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Abstract—We present our optimization work on a Reverse 

Time Migration (RTM) code for fast and scalable seismic 

imaging on Blue Gene.  RTM is a seismic imaging algorithm 

increasingly used in industry for oil exploration.  Our work is 

novel not only in that it uses the Blue Gene supercomputing 

systems torus network, high inter-node communication 

bandwidth, and large resident memory in each node to convert 

an embarrassingly parallel problem into one that can be 

efficiently solved using massive domain partitioning; but it is 

also novel in that it develops effective schemes to keep 

intermediate data snapshots in internal memory and fast 

interpolation for sub-sampling that eliminate bottlenecks in the 

forward and backward pass and significantly improved 

performance while maintained image quality.  With further 

optimizations in boundary condition calculation, OpenMP, 

load balance, MPI communications, etc., our final code 

achieved ~10X overall performance improvement over the base 

line code. The success of our optimization can be easily 

extended to next-generation imaging algorithms currently 

being developed.  In the workshop, we will include a BG/Q 

architecture overview and comparative BG/Q results 

depending on availability.   

Keywords- Seismic Imaging, Reverse Time Migration 

Optimization;Finite Difference Methods, Data Movement 

I.  INTRODUCTION  

        Reverse Time Migration (RTM) is increasingly used in 
oil industry for petroleum exploration. Because the drilling 
success rate is vital to the oil companies, complex variations 
of algorithms are being developed and used. To reduce the 
time to oil, high performance computers are widely 
employed. To be cost effective, optimal performance is 
critical to oil companies. In this paper, we present our 
optimization work on a Reverse Time Migration (RTM) 
code for fast and scalable seismic imaging on Blue Gene.  
RTM is a seismic imaging algorithm increasingly used in 
industry for oil exploration.  Our work is novel in that it not 
only took the advantages of the Blue Gene supercomputing 
systems in 3D torus network, high inter-node 
communication bandwidth, and large resident memory in 
each node to convert an embarrassingly parallel problem 
into one that can be efficiently solved using massive domain 
partitioning, but also developed effective schemes to keep 
the wavefield snapshots in internal memory and fast 
interpolation for sub-sampling that eliminated the 
bottlenecks in the forward pass and backward pass and 
significantly improved performance while maintained the 

image quality.  With further optimizations in boundary 
condition calculation, OpenMP, load balance, MPI 
communications, etc, our final code achieved ~10X overall 
performance improvement over the base line code. The 
success of our optimization can be easily extended to next-
generation imaging algorithms currently being developed.  
In this paper we will also include a BG/Q architecture 
overview and comparative results on BG/P. In this paper, 
we explore these ideas in the context of production seismic 
imaging: physics-based signal processing used by the 
energy industry to find oil and gas reservoirs.  We begin 
with an introduction to the problem of seismic imaging and 
a description of the widely used Reverse Time Migration 
(RTM) method, comparing and contrasting our approach to 
the one commonly used in the industry.  We then describe 
our implementation of RTM, the optimizations that were 
performed, the experimental setup and the performance 
results, comparing where appropriate to other RTM 
implementations. 

II. SEISMIC IMAGING 

Seismic imaging is the process of converting acoustic 
measurements of the Earth into images of the Earth’s 
interior, much like ultrasound for medical imaging.  It is 
widely used in oil and gas exploration and production to 
identify regions that are likely to contain hydrocarbon 
reservoirs and to help characterize known reservoirs to 
maximize production.  These methods have become critical 
to the energy industry as known reserves are used up and 
new reserves become increasingly difficult (and expensive) 
to find and are increasingly in technically challenging areas, 
like the deep sea. 
 For the past several decades, the energy industry has 
tried to balance the need to image quickly and the need to 
image accurately.  The need for accuracy is driven by the 
high cost of drilling a “dry” well due to poor imaging (a 
deep sea well can cost over $100 million) and the need for 
quick imaging is driven by the cost of not finding new 
reserves (i.e., bankruptcy).  To minimize these costs, the 
industry relies on supercomputing clusters and regularly 
increases compute power, enabling both faster imaging on 
existing algorithms and the practical implementation of 
more accurate imaging.  Thus, the development of fast, 
efficient methods for imaging is of high importance to the 
industry. 



A. Seismic Data 

Seismic imaging data varies widely depending on how and 
where the data is collected (e.g., on land, at sea, at the ocean 
surface, at the ocean floor, below ground, 
electromagnetically, etc).  We focus here on the data 
collection method that is most relevant to the RTM 
algorithm analyzed in this paper: towed hydrophone 
receiver arrays for ocean seismic data collection.  The basic 
idea is shown in Figure 1.  A ship is shown towing a 2D 
array of hydrophones spaced about every 25m on 1 to 16 
trailed streamers.  Every 15 or so seconds, an air cannon is 
fired into the water, creating an acoustic wave that 
propagates through the water and into the Earth.  
Reflections from various surface and subsurface boundaries 
cause echoes that reflect back and are recorded by each 
hydrophone in the array.  The recording of a single 
hydrophone in time as a trace and the collection of traces for 
a single firing of the air cannon is called a common shot 

gather, or shot.  As the ship moves, a large set of spatially 
overlapping shots is recorded.  Depending on the size of the 
survey region to be imaged, this data collection can take a 
month or more and is designed to get the maximal coverage 
of the area to be imaged.  For our purposes, we need to 
know that we have lots of shots, potentially hundreds of 
thousands, and that the receiver data collected is the result 
of some source data at a particular location.  A sample of 
artificial shot data is shown in Figure 2. 

 
 

Figure 1: A ship collecting seismic data using a towed 

hydrophone receiver array 

B. The RTM Algorithm 

The Reverse Time Migration (RTM) algorithm is widely 
used in the industry because of its superior imaging 
accuracy for difficult subsurface structures like salt domes 
which are poorly imaged by other algorithms but which are 
very effective at trapping oil and gas. Several variants of 
RTM exist with differing degrees of approximation to 
reality, all of which use single-precision arithmetic.  For this 
paper we implemented isotropic, acoustic RTM which 

assumes the wave velocity is independent of wave direction 
and that no energy is absorbed by the medium. 

 

 

Figure 2: Sample shot data for a 1D array of hydrophones 
showing time on the Y-axis and spatial offset on the X-axis.  
The direct source signal propagates out linearly in time 
(from the center of the array) and appears as straight lines.  
The recorded reflections appear as curved lines. 

 
The RTM algorithm arises from the observation that 

pressure waves should be correlated at reflection boundaries; 
so RTM proceeds by correlating two pressure waves (called 
the forward and backward waves) to find those boundaries.  
To generate the waves for correlation, RTM simulates wave 
propagation using the wave equation below for a wave 
U(x,y,z,t) with a source term S(x,y,z,t): 
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The forward wave is the wave generated from the air 
cannon firing and propagating forward in time using a 
“velocity model” represented by C(x,y,z), which specifies 
the wave velocity at each point in space and represents the 
various material properties and boundaries of the volume 
being imaged.  The air cannon firing is treated as a wavelet 
impulse localized in time and space.  The backward wave 
is generated by using the shot data recorded by the 
hydrophone array as the source term for the wave equation 
and propagating that backward in time.  These two waves 
are then multiplied point-wise at each time step to generate 
an image, using the following “imaging condition”: 
 

(2) I(x,y,z) = UForward (x,y,z,t)UBackward (x,y,z,t)t
∑  

 
This process is repeated for all shots in the seismic survey 
and the images generated are summed to create a final 
image of the reflecting boundaries, which represent the 
subsurface structure.  It is important to note that the time 



summation in the imaging condition implies that the first 
time step of the forward wave needs to be correlated with 
the last time step of the backward wave.  This constraint is 
typically handled in one of two ways: either the forward 
wave is saved to disk (called a “snapshot”) every several 
time steps and read in for imaging when the backward wave 
is computed, or the forward propagation is run twice – once 
forward in time and once in reverse time using boundary 
data saved from the forward pass to recreate the forward 
pass in reverse – and then imaging proceeds with the 
backward wave and the reverse forward wave.  The first 
method requires significant disk storage and can be 
bottlenecked on disk I/O, while the second requires 50% 
more computation and additional memory space to save the 
boundary data.  
Following standard practice in the industry [2], we simulate 
the wave propagation of Equation (1) using the finite 
difference approximation in Equation (3) where we select 
the coefficients to implement 2nd order accuracy in time and 
8th order accuracy in space.  These coefficients are scaled to 
satisfy the CFL condition [5].  This approach gives rise to 
the 25-point stencil shown in Figure 3. 
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In practice, the size of production RTM models varies 
widely, but the universal desire is to grow models larger to 
get more resolution and to run the models longer to enable 
deeper imaging since echoes take longer to reflect from 
deeper structures.  Typically, velocity models for individual 
shots are 5123 to 10243 elements or larger and the number of 
time steps can be 10,000 or more in both the forward and 
backward propagation phases. 

Seismic imaging is typically computed using single 
precision arithmetic and we take that approach here.  Some 
practitioners believe that the RTM method described above, 
that avoids the need to save snapshots, must be run in 
double precision; however, we do not implement that 
version here. 

 
Figure 3: 25-Point spatial stencil with 8th order accuracy 
shown in isolation on the left and as it moves along the 

stride-1 dimension of the model 

C. Embarrassisngly Parallel RTM 

Industrial implementations of RTM are embarrassingly 
parallel.  They typically run individual shots on one to two 
nodes of a compute cluster and run many shots in parallel 

(See Figure 4).  These clusters have minimal network 
connectivity because it is not needed:  the individual shots 
run independently and asynchronously. A simple work 
queue is used to manage runs and if a run for a shot fails, it 
is simply re-run, as it doesn’t impact any of the other runs.  
A master process of some kind is needed to manage the 
work queue and to merge the partial images that are 
generated from each shot.  Additionally, other image 
processing might be included in this process, but for our 
purposes here we ignore these details as the RTM 
calculation is the main computational workload. 

RTM compute clusters have significant per-node scratch 
disk requirements for saving snapshot data, which for a 
10243 model and 10,000 time steps would require 40TB of 
snapshot storage – per shot!  In practice, snapshot sub-
sampling is used to reduce both disk requirements and disk 
IO bottlenecks; however sub-sampling results in image 
degradation and must be balanced with performance.  
Compression can be used to trade computation for disk IO, 
but if lossy, compression can also degrade image quality.   

 

Figure 4: Embarrassingly parallel RTM implementation 

 

As FLOPS per processor increase, the embarrassingly 
parallel implementations become disk IO bound [2].  It is 
possible to improve performance by partitioning single shot 
gathers over multiple nodes; however, such implementations 
typically use only a handful of nodes.  We have developed 
an RTM implementation that extends domain partitioning 
over thousands of nodes on a Blue Gene/P supercomputer 
and results in dramatic performance improvements. 

D. Domain-Partitioned RTM  

We have developed, implemented and tested a 3D isotropic 
RTM code that uniformly partitions the wave equation 
domain in blocks over thousands of nodes (see Figure 5).  
The partitioning over so many nodes means that the size of 



the model on each node is about 1000 times smaller than for 
standard RTM on a handful of nodes and provides five main 
benefits: (1) all forward wave snapshots can be stored in 
main memory, removing the need for disk and thereby 
improving per-node data bandwidth from hundreds of MB/s 
(for disk) to tens of GB/s (for main memory), effectively 
removing the disk I/O performance bottleneck; (2) the 
partitioned models can fit in processor cache, allowing 
processing to proceed at the speed of the cache memory 
bandwidth instead of main memory bandwidth which can be 
an order of magnitude larger on some systems; (3) we can 
load entire 3D seismic surveys into memory on one or more 
racks, enabling “in-memory” processing of algorithms that 
require multiple passes through the data set, such as Full 
Waveform Inversion (FWI), and thereby avoiding additional 
disk I/O bottlenecks and enabling better performance; (4) 
keeping the models in the processor’s cache means that 
snapshot reading/writing has full access to main memory 
bandwidth and is not a bottleneck; and (5) this method can 
run an entire velocity model instead of a subset, as is 
typically done in standard RTM, allowing us to easily 
extend this method to include multisource processing with 
minimal code changes and significant potential performance 
gains [4]. 

 

Figure 5: Domain-partitioned RTM Implementation 

 
A critical aspect of domain-partitioned RTM is that 

current wave data from neighboring sub-domain boundaries 
is required for stencil calculations at each time step.  Since 
this boundary data transfer grows with the amount of 
partitioning and with the size of the stencil used, it can easily 
become a performance bottleneck.  To avoid communication 
bottlenecks, we implemented our partitioned RTM on a Blue 
Gene/P supercomputer, which is designed specifically for 
extremely efficient inter-node communication. 

 

III. BELUE GENE ARCHITECTURE 

Our performance measurements were all performed on 
subsets of two racks of Blue Gene/P.  It is beyond the scope 
of this paper to give a full description of these machines.  
Instead we focus on those features that are relevant.  More 
details can be found elsewhere [1]. 
 
The Blue Gene/P (BGP) supercomputer has 1024 nodes per 
rack running at 0.85GHz.  Each node has 4 single-threaded 
cores, 4GB of RAM per node (4TB per rack) and an 
extremely high-bandwidth, low-latency, nearest-neighbor 
3D torus topology network in which each node is connected 
to each of its 6 nearest neighbor nodes by 850MB/s of 
send+receive bandwidth (i.e., 5.1GB/s per node and 
5.22TB/s of communication bandwidth per rack).  Because 
of this massive bandwidth, BGP is ideally suited for 
physical modeling involving extensive nearest-neighbor 
communication and synchronization – like RTM.  The 
nearest neighbor latency for 32B data transfers is about 0.1 
microseconds and is essentially amortized away for larger 
block transfers required by RTM.  Each compute node core 
has a 32KB L1 cache with a 32B cache line and a shared 
8MB L3 cache with a 128B cache line.  Each node has two 
memory channels with an aggregate bandwidth of 13.6 
GB/sec to main memory.  BGP compute notes are 
connected via dedicated I/O nodes to a GPFS file system 
based on three DDN S2A9900 couplets attached to the BGP 
I/O nodes via 10 Gigabit Ethernet connections, providing 
~16GB/s of disk I/O bandwidth per rack.  Each node can 
operate in SMP mode as a unit, or as four “virtual” nodes.  
The Virtual Node (VN) model avoids the need to explicitly 
use multithreading at the node level and thereby eases 
programmability.  Each core has a 2-way SIMD unit. 

 

IV. RTM OPTIMIZATION DETAILS 

In this section we describe various optimization details 
on Blue Gene that were important to our RTM performance 
improvement. 

A. Code Flow 

First we describe the RTM’s code flow as show in the 
figure below. The code has two main loops: the forward 

pass loop and the backward pass loop.   In the forward 
pass loop, after the step of wavefield computation, the 
forward wavefield will be sub-sampled and compressed and 
saved to the disk at a predetermined frequency. In the 
backward pass loop, after the step of the wavefield 
computation, the backward wavefield will be sub-sampled 
and the saved forward wavefield will be fetched in and 
decompressed to do imaging condition with the backward 
wavefield at the same frequency.  

 
 
 



 
 

Figure 6: RTM Code Flow 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: Profiling of Base line code forward pass (top) 

and backward pass (bottom) results (in seconds) on 64 
nodes 

 
 

 

 

B. Base Line Code Performance Analysis 

Upon porting the base line code to Blue Gene P system, 
we first conducted scaling performance profiling and 
analysis to identify performance bottlenecks and guide our 
optimization process.  A high-level breakdown of the base 
line code (un-optimized) run time for the forward and 
backward passes is shown in the figures below.  The results 
suggest that source field writing, boundary conditions and 
MPI are not scaling well.  Clearly the base line code does 
not scale well and needs to be optimized. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
Figure 8: Profiling of Base line code forward pass (top) and 
backward pass (bottom) results (in seconds) on 512 nodes 
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Further analysis based on MPI traces shows that the four 
bottom corner nodes took a significant amount of time and 
thus their MPI became the late arrival senders in the 
subsequent MPI communication, causing other nodes to 
wait in the MPI sendrecv. 

 

C. Keeping Wavefield Snapshots in Memory 

      From the profiling analysis, it is clear that the writing the 
wavefield snapshots to the disk consumes a significant 
amount of the time in forward pass (the red coloured part in 
the forward pass in Figure 7 and Figure 8).  Further more it 
clearly becomes the bottleneck of the forward pass when the 
number of computing nodes gets large.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Performance improvements after keeping the 
wavefield snapshots in memory on 64 nodes (top) and on 
512 nodes (bottom)  

Taking the advantages of Blue Gene/P 3D torus network, 
large in-node memory, and fast inter-node communication, 
in addition to use the domain–partition parallel computing 
approach, we further developed a scheme to keep the 

wavefield snapshots in memory so that the disk IO and 
compression and decompression operations can be reduced 
or even completely avoided.  The following figures show 
the performance improvements after keeping the wavefield 
snapshots in memory.  

D. Fast and Effective Subsampling 

From the profiling analysis of backward pass, we also 
know that the total imaging part is a bottleneck.  With further 
investigation, we found that the largest computation stems 
from the 3D multivariate interpolations used for sub-
sampling. There are three 3D multivariate interpolations for 
every image point; moreover, each 3D multivariate 
interpolation requires 22 multiplications, and 14 additions.   

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 10: Performance improvements after using the fast 
interpolation method on 64 nodes (top) and on 512 nodes 
(bottom)   

 
To improve the performance while maintaining the image 
quality, we developed a fast linear interpolation method to 
replace the 3D multivariate interpolation.  In Figure 10, we 
show the improvements using the new interpolation as the 
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sub-sampling method. Now each image point only requires 
one multiplication and 7 additions.  We compare the final 
image outputs from the two interpolation methods and the 
error statistics in Table 1 show that there is virtually no 
impact to the image quality.   

 

Table 1 Error Statistics between the Images from the two 

Interpolation Methods 

 Min 0.000000e-00 

      Max 4.135992e-06 

      Mean 2.188777e-09 

      MSE 1.522148e-15 

Std Div. 3.895328e-08 

          

E. Final Performance 

We also conducted optimizations in boundary condition 
calculation, OpenMP, load balance, MPI communications, 
etc.  The final code achieved up to ~10X performance 
improvement over the base line code as shown in Figure 11. 

 

Figure 11: Overall performance improvement of the final 
code over the base line code 

V. CONCLUSIONS 

In this paper we have presented our new results on 
optimizing a RTM base code on Blue Gene/P. We took the 
advantages of Blue Gene in 3D torus network, inter-node 
communication bandwidth, and large memory in each node 
to use the domain partition approach. We further developed 
a scheme to keep the wavefield snapshots in the memory to 
eliminate the disk IO bottleneck and saved the 
compression/decompression time.  We also developed a fast 

interpolation method to replace the time consuming 3D 
multivariate interpolation for wavefield sub-sampling 
process and achieved very significant performance 
improvement.  In addition, we also conducted optimizations 
in boundary condition calculation, OpenMP, load balance, 
MPI communication, etc. The final code achieved ~10X 
performance improvement over the base line code on BG/P. 
Significantly better results on BG/Q will be presented at the 
workshop.  

ACKNOWLEDGEMENTS 

The Blue Gene/P project has been supported and partially 
funded by Argonne National Laboratory and the Lawrence 
Livermore National Laboratory on behalf of the U.S. 
Department of Energy under Lawrence Livermore National 
Laboratory subcontract no. B554331.  We also acknowledge 
the support and collaboration of Columbia University and 
Edinburgh University. 

REFERENCES 

 
[1] Sosa, C. and Knudson, B. 2009. IBM System Blue Gene 

Solution: Blue Gene/P Application Development, IBM 
Redbooks, DOI= 
http://www.redbooks.ibm.com/abstracts/sg247287.html 

[2] Zhou, H., Fossum, G., Todd, R. and Perrone, M. 2010.  
Practical VTI RTM. In Proceedings of 72nd EAGE 
Conference. 

[3] Higdon, R. L. 1987. Numerical Absorbing Boundary 
Conditions for the Wave Equation. Mathematics of 
Computation, Vol. 49:179 July,1987, pps. 65-90. 

[4] Boonyasiriwat, B. and Schuster, G. 2010. 3D 
Multisource Full-Waveform Inversion using Dynamic 
Quasi-Monte Carlo Phase Encoding. Geophysical 
Research Abstracts, Vol. 12, EGU2010-7298, 20. 

[5] Trefethen, L. and Bau, D. 1997. Numerical Linear 
Algebra, SIAM. 

[6] Perrone, M., Liu, L., Lu, L. and Magerlein, K. 2010. 
High Performance RTM Using Massive Domain 
Partitioning, In Proceedings of EAGE’2011 
Conference, May, 2010. 

[7] Abdelkhalek, R., Calandra, H., Coulaud, O., Roman, J., 
Latu, G. 2009. Fast Seismic Modeling and Reverse 
Time Migration on a GPU Cluster.  In International 
Conference on High Performance Computing & 
Simulation, 2009. HPCS'09.  

[8] Fletcher, R. P., Du, X. and Fowler, P. J. 2009. Reverse 
time migration in tilted transversely isotropic (TTI) 
media. Geophysics, Vol 74:6, 2009. 

[9] Micikevicius, P. 2009. 3D finite difference computation 
on GPUs using CUDA. In Proceedings of 2nd 
Workshop on General Purpose Processing on Graphics 
Processing Units, Washington, D.C., 79-84. 

[10] Okamoto, T., Takenaka, H., Nakamura, T. and Aoki, T. 
2009. Accelerating large-scale simulation of seismic 
wave propagation by multi-GPUs and three-
dimensional domain decomposition.  In Earth Planets 
Space, November, 2010. 

 
   


