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More and more organizations are run around the clock, acnoss
tiple geographies and time zones and those organizatierizeang
instrumentedto an unprecedented degree. This has resulted in a
deluge of data that can be studied to harvest valuable iraftom

being overwhelmed by massive amounts of data [33, 27]. Acces and make better decisions. In many cases, these large wloime

to such a large amount of diverse data can be of tremendous val
if useful informationcan be extracted and applied rapidly and ac-
curately to a problem at hand. For instance, we could comtact
of our nearbyfriends for a dinner at a locahutually agreeable
andwell-reviewedrestaurant that has advertiséidcountsandta-

ble availability for that night but finding and organizing all that
information in a short period of time is very challenging. mbi

lar opportunities exist for businesses and governmentshieutol-
ume, variety and velocity of data can be far greater. Thisgss

of identifying, extracting, processing, and integratinfprmation
from raw datg and then applying it to solve a problem is broadly
referred to asnalytics

Table 1 presents a sample of analytic applications fromeidifit
domains, along with their functional characteristics. KAis fTable
illustrates, many services that we take for granted and xismne
sively in everyday life would not be possible without analgt For
example, social networking applications such as Facebbok;
ter, and LinkedIn encode social relationships as graphsuzsed
graph algorithms to identify hidden patterns (e.g. findirgmne
mon friends). Other popular applications like Google Maysp
or FourSquare combine location and social relationshipriné-
tion to answer complex spatial queries (e.g. find the neaestiu-
rant of a particular cuisine that your friends like). Usagamalyt-
ics has substantially improved the capabilities and peréorce of

data must be processed rapidly in order to make timely detssi
Consequently, many organizations have employed anatgticslp
them decide what kind of data they should collect, how this da
should be analyzed to glean key information, and how thigrinf
mation should be used for achieving their organizationalgd=x-
amples of such techniques can be found in almost any sectbe of
economy, including financial services [7, 6], governmerit, [B3],
healthcare, retail [26, 23], manufacturing, logistics 1], hospi-
tality, and eCommerce [8, 9].

The distinguishing feature of an analytics applicatiorhis tise of
mathematical formulations for modeling and processing rdve
data, and for applying the extracted information [32]. Thtech-
niques include statistical approaches, numerical lindgebaaic
methods, graph algorithms, relational operators, andgtigo-
rithms. In practice, an analytics application uses mugtifadrmu-
lations, each with unique functional and runtime charasties
(Table 1). Further, depending on the functional and runtioe-
straints, the same application can use different algosthihile
many of the applications process a large volume of dataytiedf
data processed varies considerably. Internet searchemnpincess
unstructured text documents as input, while retail anedytiperate
on structured data stored in relational databases. Sonfieatpms
such as Google Maps, Yelp, or Netflix use both structured and u
structured data. The velocity of data also differs sub&lyacross

gaming systems as demonstrated by the recent win of IBM’s Wat analytics applications. Search engines process readhisilyrical

son/DeepQA intelligent question-answer system over hupzan
ticipants in the Jeopardy challenge [29]. The decliningt cifs
computing and storage and the availability of such infragtire

data whereas retail analytics process both historical eamtsac-
tional data. Other applications, such as the monitoring edical
instruments, work exclusively on real-time or streamingadde-

in cloud environments has enabled organizations of any size to de- pending on the mathematical formulation, the volume andoisi

ploy advanced analytics and to package those analyticcaigins
for broad usage by consumers.

While consumer analytical solutions may help us all to bette
ganize or enrich our personal lives, the analytic proceassis be-
coming a critical capability and competitive differentiafor mod-
ern businesses, governments and other organizations.e lauth
rent environment, organizations need to make on-time riméal
decisions to succeed. Given the globalized economy, masi bu
nesses have supply chains and customers that span mutiigtie c
nents. In the public sector, citizens are demanding moresacio
services and information than ever before. Huge improvésnien
communication infrastructure have resulted in wide-sprese of

of data and the expected I/O access patterns, the datausesieind
algorithms used by analytical applications vary consikligral hese
data structures include vectors, matrices, graphs, trelasipnal ta-
bles, lists, hash-based structures, and binary objectsy an be
further tuned to support in-memory, out-of-core, or streanexe-
cution of the associated algorithm. Thus, analytics apfibos are
characterized by diverse requirements but share a comnuus fo
on the application of advanced mathematical modellingicaly
on large data sets.

Although analytics applications have come of age, they hatget
received significant attention from the computer architextom-
munity. It is important to understand systems implicatiohshe

online commerce and a boom in smart, connected mobile device analytics applications, not only because of their divense de-



Application Domain Principal Goals Key Functional Characteristics
Netflix and Pandora [3, 18] Consumer Video and music recommendation Analyzing structured and unstructured data,
Personalized recommendations
Yelp, FourSquare Consumer Integrated geographical analytics Spatial queries/ranking, Streaming and persistent data
DeepQA (Watson) [11] Healthcare | Intelligent question-answer (QA) Systein Real-time natural language, Unstructured data processing
Consumer Artificial intelligence techniques for result ranking
Telecom Churn Analysis [26] Telecom Analysis of call-data records Graph modeling of call records, Large graph dataset,
Connected component identification
Fraud Analytics Insurance Detection of suspicious behavior Identification of abnormal patterns,
Healthcare Real-time data analysis over streaming and persistent data
Cognos Consumer Insight [28] | Marketing Sentiment/Trend Analysis Processing large corpus of text documents, Extraction gnd
Twitter Sentiment [12] Hospitality of BLOGS and text messages transformation, Text indexing, Entity extraction
UPS [1], Airline Scheduling [19]| Logistics Transportation routing Mathematical programming solutions for transportation|
Salesforce.com Marketing Customer data analytics Reporting, Text search, Multi-tenant support,
automated price determination, recommendation
Moody’s, Fitch, S&P [7, 6] Financial Financial credit rating Statistical analysis of large historical data
Oracle, Amazon Retail Analysis| Retall End-to-end retail management Analysis over large persistent and transactional data,
Integration with logistics and customer Information
Energy Trading Energy Determining and hedging prices Processing large time-series data, Integrated stochastic
models for generation, storage and transmission
Splunk [30] Enterprise System management analysis Text analysis of system logs, Large data sets
Flickr, Twitter, Consumer Social network analysis Graph modeling of relations, Massive graph datasets,
Facebook and Linkedin Enterprise Graph analytics, Multi-media annotations and indexing
Voice of Customer Analytics [4] | Enterprise Analyzing customer voice records Natural language processing, Text entity extraction
Facial Recognition [31 Government| Biometric classification Analysis and matching of 2-/3-D images, Large data sdts
Predictive Policing [20] Government| Crime prediction Spatial and temporal analytics

Table 1. Well-known analytics solutions and their key charateristics

manding requirements, but also, because systems arcinéeist
currently undergoing a series of disruptive changes. \&jpead
use of technologies such as multi-core processors, sizetato-
processors or accelerators, flash memory-based solid dyises

(SSDs), and high speed networks has created new optinmzatio

opportunities. More advanced technologies such as phesgge

memory are on the horizon and could be game-changers in the wa

data is stored and analyzed. In spite of these trends, dlyrthare
is limited usage of such technologies in the analytics darmaven
in the current implementations, it is often difficult for dytacs so-
lution developers to fine-tune system parameters, bothriaweae
and software, to address specific performance problemseNigk
age of modern technologies often leads to unbalanced sodtihat
further increase optimization complexity.

Thus, to ensure effective utilization of system resourc€®U,
memory, networking, and storage, it is necessary to e\alaa-
lytics workloads in a holistic manner. We aim to understama t
application of modern systems technologies to optimizimgjyics
workloads by exploring the interplay between overall systée-
sign, core algorithms, software (e.g., compilers, opegasiystem),
and hardware (e.g., networking, storage, and processsscif-
ically, we are interested in isolating repeated patterrenimytical
applications, algorithms, data structures, and data fygres using
them to make informed decisions on systems design. Overaste p
two years, we have been examining the functional flow of setgari
of analytical workloads across multiple domains (Tableahy as
a result of this exercise, we have identified a set of commuasgéd
analytical models, callednalytics exemplarfs]. We believe that
these exemplars represent the essence of analytical vadskiand
can be used as a toolkit for performing exploratory systeessgh
for the analytics domain. We use these exemplars to illtestreat
analytics applications benefit greatly from holisticalty-designed
software and hardware solutions and demonstrate this agipies-
ing the Netezza [16] appliance as an example. Finally, we hiois
study acts as aall to actionfor computer architects and systems

designers to focus future research on analytics.

2 Anatomy of Analytics Workloads

To motivate the study of analytics workloads, we first déseiin
detail a recent noteworthy analytics application: the \Watstel-
ligent question/answer (Q/A) system [11]. Watson is a caepu
system developed to play the Jeopardy! game-show againstrhu
participants [29]. Waston’s goals are to correctly intetghe in-
put natural language questions, accurately predict amssteethe
input questions and finally, intelligently choose the infmyics and
the wager amounts to maximize the gains. Watson is designed a

an open-domain Q/A system using the DeepQA system, a proba-

bilistic evidence-based software architecture whose coneputa-
tional principle is to assume and pursue multiple integirens of
the input question, to generate many plausible answerspmthg-
ses and to collect and evaluate many different competirdpece
paths that might support or refute those hypotheses thratligbad
search of large volumes of content. This process is accehgdli
using multiple stages: the first, question analysis and meosi-
tion stage parses the input question and analyzes it to tdatgc
semantic entities like names or dates. The analysis alstifids
any relations in the question using pattern-based or statisp-
proaches. Next, using this information, a keyword-baséahaoy
search is performed over a varied set of sources, such asahamn+
guage documents, relational databases and knowledge bases
set of supporting passages (initial evidence) is identifi€dis is
followed by the candidate (hypothesis) generation phasehwtses
rule-based heuristics to select a set of candidates thdikalg to
be the answers to the input question. The next step, Hypsthed
Evidence Scoring, for each evidence-hypothesis pairjepgiffer-
ent algorithms that dissect and analyze the evidence alffiegetht
dimensions of evidencgich as time, geography, popularity, pas-
sage support, and source reliability. The end result offfasige is a
ranked list of candidate answers, each with a confidence sodr
cating the degree to which the answer is believed correargakith
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Figure 1. Simplified functional flow of business analytics apli-
cations

links back to the evidence. Finally, these evidence featare com-
bined and weighted by a logistic regression to produce tla¢don-
fidence score that determines the successful candidat¢hg.eor-
rect answer). In addition to finding correct answers, Watsegds
to master the strategies to select the clues to it's advaraag bet
the appropriate amount for any given situation. The Deep@A s
tem models different scenarios of the Jeopardy! game usffeg-d
ent simulation approaches (e.g., Monte Carlo techniqueduaes
the acquired insights to maximize Watson’s winning chartmes
guiding topic selection, answering decisions and wagerctiehs.

to be completed within a fixed time period, processing vergda
datasets or large volumes of data over streams, suppouiic br
ad-hoc queries, or supporting a large number of concurresitsu
For example, for a given clue, the Watson system is expected t
find an answer before any of the human participants in the doiz
achieve the functional and runtime goals of an applicatioaana-
lytical solution leverages well-known analytical disdr@s such as
machine learning, data mining, statistics, businessligégice, and
numerical analysis. Specifically, for a given analyticallgem, the
solution chooses appropriate problem types from theséptirses
to build processes. Examples of analytic problem typesideku-
pervised and unsupervised learning, optimization, strect and
unstructured data analysis, inferential and descriptagssics, and
modeling and simulation.

Table 2 presents a set of analytics applications along v t
functional goals and the analytic problem types used toesehi
these goals. As illustrated in Table 2, in many cases, a ifumat
goal can be achieved by using more than one problem types. The
choice of the problem type to be used depends on many factors
that include runtime constraints, underlying software hadiware
infrastructure, etc. For example, customer churn analgsigech-
nigue for predicting the customers that are most likely swvéethe
current service provider (retail, telecom or financial)daompeti-

tor. This analysis can use one of the three problem typer-inf
ential statistics, supervised learning or unstructured daalysis.
One approach models individual customer’s behavior usami v
ous parameters such as duration of service, user transdtte
tory, etc. These parameters are then fed either to a statistiodel
such as regression or to a supervised learning model suckeas a
cision tree, to predict if a customer is likely to defect [21The
second approach, models behavior of a customer based on-her i
teractions with other customers. This strategy is commaisisd

in the telecom sector, where customer calling patterns sed to
model subscriber relationships as a graph. This unstredtyraph
can then be analyzed to identify subscriber groups anditifkien-

tial leaders- usually the well-connected and most actibsstibers.
These leaders can then be targeted for marketing campaiges t
duce defection in the members of her group [22].

The library component is usually designed to be portable and
broadly applicable across multiple analytic solutionsg.(ethe
DeepQA runtime that powers the Watson system). A library usu
ally provides implementations of specific models of the canm
problem types. For example, an unsupervised learning @mobhn

The Watson system displays many traits that are commonsacros be solved using one of many models including associativéngin

analytics applications. They all have one or more funcligoals.

classification, or clustering [14]. Each model can, in twrse one

These goals are accomplished by one or more multi-stage pro-or more algorithms for its implementation. For instance, éisso-

cesses, where each stage is an independent analytical menipo
To study the complex interactions between these compariergs
useful to examine the functional flow of an analytics appima
from the customer usage to implementation stages. As Fiilre
lustrates, execution of an analytics application can bétigered
into three main phases: (1) solution, (2) library, and (3lemen-
tation. The solution phase is end-user focused and custonicz
to satisfy user’s functional goals, which can be one of thiede
ing: prediction, prescription, reporting, recommendatiguantita-
tive analysis, simulation, pattern matching, or alertingor exam-
ple, Watson's key functional goals angattern matchingor input
question analysigredictionfor choosing answers, arsimulation
for wager and clue selection. Usually, any functional gostds
to be achieved under certain runtime constraints, e.qculzlons

ciative mining model can be implemented using the diffelasit
sociative rule mining or decision tree algorithms. Sintjlaclas-
sification can be implemented using nearest-neighbor,aheet-
work, or naive Bayes algorithms. It should be noted that acpr
tice, the separation between models and algorithms is rict ahd
many times, an algorithm can be used for supporting more than
one models. For instance, neural networks can be used fer clu
tering or classification. Finally, depending on how the feabis
formulated, each algorithm uses specific data structurdskan
nels. For example, many algorithms formulate the problem us
ing dense or sparse matrices and invoke kernels like mataibtix
and matrix-vector multiplication, matrix factorizatioand linear
system solvers. These kernels are sometimes optimizechéor t
underlying system architecture, in form of libraries sushiBM
ESSL [15] or Intel MKL [17]. Any kernel implementation can

IWe have expanded the classification proposed by Davenport etbe characterized according to how it manages parallel drecu

al.[8, 9].

if at all, and how it manages data and maps it to the system mem-



Analytical applications

Functional goals Problem types

Supply chain management, Product scheduling,
Logistics, Routing, Workforce management

Prescription Optimization

Credit risk analysis, Physics/Biology simulations, Games

Revenue prediction, Disease spread prediction, Prediction Unsupervised/Supervised learning
Semiconductor yield analysis, Predictive policing Descriptive/Inferential statistics

Retalil sales analysis, Financial reporting, Budgeting, Reporting Structured/Unstructured data analygis
System management analysis, Social network analysis

VLSI sensitivity analysis, Insurance risk modeling, Simulation Modeling and simulation

Descriptive/Inferential statistics

Topic/Sentiment analysis, Computational chemistry,
Document management, Searching, Bio- and Chemo-infocmati

Structured/Unstructured data analygis

Unsupervised/Supervised learning

Pattern matching

Sensor networks, Geographical analytics (Maps)

Cross-sale analysis, Customer retention, Music/Video and Recommendation Unsupervised/Supervised Learning
restaurant recommendation, Intrusion detection Structured/Unstructured data analysis
Web-traffic analysis, Fraud detection, Geological Alerting Descriptive/Inferential statistics

Unsupervised/Supervised learning

Customer relationship analysis, Weather forecasting,iéaéd
Informatics, Econometrics, Computational finance

Descriptive/Inferential statistics
Unsupervised/Supervised learning

Quantitative analysis

Table 2. Examples of analytics applications, associated fiational goals, and analytical problem types

ory and I/O architecture. Many parallel kernels can useezhar
distributed memory parallelism. In particular, if the aligiom is
embarrassingly parallel, requires large data, and theekésnex-
ecuting on a distributed system, it can often use the Map&edu
approach [10]. At the lowest level, the kernel implemeistrattan
often exploit hardware-specific features such as shotbvetata
parallelism (SIMD) or task parallelism on multi-core CPUsas-
sive data parallelism on GPUs, and application-specifialfgism
using Field-programmable gate arrays (FPGAS).

3 Analytics Exemplars

Given the wide variety of algorithmic and system alterregivor
executing analytics applications, it is difficult for sobn develop-
ers to make the right choices to address specific performance
sues. To alleviate this problem, we have analyzed the fomati
flow (Figure 2) of a wide set of key applications across migtgm-
alytics domains and have isolated repeated patterns igtanzhlap-
plications, algorithms, data structures, and data typé$B®, we
use this information to optimize analytic applications dibdaries
for modern system structures and to evolve and in some cpees s
cialize our processor and system designs to better suiytamap-
plications.

Towards this goal, we have identified a set of widely-usediical
models that capture the most important computation ancedatss
patterns of the analytics applications that we have stufdied5].
These models, referred to Asalytics Exemplarscover the preva-
lent analytical problem types and each exemplar can be osadt
dress one or more functional goals. Table 3 presents theflist
thirteen exemplars, along with target functional goals kel al-
gorithms used for implementing these exemplars. As Tablles i
trates, each exemplar can be implemented by one or moradisti
algorithms. Some of the algorithms can be used for impleimgnt
more than one exemplars, e.g., the Naive Bayes algorithnbean
used in text analytics and for general clustering purpoEesh al-
gorithm, depending on the runtime constraints, i.e., wéietie ap-
plication data can fit into main memory or not, can use a waoét
algorithmic kernels (Figure 2). For more details on the athms
and their implementations, the reader is referred to [5, 34]

Table 4 presents a summary of computational patterns, key da
types, data structures and functions used by algorithm®dch
exemplar. As Table 4 illustrates, while different exemgldemon-
strate distinct computational and runtime charactedsticey also

exhibit key similirities. Broadly, the analytic exemplaan be clas-
sified into two classes: the first class exploits lineardaigi for-
mulations and the second uses non-numeric data structeugs (
hash tables, trees, hit-vectors, etc.). Exemplars belgntp the
first class, e.g., Mathematical Programming, Regressicalyis,
and Neural Networks, operate primarily on matrices andorsct
Matrices are either sparse or dense, and are used in vaineas |
algebraic kernels like the matrix multiplication, invensj trans-
pose, and factorization. The second class, which incluties c
tering, nearest-neighbor search, associative rule mirdegision
tree learning, use data structures like hash-tables, queuaphs,
and trees, and operate on them using set-oriented, prbbil
graph-traversal, or dynamic programming algorithms. Exens
like mathematical programming, text analytics, and grapdiydics
can use either of these approaches. The analytic exemplkaesua-
riety of types, such as Integers, Strings, Bit-vector, andle and
double precision floats, to represent the application dakas in-
formation is then processed using different functions toatpare,
transform, and modify input data. Examples of common aiwalyt
functions include various distance functions (e.g., Eliah), ker-
nel functions (e.g., Linear, Sigmoid), aggregation fumasi (e.g.,
Sum), and Smoothing functions (e.g., correlation). Thaeetions,
in turn, make use of intrinsic library functions suchlag, sine or
sqrt.

Table 5 summarizes the runtime characteristics of the Hoslgx-
emplars. The key distinguishing feature of analytics ajgpions
is that they usually process input data in read-only modee ifth
put data can be scalar, structured with one or more dimesis@n
unstructured, and is usually read from files, streams otioelal
tables in the binary or text format. In most cases, the inata d
is large, which requires analytics applications to store process
data from disk. Notable exceptions to this pattern are M@ado
Methods and Mathematical Programming, which are inherentl
memory as they operate on small input data. The results dfsisa
are usually smaller than the input data. Only two exempksso-
ciation rule mining and on-line analytical processing (GY)Ayen-
erate larger output. Finally, analytics applications aqamive one
or more stages (real-time execution can be considered day
one stage), where each stage invokes the correspondingttaigo
in an iterative or non-iterative manner. For the iterati@kloads,
for the same input data size, the running time can vary dépgnd
on the precision required in the results.



Model Exemplar (Problem type)

Functional goals

Key algorithms

Regression analysis
(Inferential statistics)

Prediction, Quantitative analysis

Linear, Non-linear, Logistic, and Probit regression

Clustering
(Supervised learning)

Prediction, Reporting

Pattern matching, Recommendatioh,K-Means and Hierarchical clustering
Expectation-Maximization Clustering, Naive Bayes

Nearest-neighbor search
(Unsupervised learning)

Pattern recognition, Prediction,
Recommendation

K-d, Ball, and Metric trees, Approximate Nearest-neighbor
Locality-sensitive Hashing, Kohonen networks

Association rule mining
(Unsupervised learning)

Recommendation

Apriori, Partition, FP-Growth,
Eclat and MaxClique, Decision trees

Neural networks
(Supervised learning)

Prediction, Pattern matching

Single- and Multi-level perceptrons,
Radial-Basis Function (RBF), Recurrent, and Kohonen niksvg

(Supervised learning)

Support Vector Machines (SVMs)

Prediction, Pattern matching

SVMs with Linear, Polynomial, RBF,
Sigmoid, and String kernels

Decision tree learning
(Supervised learning)

Prediction, Recommendation

ID3/C4.5, CART, CHAID, QUEST

Time series processing

(Structured/Unstructured data analysis)Reporting, Alerting

Prediction, Pattern matching,

Trend, Seasonality, Spectral analysis,
ARIMA, Exponential smoothing

Text analytics

(Structured/Unstructured data analysis)

Pattern matching, Reporting

Naive Bayes classifier, Latent semantic analysis,
String-kernel SVMs, Non-negative matrix factorization

Monte Carlo methods
(Modeling and simulation)

Simulation, Quantitative analysis

Markov-chain, Quasi-Monte Carlo methods

(Optimization)

Mathematical programming

Prescription, Quantitative analysis

Primal-dual interior point, Branch & Bound methods,
Traveling salesman, A* algorithm, Quadratic programming

(Structured data analysis)

On-line analytical processing (OLAP)

Reporting, Prediction

Group-By, SliceandDice, Pivoting,
Rollup and Drill-down, Cube

Graph analytics

(Unstructured data analysis)

Pattern matching, Reporting,
Recommendation

Eigenvector Centrality (e.g., PageRank), Routing, Coltpri
Searching and flow algorithms, Clique and motif finding

Table 3. Analytics exemplar models, along problem types ankley application domains

Model Exemplar

Computational pattern

Key data types, Data structures, and Functions

Regression Analysis

Matrix inversion, LU decomposition, Transpose
Cholesky factorization

Double-precision and Complex data
Sparse/dense matrices, Vectors

Clustering

Metric-based iterative convergence

Height-balanced tree, Graph, Distance functions (Euafide
Manhattan, Minkowski, and Log-Likelihood)og functions

Nearest-Neighbor Search

Non-iterative distance calculations via metric functio
Singular value decomposition, Hashing

sHigher-dimensional data structures (k-d, and Metric frees
Hash tables, Euclidean and Hamming distance functions

Association Rule Mining

Set intersections, Unions, and Counting

Hash-tree, Relational tables, Prefix trees, Bit vectors

Neural Networks

Iterative Weighted Feedback networks
Matrix multiplication, Inversion, Cholesky factorizatio

Sparse/dense matrices, Vectors, Double-precision/Goagita
Gaussian, Multiquadric, Spline, Logistic, Smoothing flioies

Support Vector Machines

Cholesky factorization, Matrix multiplication

Double-precision floats, Sparse matrices, Vectors
Kernel functions (e.g., Linear, Sigmoid, Polynomial, Sg)

Decision Tree Learning

Dynamic programming, Recursive tree operations

Integers, Double-precision floats, Trees, Vectarg; function

Time Series Processing

Smoothing via averaging, Correlation
Fourier and Wavelet transforms

Integers, Single-/Double-precision floats, Dense mairivectors
cosine, sine, log functions, Distance and Smoothing functions

Text Analytics

Parsing, Bayesian modeling, String matching
Hashing, Singular value decomposition
Matrix multiplication, Transpose, Factorization

Integers, Single/Double precision, Characters, Strings
Sparse matrices, Vectors, Inverse indexes,
String functions, Distance functions

Monte Carlo Methods

Random number generators (e.g., Mersenne, Gauss|
Polynomial evaluation, Interpolation

iaBDouble-precision floats, Bit vectors

Bit-level operations (shift, mask)og, sqrt functions

Mathematical Programming

Matrix multiplication, Inversion, Cholesky factorizatio
Dynamic programming, Greedy algorithms,
Backtracking-based search

Integers, Double-precision floats, Sparse Matrices,
Vectors, Trees, Graphs

On-line Analytical Processing

Grouping and ordering multi-dimensionsal elements
Aggregation over hierarchies

Prefix trees, Relational tables, OLAP Operators (€6BE), Strings
Sorting, Ordering, Aggregation operators, e.g., Sum ordye

Graph Analytics

Graph traversal, Eigensolvers, Matrix-vector and

Matrix-matrix multiplication, Factorization

Integer, Single-/Double-precision floats, Adjacencyifieat lists
Trees, Queues, Dense/Sparse matrices

Table 4. Computational characteristics of the analytics eemplars




Model Exemplar Execution characteristics Input-Output characteristics
Methodology | Memory Issues|| (Read-only)Input Data Output Data
Regression Analysis Iterative In-memory Large historical Small
Disk-based Structured Scalar
Clustering Iterative In-memory Large historical Small scalar
Disk-based Unstructured or structured | Unstructured or structureg
Nearest-Neighbor Non-iterative | In-memory Large historical Small
Search Structured Scalar or structured
Association Rule Iterative In-memory Large historical Larger
Mining Non-iterative | Disk-based Structured Structured
Neural Networks Iterative In-memory Large Small
Two Stages | Disk-based Structured Scalar
Support Vector Iterative In-memory Large Small
Machines Two Stages | Disk-based Structured Scalar
Decision Tree Learning Iterative In-memory Large Small
Two Stages | Disk-based Structured & Unstructured | Scalar
Time Series Non-iterative | In-memory High volume streaming Small scalar or streaming
Processing Real-time Structured or unstructured | Structured or unstructureq
Text Analytics Iterative In-memory Large historical or streaming Large or small
Non-iterative | Disk-based Structured or unstructured | Structured or unstructured
Monte Carlo Methods Iterative In-memory Small Large
Scalar Scalar
Mathematical Programming || lterative In-memory Small Small
Scalar Scalar
On-line Analytical Processind| Non-iterative | In-memory Large historical Larger
Disk-based Structured Structured
Graph Analytics Iterative In-memory Large historical Small
Disk-based Unstructured Scalar or unstructured

Table 5. Runtime characteristics of the analytics exemplay

4 System Implications

Given the varied computational and runtime charactessticthe
analytics exemplars, it is clear that a single systems isalifor
different analytics applications would be sub-optimal. Pebles 4

using special-purpose processors such as FPGAs or by uicirad
new instructions in general-purpose processors. In mastscahe
exemplars can be accelerated using commodity hardwareazomp
nents (e.g., multi-core processors, GPUs or SSDs). Thedeaiee
components can be then used to optimize re-usable softwanelk

and 5 demonstrate, each exemplar has a unique set of computafunctions (e.g., numerical linear algebra, distance fonet etc.),

tional and runtime features, and ideally, every exemplauld/iget
a system tailor-made to match its requirements. Howevehave
also observed that different analytic exemplars share mampu-
tational and runtime features. Therefore, for a systemigades the
challenge is to customize analytics systems using as mamgaiele
software and hardware components as possible.

Table 6 describes system opportunities for acceleratiradytos
exemplars. Based on the computational and runtime chaiscte
tics described in Tables 4 and 5, we first identify key botles

in the execution of analytic exemplars, namely computeadou
memory-bound, and I/O bound (which covers both disk and net-
work data traffic). As Table 6 illustrates, a majority of theaa
lytics exemplars are compute bound in the in-memory mode and
1/0-bound when in the disk-based mode. The compute-bound ex
emplars can benefit from traditional task-based paradigbn ap-
proaches on multi-core processors, as well as by hardvesedb
acceleration via SIMD instructions or using GPUs. When uged
the disk-based scenarios, these exemplars can imprové/@eer-
formance by using solid state drives or data compressiormeSo
of the analytics exemplars are memory-bound due to theanet

on algorithms that traverse large in-memory data struststeh

as trees or sparse matrices. For these exemplars, a better me
ory sub-system, with faster, larger, and deeper memonratubies,

would be most beneficial. Once the memory accesses are opti-

mized, these exemplars can also benefit from traditionalpcem
tational acceleration techniques. Finally, some of thergtars ex-
hibit unique computational patterns (e.g., bit-level npaifations,
pattern matching, or string processing) which could be lacated

which themselves can be parallelized by a variety of pdizéigon

technigues such as task parallelism, distributed-memassage-
passing parellelism or MapReduce [24, 2]. These functienssed
as a basis of specialized implementations of the exempush

hardware-software co-design enables optimized analgtitgions
that can balance customization and commaoditization.

An example of hardware-software co-design is the Netezta da
warehouse and analytics appliance. The Netezza appliaqze s
ports both SQL-based OLAP and analytics queries. Netezmais
combination of FPGA-based acceleration and customized/acd

to optimize data-intensive mixed database and analyticklaeds
with concurrent queries from thousands of users. The Nateyz-
tem uses two key principles to achieve scalable performafige
Reduce unnecessary data traffic by moving processing diosiee
data, and (2) Use parallelization techniques to improvetbeess-
ing costs. A Netezza appliance is a distributed-memonesystith

a host server connected to a cluster of independent sealéd the
snippet blades (S-Blades). A Netezza host first compilegeyqis-

ing a cost-based query optimizer that uses the data and gtais-
tics, along with disk, processing, and networking costseioegate
plans that minimize disk I/O and data movement. The query-com
piler generates executable code segments, called snippiets are
executed in parallel by S-blades. Each S-blade is a sethowd
system with multiple multi-core CPUs, FPGAs, gigabytes ehm
ory, and a local disk subsystem. For a snippet, the S-Blade fir
reads the data from disks into memory using a technique toceed
disk scans. The data streams are then processed by FPGA® at wi
speed. In a majority of cases, the FPGAs filter data from thgg-or



Model Exemplar Bottleneck Acceleration requirements and opportunities

Regression Analysis Compute-bound| Shared- and Distributed-memory task parallelism, Datalfgism via SIMD or GPUs
Clustering I/0-bound Faster 1/O using solid state drives

Nearest-Neighbor Search

Neural Networks

Support Vector Machines

Association Rule Mining I/0-bound Shared-memory task parallelism, Faster 1/0O using solig staves

Faster bit operations or tree traversals via FPGAs

Decision Tree Learning

Memory-bound

Larger and deeper memory hierarchies, Data parallelisrs WD

Time Series Processing

Compute-bound
Memory-bound

Shared- and Distributed-memory task parallelism, Datalfgdism via SIMD or GPUs
High-bandwidth, low-latency memory subsystem, Pattertchiag via FPGA

Text Analytics

Memory-bound

Shared- and Distributed-memory task parallelism, Datalfgism via SIMD or GPUs

I/0-bound

Larger and deeper memory hierarchies, Faster I/O via staltd drives
Pattern matching and string processing via FPGA

Monte Carlo Methods Compute-bound

Shared- and Distributed-memory task parallelism, Datalfgism via SIMD or GPUs
Faster bit manipulations using FPGAs or ASICs

Mathematical Programming | Compute-bound

Shared-memory task parallelism, Massive data-paratieli; GPUs
Larger and deeper memory hierarchies, Search-tree tedsetia FPGAs

On-line Analytical Processing Memory-bound

1/0-bound

Shared- and Distributed-memory task parallelism, Datalfgdism via SIMD or GPUs
Larger and deeper memory hierarchies, Pattern MatchingR@®As,
Faster 1/0O using solid state drives

Graph Analytics Memory-bound

Shared-memory task parallelism, Larger and deeper menergrbhies

Table 6. Opportunities for parallelizing and acceleratinganalytics exemplars

nal stream, and only a tiny fraction is sent to the S-Blade €U
further processing. The FPGAs can also execute some auflitio
functions which include decompression, concurrency obnpro-
jections, and restrictions. The CPUs then execute eithabedae
operations like sort, join, or aggregation or core mathéuabker-
nels of analytics applications on the filtered data streaResults
from the snippet executions are then combined to computéi-the
nal result. The Netezza architecture also supports keyrdatiag
and machine learning algorithms on numerical data (e.gricea)
stored in relational tables.

A key lesson learned from the design of Netezza has been tee hu
value of specializing system design for analytics. Ordéraagni-
tude improvements in efficiency can be achieved by carefuil-
lyzing the system requirements and innovating using alcotktive
software-hardware design methodology.

5 Summary

In this survey paper and the accompanying research redomw¢s
have reviewed the growing field of analytics that uses mattiead
formulations to solve business and consumer problems. \We ha
identified some of the key techniques employed in analytiaked
analytics exemplarshoth to serve as an introduction for the non-
specialist and to explore the opportunity for greater ojtation for
parallel computer architectures and systems software.dfve this
work spurs follow-on work on analyzing and optimizing arialy
workloads.
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