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Abstract

The separability assumption (Donoho & Stodden, 2003; Arora et al., 2012) turns non-negative
matrix factorization (NMF) into a tractable problem. Recently, a new class of provably-correct
NMF algorithms have emerged under this assumption. In this paper, we reformulate the separa-
ble NMF problem as that of finding the extreme rays of the conical hull of a finite set of vectors.
From this geometric perspective, we derive new separable NMF algorithms that are highly scal-
able and empirically noise robust, and have several other favorable properties in relation to
existing methods. A parallel implementation of our algorithm demonstrates high scalability on
shared- and distributed-memory machines.

1 Introduction

A data matrix X of size m × n is said to admit a Non-negative Matrix Factorization (NMF)
with inner-dimension r, if X can be expressed as X = WH where W,H are two non-negative
matrices of dimensions m× r and r × n respectively. In many applications, a compact (i.e., small
r) approximate NMF tends to provide a natural and interpretable part-based decomposition of
the data (Lee & Seung, 1999), often more appealing than other low-rank factorizations. NMFs
arise pervasively in a variety of signal separation problems, such as modeling topics in text and
hyperspectral image analysis (Cichocki et al., 2009).

Figure 1 shows the geometry of the NMF problem. As a point cloud in R
m, all the n columns

of X are contained inside a cone that is generated by r non-negative vectors in R
m comprising

the columns of W. For any matrix A, let cone(A) denote the set obtained by taking linear
combinations of the columns of A with non-negative coefficients. Then, the goal is to find a non-
negative matrix W, with just r columns, such that: cone(X) ⊆ cone(W) ⊆ R

m
+ , where Rm

+ denotes
the non-negative orthant in R

m. Such polyhedral nesting problems studied in computational ge-
ometry are known to be NP-hard, which makes the exact and approximate NMF problem also
NP-hard (Vavasis, 2009). Faced with such results, almost the entire algorithmic focus in the NMF
literature, e.g., (Cichocki et al., 2009; Lee & Seung, 1999; Lin, 2007; Hsieh & Dhillon, 2011), has
centered on treating the problem as an instance of general non-convex programming, leading to
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Figure 1: Geometry of the NMF Problem. Separability implies that data is contained in a cone
generated by a subset of r “anchor” points (red squares).

heuristic procedures that lack optimality guarantees beyond convergence to a stationary point of the
objective function for approximate NMF. Very recently, in a series of elegant papers (Arora et al.,
2012; Bittorf et al., 2012; Gillis & Vavasis, 2012; Esser et al., 2012; Elhamifar et al., 2012), promis-
ing alternative approaches have been developed based on certain separability assumption on the
data which enables the NMF problem to be solved exactly. Geometrically, the assumption states
the following:

Definition 1.1. Separability Assumption: The entire dataset, i.e. all columns of X, reside in
a cone generated by a small subset of r columns of X.

In algebraic terms, X = WH = XAH so that the r columns of W are hidden among the
columns of X (indexed by an unknown subset of indices A). Equivalently, a corresponding subset
of r columns of H happen to constitute the r × r identity matrix. We refer to these columns as
anchors (Arora et al., 2012). Informally, in the context of topic modeling problems where X is a
document-word matrix and W,H are document-topic and topic-term associations respectively, the
separability assumption equivalently posits the existence of special anchor words in the vocabulary,
whose occurence uniquely identifies the presence of a topic, and whose usage across the corpus is
collectively predictive of the usage of all the other words. The separability assumption was inves-
tigated earlier by Donoho & Stodden (2003) who showed that it implied uniqueness of the NMF
solution, modulo permutation and scaling. In order to place our contributions in the right context,
we first briefly provide a flavor of recently proposed separable NMF algorithms.

Related Work: Assuming that the columns of X are normalized to have unit l1-norm, the
separable NMF problem reduces to that of finding the extreme points (that is, points inexpressible
as convex combinations of other points) of the convex hull of the columns (Arora et al., 2012). A
Linear Program (LP) can be setup to attempt to express a given column as a convex combina-
tion of the other columns. If this LP declares infeasibility, an extreme point is identified. This
approach (Arora et al., 2012, Section 5) requires solving n feasibility LP’s each involving n−1 vari-
ables which is not scalable for many problems of interest. A noise-robust version of the procedure
further requires knowledge of parameters that are hard to estimate apriori. Bittorf et al. (2012)
formulate a single LP whose solution resolves the exactly separable NMF problem. An extension
is also developed for noise-robustness. Instead of invoking a general LP solver, a specialized al-
gorithm is derived based on an incremental stochastic gradient descent procedure, and its parallel
(multithreaded) implementation is benchmarked on large datasets. On the other hand, this al-
gorithm requires estimates of primal and dual step sizes, converges only asymptotically, and does
not explicitly exploit the sparsity of the final solution. Gillis & Vavasis (2012) develop a highly
scalable approach closely related to rank-revealing QR factorizations for column subset selection.
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A perturbation analysis of this algorithm under noise is also presented. In Esser et al. (2012),
column subset selection is cast essentially as a form of multivariate regression with row-sparsity in-
ducing norms, e.g., see Bien et al. (2010). Algorithms derived in this framework are asymptotically
convergent, and sensitive to near-duplicate columns, making it necessary to perform certain adhoc
preprocessing steps.

Contributions: We present a new family of highly scalable and empirically noise-robust algo-
rithms for separable NMFs, with several favorable properties:
◦ The algorithms produce a correct solution for the separable case after exactly r iterations. They
require no additional parameters. They are closely related to convex and conical hull finding
procedures proposed in the computational geometry literature (Clarkson, 1994; Dula et al., 1998).
Computationally, the algorithms bear some resemblence to simultaneous Orthogonal Matching
Pursuit (Buhlmann & Geer, 2010; Tropp et al., 2006) for sparse greedy reconstruction of multiple
target variables from the same subset of input variables. We also derive a variant based on this
connection that performs quite well under noise.
◦ Under controlled noise conditions in synthetic datasets and on real-world topic modeling prob-
lems, our algorithms consistently outperform other separable NMF techniques with respect to
multiple performance metrics. Our methods are highly competitive with existing non-convex
NMF algorithms, but are free of sub-optimal local minima and associated initialization issues.
◦ The solution for (r − 1) target anchors is contained in the solution for r target anchors (unlike
non-convex NMF methods), which makes it easier to do model selection on real-world datasets
by keeping track of performance on a validation set.
◦ The algorithms are highly scalable and have small memory footprint. The sparsity of the data, the
intermediate variables and the final solution is carefully exploited in a high-performance parallel
and distributed implementation which scales excellently on both shared- and distributed-memory
machines. For example, a twitter corpus with 125-thousand tweets can be factorized for r = 100
in less than 10 seconds on a commodity 8-core machine.
◦ Unlike all existing algorithms, no column normalization is needed. Such normalization interferes
with the TFIDF weightings routinely used in text modeling applications, leading to performance
loss.
◦ Unlike Esser et al. (2012), the algorithms do not require any special preprocessing to eliminate
duplicate or near-duplicate columns.

2 Fast Conical Hull Algorithms

An informal description: Figure 2 provides some geometric intuition underlying the proposed
approach. The algorithm executes r iterations. In each iteration a new anchor column is identified.
This corresponds to expanding a cone one extreme ray at a time, until the entire dataset is eventually
contained in the cone defined by the full set of anchors. Figure 2 illustrates one step of the algorithm
where there is an existing cone defined by three extreme rays (marked 1 to 3). To identify the next
extreme ray, the algorithm picks a point outside the current cone (a green point) and projects it
to the current cone to compute a residual vector (we call this the projection step). This residual
vector separates the current cone from at least one non-selected extreme ray that can be found by
maximizing a specific selection criteria (we call this the detection step). Intuitively, the algorithm
picks a face of the current cone (spanned by rays 1 and 3 in Figure 2) that “sees” exterior points
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and rotates this face towards the exterior until it hits the “last” point. In the example shown in
Figure 2, ray 4 is identified as a new extreme ray.

Figure 2: Geometry of the Conical Hull algorithms

These geometric intuitions are inspired by Clarkson (1994); Dula et al. (1998) who present LP-
based algorithms for general convex and conical hull problems. Their algorithms are also directly
applicable in our NMF setting, provided the data satisfies the separability assumption exactly. In
this case, the residual of any single exterior point can be used to correctly expand the cone as
described above. However, anchor detection criteria derived from multiple residuals demonstrates
radically superior noise robustness, as we report in the experimental section. The emphasis on
scalability and noise-robustness thus leads us to a new family of algorithms whose implementation
(and associated proof of correctness) is distinct from prior work.

Cones, Extreme Rays and Projection: Here, we provide a short background on relevant
geometric concepts and set some notation. Recall that a cone C is a non-empty convex set that
is closed with respect to taking conic combinations (i.e., linear combinations with non-negative
coefficients) of its elements. A ray in C generated by a vector x 6= 0 ∈ C is the set of all vectors
{tx : t ≥ 0}. A ray R is an extreme ray if its generators cannot be expressed by taking conic
combinations of elements in C that do not themselves belong to R. A cone is called finitely gen-
erated if its elements are conic combinations of a finite set of vectors, and pointed if it does not
contain both a vector x as well as its negation −x. A fundamental result (e.g., see Nemirovski
(2010)) states: a pointed, finitely generated cone C possesses a finite and unique set of extreme
rays, and C is the conical hull of the generators of these extreme rays. Furthermore, the genera-
tors of these extreme rays are a subset of the finite set of vectors used to originally express the
cone. In the NMF context, note that any cone contained in R

m
+ is pointed. This implies that

cone(X) can also be described by a minimally compact set of generators, i.e., cone(X) = cone(XA)
where A uniquely indexes the extreme rays (anchors). Thus, a non-negative matrix X admits a
separable NMF with inner-dimension r if the number of extreme rays of cone(X), i.e. size of A,
coincides with r. A face of a cone is the intersection between the cone and a supporting hyperplane.
The projection of a point x onto the cone generated by columns of a matrix W, i.e. computing
z? = argminz∈cone(W) ‖x− z‖22, can be obtained by solving a non-negative least squares problem,

i.e., computing h? = argminh≥0 ‖x −Wh‖22 and setting z? = Wh?. All columns of X can be
simultaneously projected by solving H? = argminH≥0 ‖X −WH‖22. We will use the notation R

to denote the residual matrix after a projection operation, i.e., R = X −WH?. We will use the
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Algorithm 1 Xray : Algorithms for Separable NMF

Input: X ∈ R
m×n
+ separable with inner dimension r

Output: W ∈ Rm×r,H ∈ Rr×n, r indices in A
such that: X = WH, W = XA

Initialize: R← X, A← {}
while |A| < r do

1. Detection Step: Find an extreme ray.
Below, p is a strictly positive vector (not collinear with Ri):

j? = argmax
j

RT
i Xj

pTXj

for any i : ‖Ri‖2 > 0 (1)

Some exterior point selection criteria:

rand : any random i : ‖Ri‖2 > 0 (2)

max : i = argmaxk ‖Rk‖2 (3)

dist : i = argmaxk ‖
(

RT
kX

)

+
‖2 (4)

A greedy variant: j∗ = argmaxj
‖(RT

Xj)+‖2
2

‖Xj‖2
2

(5)

2. Update: A← A ∪ {j∗} (see Remarks)
3. Projection Step: Project onto current cone.

H = argmin
B≥0

‖X−XAB‖
2
2 (Algorithm 2) (6)

4. Update Residuals (not explicitly): R = X−XAH

end while

notation Xi,Ri to denote the ith column of X and its corresponding residual. The notation q+

will denote the vector obtained by setting all negative entries of the vector q to 0.

2.1 Algorithm Description, Correctness Result and Variations

Algorithm 1 details the steps of the proposed family of algorithms which we call Xray . Each
iteration consists of two steps: (i) a detection step that finds a column(s) of X to be added as an
anchor, and (ii) a projection step where all data points are projected onto the current cone to get
the residuals. Projection is done by solving simultaneous nonnegative least squares problem using
Algorithm 2. Every residual vector Ri obtained after the projection step is normal to one of the
faces of the current cone. In the selection step, we pick a face of the current cone (identified by

its normal Ri), normalize all the data points to lie on the hyperplane pTx = 1
(

Yj =
Xj

pTXj

)

for a

strictly positive vector p, and expand the current cone by selecting an extreme ray that maximizes
the inner product RT

i Yj . The selection step can be implemented in various ways - some options
are listed in Algorithm 1.

To show that Xray correctly identifies all the extreme rays, we need the following lemmas.

Lemma 2.1. The residual matrix R, obtained after projection of columns of X onto the current
cone satisfies RTXA ≤ 0, where XA are the extreme rays of the current cone.
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Algorithm 2 Solver for: argminB≥0 ‖X−XAB‖
2
2

Input: X ∈ R
m×n, Index set A with r indices, Initial value for warm-starts: Binit ∈ R

r×n

Convergence paramaters tol, maxcycles
Initialize: B = Binit

Set: C = XTX ∈ R
n×n

S = CA,A ∈ R
r×r

s = diag(S)
U = BTS ∈ R

n×r

while true do

for i = 1 . . . r (//cyclic coordinate descent) do
b = δ = (BT )i
u = Ui − sib
b = s−1

i (Ci − u)+
δ = b− δ

U = U+ δST
i // sparse rank-1 update

(BT )i = b

end for

objective = ‖X‖2 +
∑r

i=1(Ui +Ci)
T (BT )i

Exit if ∆objective < tol, or #iters > maxcycles.

end while

Proof. Residuals are given by R = X−XAH, where H = argminB≥0‖X−XAB‖
2
F.

Forming the Lagrangian for Eq. 6, we get L(B,Λ) = ‖X −XAB‖
2
F − tr(ΛTB), where the matrix

Λ contains the nonnegative Lagrange multipliers. Differentiating w.r.t. B and evaluating at the
optimum B = H, we have the following from the KKT conditions: 2XT

A(XAH−X)−Λ = 0
⇒ −2XT

AR = Λ ≥ 0 ⇒ RTXA ≤ 0

Lemma 2.2. For any point Xi exterior to the current cone, we have RT
i Xi > 0, where Ri is the

residual of Xi obtained by projecting it onto the current cone.

Proof. Let R = X−XAH, where H = argminB≥0‖X−XAB‖
2
F and XA are the extreme rays of the

current cone. From the KKT conditions (used in the proof of Lemma 2.1) we have 2RTXA = −ΛT ,
where Λ are the Lagrange multipliers. Hence, 2RT

i XA = −ΛT
i (ith row of both left and right

side matrices). From the complementary slackness property, we have ΛjiHji = 0 ∀ j, i. Hence,
2RT

i XAHi = −Λ
T
i Hi = 0.

Hence we have RT
i Xi = RT

i (Ri +XAHi) = ‖Ri‖
2
2 +RT

i XAHi = ‖Ri‖
2
2 > 0 since Ri 6= 0.

Using the above two lemmas, we prove the following theorem regarding the correctness of
Algorithm 1.

Theorem 2.1. The data point Xj∗ added at each iteration in the Detection step of Algorithm 1,
if the maximizer in Eqn. 1 is unique, is an extreme ray of C that has not been selected in previous
iterations.

Proof. Let the index set A identify all the extreme rays of C. Under the separability assumption,
we have X = XAH. Let the index set At identify the extreme rays of the current cone Ct.

Let Yj =
Xj

pTXj
and YA = XA[diag(p

TXA)]
−1 (since p is strictly positive, the inverse exists).

Hence Yj = YA
[diag(pTXA)]Hj

pTXj
. Let Cj =

[diag(pTXA)]Hj

pTXj
. We also have pTYj = 1 and pTYA = 1T .

Hence, we have 1 = pTYj = pTYACj = 1TCj .
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Using Lemma 2.1, Lemma 2.2 and the fact that p is strictly positive, we have max1≤j≤nR
T
i Yj =

maxj /∈At RT
i Yj . Indeed, for all j ∈ At we have Rt

iYj ≤ 0 using Lemma 2.1 and there is at least one
j = i /∈ At for which Rt

iYj > 0 using Lemma 2.2. Hence the maximum lies in the set {j : j /∈ At}.
Further, we have maxj /∈At RT

i Yj = maxj /∈At RT
i YACj ≤ maxj∈(A\At)R

′
iYj . The second in-

equality is the result of the fact that ‖Cj‖1 = 1 and Cj ≥ 0. This implies that if there is a unique
maximum at a j∗ = argmaxj /∈At RT

i Yj , then Xj∗ is generator of an extreme ray of the cone C.

Remarks: (1) If the maximum occurs at two points j∗1 and j∗2 , both these points Xj∗1
and Xj∗2

generate the extreme rays of the cone C. Hence both are added to anchor set A. If the maximum
occurs at more than two points, some of these are the generators of the extreme rays of C and others
are conic combinations of these generators. We can identify the extreme rays of this subset of points
by calling Algorithm 1 recursively and add them to anchor set A. (2) Note that the algorithm is
not influenced by presence of repeated anchors. (3) In the Algorithm, the vector p simply needs
to satisfy pTxi > 0, i = 1 . . . n. In our implementation, we simply used p = [1, . . . 1] ∈ R

m, i.e.,
pTxi = ‖xi‖1. (4) Note that unlike Gillis & Vavasis (2012), we do not need XA to be full-rank.

Exterior Point Selection: It can be noted that residual of any point exterior to the current
cone (i.e., any Ri 6= 0) can be used in the selection step of Algorithm 1. This gives us multiple ways
of expanding the current cone depending on which i is chosen - all of which solve the separable
problem but may behave very differently in the presence of noise. Some natural options are listed
in Algorithm 1: choosing a random exterior point (Eqn. 2), one with maximum residual norm
(Eqn. 3) or one which defines a normal to a supporting hyperplane of the current cone which “sees”
maximum “mass” of points in its positive halfspace, as measured by Eqn. 4. In the experiments,
we will refer to these variants as Xray (rand), Xray (max) and Xray (dist) respectively.

A Greedy variation for noisy data: In high dimensional noisy data almost all the points
may masquerade as anchors. A natural choice is to expand the current cone greedily by select-
ing a point that best minimizes the current residual, i.e., j∗ = argminj minb>0‖R − Xjb

T ‖2F .
This selection criterion simplifies to Eqn.5 in Algorithm 1 (referred as Xray (greedy) henceforth).
One may view this approach as implementing a nonnegative variant of simultaneous orthogonal
matching pursuit (Tropp et al., 2006), which is a greedy approach to the problem of sparse regres-
sion of multiple response variables on the same subset of explanatory variables, i.e., for solving
minB≥0‖X − XB‖2F s.t. ‖B‖0,1 = r where ‖B‖0,1 pseudo-norm counts the number of non-zero
rows in B. In the context of separable NMF, both response variables and explanatory variables
are the columns data matrix X. A relaxed version of this problem is solved in Esser et al. (2012)
(minB≥0‖X − XB‖2F + λ‖B‖1,∞). It is also possible to have ‖B‖1,2 penalized variant (Tropp,
2006; Bien et al., 2010) which is natural for sparse multivariate regression problems. Note that
the greedy approach is not guaranteed to solve the separable NMF problem, but may perform well
in the noisy settings as we observe in our experiments. Intuitively, this variant is concerned with
greedily optimizing all residuals on average at every iteration, instead of making a decision based
on the residual of a single, albeit well-chosen, exterior point.

Solution Refinement and Model Selection: In practice, the separable solution (W,H) as
obtained from Algorithm 1 may be further refined with a few steps of alternating optimization with
respect to a divergence measure of interest (e.g., Frobenius reconstruction ‖X−WH‖2F). Also, in
real-world datasets, the value of r is typically unknown. Since our algorithms build the solution
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one anchor at a time, r can be set based on a performance measure evaluated on held-out data.
Alternatively, Algorithm 1 can exit if the amount of improvement from introducing a new anchor
falls below a prespecified threshold.

2.2 Scalability and Parallelization

Here we describe various implementation details that allow us to gracefully scale to large sparse
datasets (e.g., document-term matrices). The detection step can be parallelized by scoring the
candidate anchors simultaneously. Likewise, the projection step involves solving Eqn. 6, which is
separable in the columns of B and hence can be optimized in parallel.

Detection Step: We avoid materializing the dense residual matrix R in the evaluation of
the anchor selection criteria. Instead, we score candidate anchors on-the-fly as we compute (but
not explicitly materialize) a matrix Q =

(

RTX
)

+
=

(

C− (CAH)T
)

+
where C = XTX denotes

a covariance matrix (word-by-word for topic modeling applications). Here, the potential sparsity,
symmetry of the covariance matrix C as well as the non-negativity of H can be further exploited.
For example, if Cij = 0, the corresponding entry in the product (CAH) need not be computed,
since the resulting negative value is anyway reset to zero by the (·)+ thresholding operator. On a

P core machine, the selection criteria may be evaluated in O(nnz(C)r
P ) time where nnz(C) is the

number of non-zeros in C. If C is dense, we compute Q using parallel dense BLAS-3 operations.
The one time computation of C is done via a parallel aggregation of rank-one outer-product terms
defined by the rows of X.

Projection Step: Algorithm 2 gives the steps of a cyclic block coordinate descent algorithm or-
ganized around very light-weight incremental sparsity-exploiting updates for solving Eqn. 6 (deriva-
tion omitted for brevity). The algorithm can be invoked in parallel on columns of X to compute
the corresponding columns of B. The previous value of B is used to warm start the optimization
and typically a very small number of iterations is needed for convergence.

3 Empirical Observations

Here, we report extensive comparisons on synthetic and medium-scale topic modeling problems,
and benchmark our parallel implementation on large text datasets on multicore machines and
distributed systems. We compare with the methods proposed in Bittorf et al. (2012) (abbrv. as
Hottopixx ) and Gillis & Vavasis (2012) (abbrv. as GV), as well as traditional NMFs based on
alternating optimization (Cichocki et al., 2009). The source codes for Hottopixx and GV were taken
from the respective authors’ websites. In comparisons with Esser et al. (2012), it was observed that
it tends to select near-duplicate anchors, as also mentioned in Esser et al. (2012). This characteristic
causes it to consistently perform less favorably compared to other methods unless the data is
preprocessed in an adhoc fashion to remove similar columns of X; hence we do not include it in
our list of baselines. We also do not compare with Arora et al. (2012) since Hottopixx reportedly
performs better (Bittorf et al., 2012) and the algorithm requires parameters which are hard to guess
apriori.
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3.1 Synthetic experiments

We perform a synthetic experiment that injects controlled amount of noise to corrupt the separable
structure. Each entry of the matrix W ∈ R

200×20
+ is generated i.i.d. according to a uniform

distribution between 0 and 1. The matrix H ∈ R
20×210
+ is taken to be [I20×20 H′] where each

column of H′ ∈ R
20×190
+ is generated according to a Dirichlet distribution whose parameters are

chosen uniformly in [0, 1]. The data matrix X is set to WH+N where each entry of noise matrix
N is generated i.i.d. according to a Gaussian distribution with zero mean and std. dev. δ. Fig. 3
plots the fraction of correctly recovered anchors (averaged over 10 runs for each value of δ) against
the noise level δ ranging from 0 to 1.5. The proposed Xray (max) shows the best noise-robustness
in terms of anchor recovery, followed by Xray (dist) and GV. Although Xray (greedy) does not
perfectly resolve the separable NMF problem (δ = 0), it performs better than Hottopixx and is
competitive with GV for near-separable case (δ > 0). As described below, on real datasets it
turns out to be highly competitive. Xray (rand), although solves the separable problem (δ = 0),
degrades significantly under noise, which shows that proper selection of an exterior point to expand
the current cone is crucial for noise-robustness.
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Figure 3: Anchor recovery rate versus noise level (best viewed in color)

3.2 Medium-scale Topic modeling problems

We evaluate the proposed methods on three human-labeled text datasets that are commonly used in
topic modeling literature: TDT-2 (TDT2) (m = 9394, n = 19528, r = 30), BBC (Greene & Cunningham,
2006) (m = 2225, n = 9635, r = 5) and Reuters (Reuters) (m = 7285, n = 18221, r = 10). We used
standard tf-idf representation with document frequency thresholding in constructing the data ma-
trix X. As required in Hottopixx and GV, we use `1-normalized columns of X (referred as matrix
X(`1) henceforth) to identify the anchor column indices A(`1), and use the unnormalized data X

(and the corresponding anchor columns XA(`1)) for classification and clustering tasks. The use of

X
(`1)
A in clustering and classification (for any index set A) resulted in significantly worse perfor-

mance uniformly for all methods so these results are not reported. For the sake of clarity in the
figures, we do not show the results for Xray (max) which performed almost similar to Xray (dist)
in these experiments.

Classification experiments: Figure 4 shows the classification accuracy results obtained with
the features (columns of the document-term matrix restricted to anchor words) selected by dif-
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Figure 4: Classification Accuracy using selected features on TDT, BBC and Reuters datasets (best
viewed in color)
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Figure 5: Clustering Performance on TDT, BBC and Reuters datasets (best viewed in color)

ferent methods on the three datasets. Black dotted line is the classification accuracy with full
features (all the words). We use 5% of the documents for training and the rest 95% for testing to
emulate a semi-supervised learning scenario where we view various methods as inducing a topical
representation based on all (unlabeled) data. We use multiclass SVM classifier as implemented
in LIBLINEAR (Fan et al., 2008) and use four-fold cross validation to select the parameter C.
Among separable NMF techniques, the proposed Xray (greedy) and Xray (dist) (with exception
on Reuters) outperform Hottopixx and GV on all the three datasets, more so on TDT. On average,
traditional NMFs with local optimization perform quite well on these datasets especially when r
is small, but can show significant performance variance (shown as error bars) with respect to ini-
tialization. As the number of topics increases, the performance gap between the proposed methods
and the local optimization method rapidly diminishes. In this regime our techniques are a viable
alternative to local optimization methods, and have the advantage of being local-minima-free, i.e.,
eliminating uncertainty with respect to initialization and therefore not requiring multiple runs.

Clustering experiments: We also evaluated clustering performance by assigning a cluster
label to each document based on the maximum element in the corresponding row of W. We re-
fine the solution with a few iterations of alternating optimization. Figure 5 shows the clustering
performance in terms of Normalized Mutual Information (NMI) as these iterations proceed. We
also show the NMI obtained with local search method after it has converged to a local optimum
(averaged NMI from ten runs with different random initializations is shown; error-bar indicates the
variation around the average). Again, the proposed Xray methods are among the best performing
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methods in terms of clustering performance and do not require multiple runs as traditional NMFs do.

Effect of column normalization: In text processing, tf-idf features are popular due to their
good empirical performance in various tasks. However, most of the previously proposed methods
for the separable NMF problem (Bittorf et al., 2012; Gillis & Vavasis, 2012; Arora et al., 2012)
require the columns of X (i.e, words for text data) to be `1 normalized, which can disturb the
tf-idf structure. We conduct a small experiment to study the effect of word normalization on the
prediction performance of the proposed methods. We identify anchor sets A(`1), A(`2) and A by
the proposed methods using the data matrices X(`1) (`1-normalized columns), X(`2) (`2-normalized
columns) and X, respectively and use XA(`1) , XA(`2) and XA for classification (same SVM setup as
described earlier). Table 1 shows the classification accuracy for 100 topics on the three datasets.
These empirical results suggest that `1 normalization of words on top of tf-idf features, as required
by other separable NMF methods, can actually adversely affect the predictive quality of the selected
anchors.

Table 1: Effect of word normalization. The numbers are classification accuracies with selected
features for r = 100.

Xray (dist) Xray (greedy)
`1 `2 None `1 `2 None

TDT 21.06 83.04 84.52 31.69 90.05 91.87

BBC 58.59 84.36 87.73 75.41 82.18 87.82

REUT 51.88 76.88 64.46 55.65 81.28 83.02

Table 2: Anchors (red) and top keywords for a few sample topics from TDT dataset.

Xray (dist)
lewinsky;monica;grand;jury;starr;intern;white;clinton;house;counsel
iraq;weapons;baghdad;inspectors;iraqi;annan;council;military;inspections;sites
tobacco;industry;senate;settlement;smoking;bill;legislation;companies;billion;minnesota
suharto;indonesia;indonesian;habibie;jakarta;president;riots;anti;reforms;resign
shuttle;columbia;space;astronauts;nasa;mission;;crew;rats;aboard;experiments

Xray (greedy)
lewinsky;monica;grand;jury;starr;intern;white;clinton;house;counsel
iraq;weapons;baghdad;inspectors;inspection;military;council;united;team;strike
tobacco;industry;senate;settlement;smoking;bill;legislation;companies;billion;minnesota
suharto;indonesia;habibie;indonesian;jakarta;president;riots;anti;resign;reforms
shuttle;columbia;space;astronauts;nasa;mission;crew;rats;aboard;experiments

Gillis & Vavasis
acknowledging;constitute;contact;physical;privately;intern;sexual;relationship;matter
approves;warns;word;baghdad;deal;nations;iraq;united;approved;financing
successive;alive;votes;checking;bill;supporters;dead;tobacco;stories;senate
grows;secure;feels;worst;suharto;leave;hour;indonesia;country;crisis
tall;astronauts;columbia;space;rotating;experiments;ear;inch;chair;stretch

Hottopixx
acknowledging;constitute;physical;intern;sexual
ability;weapons;iraq;destruction;deny;tuned;develop;determined;mass;clinton
accountable;tobacco;fighting;brands;bill;gop;legislation;desperately;intend;senate
absence;worsened;turmoil;indonesia;political;suharto;leads;thinks;exercise;track
approaching;shuttle;columbia;space;nasa;experiments;extending;astronauts;weather
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Table 3: Datasets used for large-scale experiments. Times are for r = 100 on eight cores on daniel.

Name #documents #words nnz(X) nnz(XTX) Sparsity(XTX) Time(r = 100) Memory
RCV1 781265 43001 59.16e06 172.3e06 5% 409 secs 3.6 GB
PPL2 351849 44739 19.43e06 1.99e09 99.8% 1147 secs 30.2 GB
IBMT 124708 25998 1.03e06 1.77e06 0.2% 9.8 secs 1 GB

Table 4: Running times of Xray versus Hottopixx on 8 threads for r topics and E epochs.

Dataset
Xray (secs) Hottopixx (secs)

E=5 E=10
r=25 r=50 r=100 r=25 r=50 r=100 r=25 r=50 r=100

IBMT 0.38 1.78 9.8 338.6 337.2 327.7 642.1 668.5 636.9

RCV1 15.4 67.2 409 2026.8 1938.3 1883.6 3769 3774.7 3888.9

PPL2 196 443.8 1147 1818.1 1935.5 1892.8 3725.2 3895.5 3913.7

Quality of anchor words: Qualitatively, we found that anchor words selected by the pro-
posed Xray methods tend to be more representative of the topics compared to those selected by
Hottopixx and GV. Table 2 shows top words and anchors for a few topics (Lewinsky scandal, Iraq
nuclear program, National Tobacco Settlement, Indonesia riots of 1998 and Columbia space shuttle)
extracted from the TDT dataset.

3.3 Large-scale Experiments

We implemented a shared- and distributed-memory parallel version of Xray in C++. That is,
our implementation can exploit parallelism when running on multi-core machines, or on clusters
of multi-core machines. For shared-memory parallelism, we use PFunc (Kambadur et al., 2009), a
lightweight and portable library that provides C and C++ APIs to express task parallelism. For
distributed-memory parallelism, we use MPI1, a popular library specification for message-passing
that is used extensively in high-performance computing.

To test the shared-memory performance and scalability of Xray , we ran experiments on
daniel, a dual-socket, quad-core Intel R© XeonTM X5570 machine with 64GB of RAM running Linux
Kernel 2.6.35-24 (total 8 cores). For compilation, we used GCC v4.4.5 with: “-O3 -fomit-frame-

pointer -funroll-loops” in addition to PFunc 1.02, OpenMPI 1.4.5 and untuned ATLAS BLAS.
We ran large-scale experiments on three datasets: RCV1 (Lewis et al., 2004), co-occurence matrix
of people and places from ClueWeb09 dataset (Lemur), and IBM Twitter (IBMT) dataset. The
statistics relating to these three large datasets are presented in Table 3.We report scalability results
for Xray (greedy) - other variants are computationally very similar.

Figure 6 depicts the multi-threaded performance of our implementation on daniel while de-
tecting 100 topics. Our implementation is able to factorize RCV1 in 409 seconds on 8 cores and
achieve 4.2x speedup over 8 threads when compared to the sequential implementation. Similarly,
for IBMT we achieve 4.5x speedup, while completing the factorization in 9.8 seconds on 8 cores.
For the dense XTX case, we are able to factorize PPL2 in 1147 seconds with just 8 cores. We

1http://www.mpi-forum.org/
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Figure 6: Multi-core speedup of RCV1, IBMT, and PPL2 datasets when running on daniel. All
times are for R=100.

believe that further speedup improvements can be demonstrated on these problems by (a) opti-
mizing the data layout of various sparse matrices to alleviate memory contention amongst threads,
and (b) in dense problems such as PPL2, by using a version of BLAS tuned to our architecture
and by reorganizing our implementation around more BLAS-3 operations that have better memory
to compute ratio than BLAS-1 or 2 operations. Our implementation showed good scalability on
distributed-memory machines as well (details omitted for brevity).

To compare our performance against the state-of-the-art Hottopixx algorithm (Bittorf et al.,
2012), we ran their algorithm on daniel with the options “--dual 0.01 --epochs 10 --splits

8 --hott <R> --normse 1 --primal 1e-6” set in close consultation with the authors. A detailed
comparison is shown in Table 3.2. A head-to-head comparison is difficult because of the different
performance characteristics of Hottopixx and Xray . For example, Hottopixx ’s per-epoch runtime
is not dependent on r, the number of topics, but it’s accuracy is dependent on E, the number
of epochs, while our methods execute exactly r iterations, where each iteration has a superlinear
dependence on r. Nonetheless, for all three datasets, we see that Xray performs better than
Hottopixx even when Hottopixx is run only for 5 epochs. In particular, for the sparse datasets
IBMT and RCV1, Xray runs to completion in significantly shorter amount of time than Hottopixx
.

4 Conclusions and Future Work

Our methods perform favorably in comparison to other recently proposed separable NMF algo-
rithms and offer highly scalable local-minima-free alternatives to existing local optimization tech-
niques. Future work includes a formal noise analysis of the proposed algorithms, investigating the
streaming setting where documents or words arrive in an online fashion, and using our models for
social media content analysis.
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