently being developed.
In this paper we will also include a BG/Q architecture
overview and comparative results on BG/P. In this paper,
we explore these ideas in the context of production seismic
imaging: physics-based signal processing used by the
energy industry to find oil and gas reservoirs. We begin
with an introduction to the problem of seismic imaging and
a description of the widely used Reverse Time Migration
(RTM) method, comparing and contrasting our approach to
the one commonly used in the industry. We then describe
our implementation of RTM, the optimizations that were
performed, the experimental setup and the performance
results, comparing where appropriate to other RTM
implementations.

II. SEISMIC IMAGING

Seismic imaging is the process of converting acoustic
measurements of the Earth into images of the Earth’s
interior, much like ultrasound for medical imaging. It is
widely used in oil and gas exploration and production to
identify regions that are likely to contain hydrocarbon
reservoirs and to help characterize known reservoirs to
maximize production. These methods have become critical
to the energy industry as known reserves are used up and
new reserves become increasingly difficult (and expensive)
to find and are increasingly in technically challenging areas,
like the deep sea.
 For the past several decades, the energy industry has
tried to balance the need to image quickly and the need to
image accurately. The need for accuracy is driven by the
high cost of drilling a “dry” well due to poor imaging (a
deep sea well can cost over $100 million) and the need for
quick imaging is driven by the cost of not finding new
reserves (i.e., bankruptcy). To minimize these costs, the
industry relies on supercomputing clusters and regularly
increases compute power, enabling both faster imaging on
existing algorithms and the practical implementation of
more accurate imaging. Thus, the development of fast,
efficient methods for imaging is of high importance to the
industry.

A. Seismic Data

Seismic imaging data varies widely depending on how and
where the data is collected (e.g., on land, at sea, at the ocean
surface, at the ocean floor, below ground,
electromagnetically, etc). We focus here on the data
collection method that is most relevant to the RTM
algorithm analyzed in this paper: towed hydrophone
receiver arrays for ocean seismic data collection. The basic
idea is shown in Figure 1. A ship is shown towing a 2D
array of hydrophones spaced about every 25m on 1 to 16
trailed streamers. Every 15 or so seconds, an air cannon is
fired into the water, creating an acoustic wave that
propagates through the water and into the Earth.
Reflections from various surface and subsurface boundaries
cause echoes that reflect back and are recorded by each
hydrophone in the array. The recording of a single
hydrophone in time as a trace and the collection of traces for
a single firing of the air cannon is called a common shot

gather, or shot. As the ship moves, a large set of spatially
overlapping shots is recorded. Depending on the size of the
survey region to be imaged, this data collection can take a
month or more and is designed to get the maximal coverage
of the area to be imaged. For our purposes, we need to
know that we have lots of shots, potentially hundreds of
thousands, and that the receiver data collected is the result
of some source data at a particular location. A sample of
artificial shot data is shown in Figure 2.

Figure 1: A ship collecting seismic data using a towed

hydrophone receiver array

B. The RTM Algorithm

The Reverse Time Migration (RTM) algorithm is widely
used in the industry because of its superior imaging
accuracy for difficult subsurface structures like salt domes
which are poorly imaged by other algorithms but which are
very effective at trapping oil and gas. Several variants of
RTM exist with differing degrees of approximation to
reality, all of which use single-precision arithmetic. For this
paper we implemented isotropic, acoustic RTM which

assumes the wave velocity is independent of wave direction
and that no energy is absorbed by the medium.

Figure 2: Sample shot data for a 1D array of hydrophones
showing time on the Y-axis and spatial offset on the X-axis.
The direct source signal propagates out linearly in time
(from the center of the array) and appears as straight lines.
The recorded reflections appear as curved lines.

The RTM algorithm arises from the observation that

pressure waves should be correlated at reflection boundaries;
so RTM proceeds by correlating two pressure waves (called
the forward and backward waves) to find those boundaries.
To generate the waves for correlation, RTM simulates wave
propagation using the wave equation below for a wave
U(x,y,z,t) with a source term S(x,y,z,t):

(1)
1

c 2

∂ 2U

∂t 2
=
∂ 2U

∂x 2
+
∂2U

∂y 2
+
∂2U

∂z2
+ S

The forward wave is the wave generated from the air
cannon firing and propagating forward in time using a
“velocity model” represented by C(x,y,z), which specifies
the wave velocity at each point in space and represents the
various material properties and boundaries of the volume
being imaged. The air cannon firing is treated as a wavelet
impulse localized in time and space. The backward wave
is generated by using the shot data recorded by the
hydrophone array as the source term for the wave equation
and propagating that backward in time. These two waves
are then multiplied point-wise at each time step to generate
an image, using the following “imaging condition”:

(2) I(x,y,z) = UForward (x,y,z,t)UBackward (x,y,z,t)t
∑

This process is repeated for all shots in the seismic survey
and the images generated are summed to create a final
image of the reflecting boundaries, which represent the
subsurface structure. It is important to note that the time

summation in the imaging condition implies that the first
time step of the forward wave needs to be correlated with
the last time step of the backward wave. This constraint is
typically handled in one of two ways: either the forward
wave is saved to disk (called a “snapshot”) every several
time steps and read in for imaging when the backward wave
is computed, or the forward propagation is run twice – once
forward in time and once in reverse time using boundary
data saved from the forward pass to recreate the forward
pass in reverse – and then imaging proceeds with the
backward wave and the reverse forward wave. The first
method requires significant disk storage and can be
bottlenecked on disk I/O, while the second requires 50%
more computation and additional memory space to save the
boundary data.
Following standard practice in the industry [2], we simulate
the wave propagation of Equation (1) using the finite
difference approximation in Equation (3) where we select
the coefficients to implement 2nd order accuracy in time and
8th order accuracy in space. These coefficients are scaled to
satisfy the CFL condition [5]. This approach gives rise to
the 25-point stencil shown in Figure 3.

(3)

U i, j ,k,t+1 = 2U i, j ,k,t −U i, j,k,t−1 +

i , j ,k

2

c (αnU i+n, j,k,t + βn
n=−4

n=4

∑ U i, j+n,k,t +δnU i, j ,k+n,t)

In practice, the size of production RTM models varies
widely, but the universal desire is to grow models larger to
get more resolution and to run the models longer to enable
deeper imaging since echoes take longer to reflect from
deeper structures. Typically, velocity models for individual
shots are 5123 to 10243 elements or larger and the number of
time steps can be 10,000 or more in both the forward and
backward propagation phases.

Seismic imaging is typically computed using single
precision arithmetic and we take that approach here. Some
practitioners believe that the RTM method described above,
that avoids the need to save snapshots, must be run in
double precision; however, we do not implement that
version here.

Figure 3: 25-Point spatial stencil with 8th order accuracy
shown in isolation on the left and as it moves along the

stride-1 dimension of the model

C. Embarrassisngly Parallel RTM

Industrial implementations of RTM are embarrassingly
parallel. They typically run individual shots on one to two
nodes of a compute cluster and run many shots in parallel

(See Figure 4). These clusters have minimal network
connectivity because it is not needed: the individual shots
run independently and asynchronously. A simple work
queue is used to manage runs and if a run for a shot fails, it
is simply re-run, as it doesn’t impact any of the other runs.
A master process of some kind is needed to manage the
work queue and to merge the partial images that are
generated from each shot. Additionally, other image
processing might be included in this process, but for our
purposes here we ignore these details as the RTM
calculation is the main computational workload.

RTM compute clusters have significant per-node scratch
disk requirements for saving snapshot data, which for a
10243 model and 10,000 time steps would require 40TB of
snapshot storage – per shot! In practice, snapshot sub-
sampling is used to reduce both disk requirements and disk
IO bottlenecks; however sub-sampling results in image
degradation and must be balanced with performance.
Compression can be used to trade computation for disk IO,
but if lossy, compression can also degrade image quality.

Figure 4: Embarrassingly parallel RTM implementation

As FLOPS per processor increase, the embarrassingly
parallel implementations become disk IO bound [2]. It is
possible to improve performance by partitioning single shot
gathers over multiple nodes; however, such implementations
typically use only a handful of nodes. We have developed
an RTM implementation that extends domain partitioning
over thousands of nodes on a Blue Gene/P supercomputer
and results in dramatic performance improvements.

D. Domain-Partitioned RTM

We have developed, implemented and tested a 3D isotropic
RTM code that uniformly partitions the wave equation
domain in blocks over thousands of nodes (see Figure 5).
The partitioning over so many nodes means that the size of

the model on each node is about 1000 times smaller than for
standard RTM on a handful of nodes and provides five main
benefits: (1) all forward wave snapshots can be stored in
main memory, removing the need for disk and thereby
improving per-node data bandwidth from hundreds of MB/s
(for disk) to tens of GB/s (for main memory), effectively
removing the disk I/O performance bottleneck; (2) the
partitioned models can fit in processor cache, allowing
processing to proceed at the speed of the cache memory
bandwidth instead of main memory bandwidth which can be
an order of magnitude larger on some systems; (3) we can
load entire 3D seismic surveys into memory on one or more
racks, enabling “in-memory” processing of algorithms that
require multiple passes through the data set, such as Full
Waveform Inversion (FWI), and thereby avoiding additional
disk I/O bottlenecks and enabling better performance; (4)
keeping the models in the processor’s cache means that
snapshot reading/writing has full access to main memory
bandwidth and is not a bottleneck; and (5) this method can
run an entire velocity model instead of a subset, as is
typically done in standard RTM, allowing us to easily
extend this method to include multisource processing with
minimal code changes and significant potential performance
gains [4].

Figure 5: Domain-partitioned RTM Implementation

A critical aspect of domain-partitioned RTM is that

current wave data from neighboring sub-domain boundaries
is required for stencil calculations at each time step. Since
this boundary data transfer grows with the amount of
partitioning and with the size of the stencil used, it can easily
become a performance bottleneck. To avoid communication
bottlenecks, we implemented our partitioned RTM on a Blue
Gene/P supercomputer, which is designed specifically for
extremely efficient inter-node communication.

III. BELUE GENE ARCHITECTURE

Our performance measurements were all performed on
subsets of two racks of Blue Gene/P. It is beyond the scope
of this paper to give a full description of these machines.
Instead we focus on those features that are relevant. More
details can be found elsewhere [1].

The Blue Gene/P (BGP) supercomputer has 1024 nodes per
rack running at 0.85GHz. Each node has 4 single-threaded
cores, 4GB of RAM per node (4TB per rack) and an
extremely high-bandwidth, low-latency, nearest-neighbor
3D torus topology network in which each node is connected
to each of its 6 nearest neighbor nodes by 850MB/s of
send+receive bandwidth (i.e., 5.1GB/s per node and
5.22TB/s of communication bandwidth per rack). Because
of this massive bandwidth, BGP is ideally suited for
physical modeling involving extensive nearest-neighbor
communication and synchronization – like RTM. The
nearest neighbor latency for 32B data transfers is about 0.1
microseconds and is essentially amortized away for larger
block transfers required by RTM. Each compute node core
has a 32KB L1 cache with a 32B cache line and a shared
8MB L3 cache with a 128B cache line. Each node has two
memory channels with an aggregate bandwidth of 13.6
GB/sec to main memory. BGP compute notes are
connected via dedicated I/O nodes to a GPFS file system
based on three DDN S2A9900 couplets attached to the BGP
I/O nodes via 10 Gigabit Ethernet connections, providing
~16GB/s of disk I/O bandwidth per rack. Each node can
operate in SMP mode as a unit, or as four “virtual” nodes.
The Virtual Node (VN) model avoids the need to explicitly
use multithreading at the node level and thereby eases
programmability. Each core has a 2-way SIMD unit.

IV. RTM OPTIMIZATION DETAILS

In this section we describe various optimization details
on Blue Gene that were important to our RTM performance
improvement.

A. Code Flow

First we describe the RTM’s code flow as show in the
figure below. The code has two main loops: the forward

pass loop and the backward pass loop. In the forward
pass loop, after the step of wavefield computation, the
forward wavefield will be sub-sampled and compressed and
saved to the disk at a predetermined frequency. In the
backward pass loop, after the step of the wavefield
computation, the backward wavefield will be sub-sampled
and the saved forward wavefield will be fetched in and
decompressed to do imaging condition with the backward
wavefield at the same frequency.

Figure 6: RTM Code Flow

Figure 7: Profiling of Base line code forward pass (top)

and backward pass (bottom) results (in seconds) on 64
nodes

B. Base Line Code Performance Analysis

Upon porting the base line code to Blue Gene P system,
we first conducted scaling performance profiling and
analysis to identify performance bottlenecks and guide our
optimization process. A high-level breakdown of the base
line code (un-optimized) run time for the forward and
backward passes is shown in the figures below. The results
suggest that source field writing, boundary conditions and
MPI are not scaling well. Clearly the base line code does
not scale well and needs to be optimized.

Figure 8: Profiling of Base line code forward pass (top) and
backward pass (bottom) results (in seconds) on 512 nodes

Velocity Model,

Parameters, …

 Step of
Forward
Computing

Save
Wavefield
Snapshot?

Disk

3D Multivariate
 Subsampling
/Compression Ye

s

t=0

t= IterNum?

Y

 Step of
Backward
Computing

t=t+1

 t= 0?

Imaging

Condition?

Read Saved Wavefield
/Decompression
/3D Multivariate
Subsampling

N

Y

Output Final Result

N
Y

N
 t=t-1

Profiling of Original Code Forward Loop on 64 Nodes

0

50

100

150

200

250

300

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

Rank of Computing Nodes

T
im

e
 i
n
 S

e
c
o
n
d
s

Solve Body Grid Setup Boundary

MPI Exchange Save Wavefield Snapshots

Profiling of Original Code Forward Loop on 512 BGP Nodes

0

20

40

60

80

100

120

140

160

1 36 71 106 141 176 211 246 281 316 351 386 421 456 491

Rank of Computing Nodes

T
im

e
 i
n
 S

e
c
o
n
d
s

Solve Body Grid Setup Boundary

MPI Exchanges Save Wavefield Snapshots

Profiling of Original Code Barward Loop on 64 Nodes

0

100

200

300

400

500

600

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

Rank of Computing Nodes

T
im

e
 i

n
 S

e
c

o
n

d
s

Solve Body Grid Setup Boundary

MPI Exchange Total Imaging

Profiling of the Original Code Backward Loop on 512 Nodes

0

20

40

60

80

100

120

140

160

180

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145 154 163 172 181 190 199 208 217 226 235 244 253

Rank of Computing Nodes (Show only the First 256 Nodes)

ti
m

e
 i
n
 S

e
c
o
n
d
s

Solv Body Grid Setup Boundary

Back MPI Total Imaging

Further analysis based on MPI traces shows that the four
bottom corner nodes took a significant amount of time and
thus their MPI became the late arrival senders in the
subsequent MPI communication, causing other nodes to
wait in the MPI sendrecv.

C. Keeping Wavefield Snapshots in Memory

 From the profiling analysis, it is clear that the writing the
wavefield snapshots to the disk consumes a significant
amount of the time in forward pass (the red coloured part in
the forward pass in Figure 7 and Figure 8). Further more it
clearly becomes the bottleneck of the forward pass when the
number of computing nodes gets large.

Figure 9: Performance improvements after keeping the
wavefield snapshots in memory on 64 nodes (top) and on
512 nodes (bottom)

Taking the advantages of Blue Gene/P 3D torus network,
large in-node memory, and fast inter-node communication,
in addition to use the domain–partition parallel computing
approach, we further developed a scheme to keep the

wavefield snapshots in memory so that the disk IO and
compression and decompression operations can be reduced
or even completely avoided. The following figures show
the performance improvements after keeping the wavefield
snapshots in memory.

D. Fast and Effective Subsampling

From the profiling analysis of backward pass, we also
know that the total imaging part is a bottleneck. With further
investigation, we found that the largest computation stems
from the 3D multivariate interpolations used for sub-
sampling. There are three 3D multivariate interpolations for
every image point; moreover, each 3D multivariate
interpolation requires 22 multiplications, and 14 additions.

Figure 10: Performance improvements after using the fast
interpolation method on 64 nodes (top) and on 512 nodes
(bottom)

To improve the performance while maintaining the image
quality, we developed a fast linear interpolation method to
replace the 3D multivariate interpolation. In Figure 10, we
show the improvements using the new interpolation as the

Comparison of Saving Wavefield Snapshots on 64 Nodes

0

20

40

60

80

100

120

140

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

Rank of Computing Nodes

T
im

e
 i
n
 S

e
c
o
n
d
s

Original Code: Saving Snapshots to Disk

Improved Code: Saving Snapshots in Memory

Comparison of Saving Wavefield Snapshots on 512 Nodes

0

20

40

60

80

100

120

1 19 37 55 73 91 109 127 145 163 181 199 217 235 253 271 289 307 325 343 361 379 397 415 433 451 469 487 505

Rank of Computing Nodes

T
im

e
 i
n
 S

e
c
o
n
d
s

Original Code: Saving Snapshots to Disk

Improved Code: Saving Snapshots in Memory

Comparison of Time Spent on Imaging on 64 BGP Nodes

0

50

100

150

200

250

300

350

400

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

Rank of Computing Nodes

T
im

e
 i
n
 S

e
c
o
n
d
s

Original Code

Improved Code

Comparison of Time Spent on Imaging on 512 BGP Nodes

0

20

40

60

80

100

120

1 14 27 40 53 66 79 92 105 118 131 144 157 170 183 196 209 222 235 248 261 274 287 300 313 326 339 352 365 378 391 404 417 430 443 456 469 482 495 508

Rank of Computing Nodes

T
im

e
 i
n
 S

e
c
o
n
d
s

Improved Code Original Code

sub-sampling method. Now each image point only requires
one multiplication and 7 additions. We compare the final
image outputs from the two interpolation methods and the
error statistics in Table 1 show that there is virtually no
impact to the image quality.

Table 1 Error Statistics between the Images from the two

Interpolation Methods

 Min 0.000000e-00

 Max 4.135992e-06

 Mean 2.188777e-09

 MSE 1.522148e-15

Std Div. 3.895328e-08

E. Final Performance

We also conducted optimizations in boundary condition
calculation, OpenMP, load balance, MPI communications,
etc. The final code achieved up to ~10X performance
improvement over the base line code as shown in Figure 11.

Figure 11: Overall performance improvement of the final
code over the base line code

V. CONCLUSIONS

In this paper we have presented our new results on
optimizing a RTM base code on Blue Gene/P. We took the
advantages of Blue Gene in 3D torus network, inter-node
communication bandwidth, and large memory in each node
to use the domain partition approach. We further developed
a scheme to keep the wavefield snapshots in the memory to
eliminate the disk IO bottleneck and saved the
compression/decompression time. We also developed a fast

interpolation method to replace the time consuming 3D
multivariate interpolation for wavefield sub-sampling
process and achieved very significant performance
improvement. In addition, we also conducted optimizations
in boundary condition calculation, OpenMP, load balance,
MPI communication, etc. The final code achieved ~10X
performance improvement over the base line code on BG/P.
Significantly better results on BG/Q will be presented at the
workshop.

ACKNOWLEDGEMENTS

The Blue Gene/P project has been supported and partially
funded by Argonne National Laboratory and the Lawrence
Livermore National Laboratory on behalf of the U.S.
Department of Energy under Lawrence Livermore National
Laboratory subcontract no. B554331. We also acknowledge
the support and collaboration of Columbia University and
Edinburgh University.

REFERENCES

[1] Sosa, C. and Knudson, B. 2009. IBM System Blue Gene

Solution: Blue Gene/P Application Development, IBM
Redbooks, DOI=
http://www.redbooks.ibm.com/abstracts/sg247287.html

[2] Zhou, H., Fossum, G., Todd, R. and Perrone, M. 2010.
Practical VTI RTM. In Proceedings of 72nd EAGE
Conference.

[3] Higdon, R. L. 1987. Numerical Absorbing Boundary
Conditions for the Wave Equation. Mathematics of
Computation, Vol. 49:179 July,1987, pps. 65-90.

[4] Boonyasiriwat, B. and Schuster, G. 2010. 3D
Multisource Full-Waveform Inversion using Dynamic
Quasi-Monte Carlo Phase Encoding. Geophysical
Research Abstracts, Vol. 12, EGU2010-7298, 20.

[5] Trefethen, L. and Bau, D. 1997. Numerical Linear
Algebra, SIAM.

[6] Perrone, M., Liu, L., Lu, L. and Magerlein, K. 2010.
High Performance RTM Using Massive Domain
Partitioning, In Proceedings of EAGE’2011
Conference, May, 2010.

[7] Abdelkhalek, R., Calandra, H., Coulaud, O., Roman, J.,
Latu, G. 2009. Fast Seismic Modeling and Reverse
Time Migration on a GPU Cluster. In International
Conference on High Performance Computing &
Simulation, 2009. HPCS'09.

[8] Fletcher, R. P., Du, X. and Fowler, P. J. 2009. Reverse
time migration in tilted transversely isotropic (TTI)
media. Geophysics, Vol 74:6, 2009.

[9] Micikevicius, P. 2009. 3D finite difference computation
on GPUs using CUDA. In Proceedings of 2nd
Workshop on General Purpose Processing on Graphics
Processing Units, Washington, D.C., 79-84.

[10] Okamoto, T., Takenaka, H., Nakamura, T. and Aoki, T.
2009. Accelerating large-scale simulation of seismic
wave propagation by multi-GPUs and three-
dimensional domain decomposition. In Earth Planets
Space, November, 2010.

