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1 Math is cool again

From streaming news updates on smart-phones, to instant messages
on micro-blogging sites, to posts on social network sites, we are all
being overwhelmed by massive amounts of data [33, 27]. Access
to such a large amount of diverse data can be of tremendous value
if useful informationcan be extracted and applied rapidly and ac-
curately to a problem at hand. For instance, we could contactall
of our nearby friends for a dinner at a localmutually agreeable
andwell-reviewedrestaurant that has advertiseddiscountsand ta-
ble availability for that night; but finding and organizing all that
information in a short period of time is very challenging. Simi-
lar opportunities exist for businesses and governments butthe vol-
ume, variety and velocity of data can be far greater. This process
of identifying, extracting, processing, and integratinginformation
from raw data, and then applying it to solve a problem is broadly
referred to asanalytics.

Table 1 presents a sample of analytic applications from different
domains, along with their functional characteristics. As this Table
illustrates, many services that we take for granted and use exten-
sively in everyday life would not be possible without analytics. For
example, social networking applications such as Facebook,Twit-
ter, and LinkedIn encode social relationships as graphs anduse
graph algorithms to identify hidden patterns (e.g. finding com-
mon friends). Other popular applications like Google Maps,Yelp
or FourSquare combine location and social relationship informa-
tion to answer complex spatial queries (e.g. find the nearestrestau-
rant of a particular cuisine that your friends like). Usage of analyt-
ics has substantially improved the capabilities and performance of
gaming systems as demonstrated by the recent win of IBM’s Wat-
son/DeepQA intelligent question-answer system over humanpar-
ticipants in the Jeopardy challenge [29]. The declining cost of
computing and storage and the availability of such infrastructure
in cloudenvironments has enabled organizations of any size to de-
ploy advanced analytics and to package those analytic applications
for broad usage by consumers.

While consumer analytical solutions may help us all to better or-
ganize or enrich our personal lives, the analytic process isalso be-
coming a critical capability and competitive differentiator for mod-
ern businesses, governments and other organizations. In the cur-
rent environment, organizations need to make on-time, informed
decisions to succeed. Given the globalized economy, many busi-
nesses have supply chains and customers that span multiple conti-
nents. In the public sector, citizens are demanding more access to
services and information than ever before. Huge improvements in
communication infrastructure have resulted in wide-spread use of
online commerce and a boom in smart, connected mobile devices.

More and more organizations are run around the clock, acrossmul-
tiple geographies and time zones and those organizations are being
instrumentedto an unprecedented degree. This has resulted in a
deluge of data that can be studied to harvest valuable information
and make better decisions. In many cases, these large volumes of
data must be processed rapidly in order to make timely decisions.
Consequently, many organizations have employed analyticsto help
them decide what kind of data they should collect, how this data
should be analyzed to glean key information, and how this infor-
mation should be used for achieving their organizational goals. Ex-
amples of such techniques can be found in almost any sector ofthe
economy, including financial services [7, 6], government [31, 13],
healthcare, retail [26, 23], manufacturing, logistics [1,19], hospi-
tality, and eCommerce [8, 9].

The distinguishing feature of an analytics application is the use of
mathematical formulations for modeling and processing theraw
data, and for applying the extracted information [32]. These tech-
niques include statistical approaches, numerical linear algebraic
methods, graph algorithms, relational operators, and string algo-
rithms. In practice, an analytics application uses multiple formu-
lations, each with unique functional and runtime characteristics
(Table 1). Further, depending on the functional and runtimecon-
straints, the same application can use different algorithms. While
many of the applications process a large volume of data, the type of
data processed varies considerably. Internet search engines process
unstructured text documents as input, while retail analytics operate
on structured data stored in relational databases. Some applications
such as Google Maps, Yelp, or Netflix use both structured and un-
structured data. The velocity of data also differs substantially across
analytics applications. Search engines process read-onlyhistorical
data whereas retail analytics process both historical and transac-
tional data. Other applications, such as the monitoring of medical
instruments, work exclusively on real-time or streaming data. De-
pending on the mathematical formulation, the volume and velocity
of data and the expected I/O access patterns, the data structures and
algorithms used by analytical applications vary considerably. These
data structures include vectors, matrices, graphs, trees,relational ta-
bles, lists, hash-based structures, and binary objects. They can be
further tuned to support in-memory, out-of-core, or streaming exe-
cution of the associated algorithm. Thus, analytics applications are
characterized by diverse requirements but share a common focus
on the application of advanced mathematical modelling, typically
on large data sets.

Although analytics applications have come of age, they havenot yet
received significant attention from the computer architecture com-
munity. It is important to understand systems implicationsof the
analytics applications, not only because of their diverse and de-



Application Domain Principal Goals Key Functional Characteristics
Netflix and Pandora [3, 18] Consumer Video and music recommendation Analyzing structured and unstructured data,

Personalized recommendations
Yelp, FourSquare Consumer Integrated geographical analytics Spatial queries/ranking, Streaming and persistent data
DeepQA (Watson) [11] Healthcare Intelligent question-answer (QA) System Real-time natural language, Unstructured data processing,

Consumer Artificial intelligence techniques for result ranking
Telecom Churn Analysis [26] Telecom Analysis of call-data records Graph modeling of call records, Large graph dataset,

Connected component identification
Fraud Analytics Insurance Detection of suspicious behavior Identification of abnormal patterns,

Healthcare Real-time data analysis over streaming and persistent data
Cognos Consumer Insight [28] Marketing Sentiment/Trend Analysis Processing large corpus of text documents, Extraction and
Twitter Sentiment [12] Hospitality of BLOGS and text messages transformation, Text indexing, Entity extraction
UPS [1], Airline Scheduling [19] Logistics Transportation routing Mathematical programming solutions for transportation
Salesforce.com Marketing Customer data analytics Reporting, Text search, Multi-tenant support,

automated price determination, recommendation
Moody’s, Fitch, S&P [7, 6] Financial Financial credit rating Statistical analysis of large historical data
Oracle, Amazon Retail Analysis Retail End-to-end retail management Analysis over large persistent and transactional data,

Integration with logistics and customer Information
Energy Trading Energy Determining and hedging prices Processing large time-series data, Integrated stochastic

models for generation, storage and transmission
Splunk [30] Enterprise System management analysis Text analysis of system logs, Large data sets
Flickr, Twitter, Consumer Social network analysis Graph modeling of relations, Massive graph datasets,
Facebook and Linkedin Enterprise Graph analytics, Multi-media annotations and indexing
Voice of Customer Analytics [4] Enterprise Analyzing customer voice records Natural language processing, Text entity extraction
Facial Recognition [31] Government Biometric classification Analysis and matching of 2-/3-D images, Large data sets
Predictive Policing [20] Government Crime prediction Spatial and temporal analytics

Table 1. Well-known analytics solutions and their key characteristics

manding requirements, but also, because systems architecture is
currently undergoing a series of disruptive changes. Wide-spread
use of technologies such as multi-core processors, specialized co-
processors or accelerators, flash memory-based solid statedrives
(SSDs), and high speed networks has created new optimization
opportunities. More advanced technologies such as phase-change
memory are on the horizon and could be game-changers in the way
data is stored and analyzed. In spite of these trends, currently there
is limited usage of such technologies in the analytics domain. Even
in the current implementations, it is often difficult for analytics so-
lution developers to fine-tune system parameters, both in hardware
and software, to address specific performance problems. Naive us-
age of modern technologies often leads to unbalanced solutions that
further increase optimization complexity.

Thus, to ensure effective utilization of system resources:CPU,
memory, networking, and storage, it is necessary to evaluate ana-
lytics workloads in a holistic manner. We aim to understand the
application of modern systems technologies to optimizing analytics
workloads by exploring the interplay between overall system de-
sign, core algorithms, software (e.g., compilers, operating system),
and hardware (e.g., networking, storage, and processors).Specif-
ically, we are interested in isolating repeated patterns inanalytical
applications, algorithms, data structures, and data types, and using
them to make informed decisions on systems design. Over the past
two years, we have been examining the functional flow of a variety
of analytical workloads across multiple domains (Table 1),and as
a result of this exercise, we have identified a set of commonly-used
analytical models, calledanalytics exemplars[5]. We believe that
these exemplars represent the essence of analytical workloads and
can be used as a toolkit for performing exploratory systems design
for the analytics domain. We use these exemplars to illustrate that
analytics applications benefit greatly from holistically co-designed
software and hardware solutions and demonstrate this approach us-
ing the Netezza [16] appliance as an example. Finally, we hope this
study acts as acall to action for computer architects and systems

designers to focus future research on analytics.

2 Anatomy of Analytics Workloads

To motivate the study of analytics workloads, we first describe in
detail a recent noteworthy analytics application: the Watson intel-
ligent question/answer (Q/A) system [11]. Watson is a computer
system developed to play the Jeopardy! game-show against human
participants [29]. Waston’s goals are to correctly interpret the in-
put natural language questions, accurately predict answers to the
input questions and finally, intelligently choose the inputtopics and
the wager amounts to maximize the gains. Watson is designed as
an open-domain Q/A system using the DeepQA system, a proba-
bilistic evidence-based software architecture whose corecomputa-
tional principle is to assume and pursue multiple interpretations of
the input question, to generate many plausible answers or hypothe-
ses and to collect and evaluate many different competing evidence
paths that might support or refute those hypotheses througha broad
search of large volumes of content. This process is accomplished
using multiple stages: the first, question analysis and decomposi-
tion stage parses the input question and analyzes it to detect any
semantic entities like names or dates. The analysis also identifies
any relations in the question using pattern-based or statistical ap-
proaches. Next, using this information, a keyword-based primary
search is performed over a varied set of sources, such as natural lan-
guage documents, relational databases and knowledge bases, and a
set of supporting passages (initial evidence) is identified. This is
followed by the candidate (hypothesis) generation phase which uses
rule-based heuristics to select a set of candidates that arelikely to
be the answers to the input question. The next step, Hypothesis and
Evidence Scoring, for each evidence-hypothesis pair, applies differ-
ent algorithms that dissect and analyze the evidence along different
dimensions of evidencesuch as time, geography, popularity, pas-
sage support, and source reliability. The end result of thisstage is a
ranked list of candidate answers, each with a confidence score indi-
cating the degree to which the answer is believed correct, along with
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Figure 1. Simplified functional flow of business analytics appli-
cations

links back to the evidence. Finally, these evidence features are com-
bined and weighted by a logistic regression to produce the final con-
fidence score that determines the successful candidate (i.e. the cor-
rect answer). In addition to finding correct answers, Watsonneeds
to master the strategies to select the clues to it’s advantage and bet
the appropriate amount for any given situation. The DeepQA sys-
tem models different scenarios of the Jeopardy! game using differ-
ent simulation approaches (e.g., Monte Carlo techniques) and uses
the acquired insights to maximize Watson’s winning chancesby
guiding topic selection, answering decisions and wager selections.

The Watson system displays many traits that are common across
analytics applications. They all have one or more functional goals.
These goals are accomplished by one or more multi-stage pro-
cesses, where each stage is an independent analytical component.
To study the complex interactions between these components, it is
useful to examine the functional flow of an analytics application
from the customer usage to implementation stages. As Figure1 il-
lustrates, execution of an analytics application can be partitioned
into three main phases: (1) solution, (2) library, and (3) implemen-
tation. The solution phase is end-user focused and customized to
to satisfy user’s functional goals, which can be one of the follow-
ing: prediction, prescription, reporting, recommendation, quantita-
tive analysis, simulation, pattern matching, or alerting1. For exam-
ple, Watson’s key functional goals are:pattern matchingfor input
question analysis,predictionfor choosing answers, andsimulation
for wager and clue selection. Usually, any functional goal needs
to be achieved under certain runtime constraints, e.g., calculations

1We have expanded the classification proposed by Davenport et
al. [8, 9].

to be completed within a fixed time period, processing very large
datasets or large volumes of data over streams, supporting batch or
ad-hoc queries, or supporting a large number of concurrent users.
For example, for a given clue, the Watson system is expected to
find an answer before any of the human participants in the quiz. To
achieve the functional and runtime goals of an application,the ana-
lytical solution leverages well-known analytical disciplines such as
machine learning, data mining, statistics, business intelligence, and
numerical analysis. Specifically, for a given analytical problem, the
solution chooses appropriate problem types from these disciplines
to build processes. Examples of analytic problem types include su-
pervised and unsupervised learning, optimization, structured and
unstructured data analysis, inferential and descriptive statistics, and
modeling and simulation.

Table 2 presents a set of analytics applications along with their
functional goals and the analytic problem types used to achieve
these goals. As illustrated in Table 2, in many cases, a functional
goal can be achieved by using more than one problem types. The
choice of the problem type to be used depends on many factors
that include runtime constraints, underlying software andhardware
infrastructure, etc. For example, customer churn analysisis a tech-
nique for predicting the customers that are most likely to leave the
current service provider (retail, telecom or financial) fora competi-
tor. This analysis can use one of the three problem types: infer-
ential statistics, supervised learning or unstructured data analysis.
One approach models individual customer’s behavior using vari-
ous parameters such as duration of service, user transaction his-
tory, etc. These parameters are then fed either to a statistical model
such as regression or to a supervised learning model such as ade-
cision tree, to predict if a customer is likely to defect [21]. The
second approach, models behavior of a customer based on her in-
teractions with other customers. This strategy is commonlyused
in the telecom sector, where customer calling patterns are used to
model subscriber relationships as a graph. This unstructured graph
can then be analyzed to identify subscriber groups and theirinfluen-
tial leaders- usually the well-connected and most active subscribers.
These leaders can then be targeted for marketing campaigns to re-
duce defection in the members of her group [22].

The library component is usually designed to be portable and
broadly applicable across multiple analytic solutions (e.g., the
DeepQA runtime that powers the Watson system). A library usu-
ally provides implementations of specific models of the common
problem types. For example, an unsupervised learning problem can
be solved using one of many models including associative mining,
classification, or clustering [14]. Each model can, in turn,use one
or more algorithms for its implementation. For instance, the asso-
ciative mining model can be implemented using the differentas-
sociative rule mining or decision tree algorithms. Similarly, clas-
sification can be implemented using nearest-neighbor, neural net-
work, or naive Bayes algorithms. It should be noted that in prac-
tice, the separation between models and algorithms is not strict and
many times, an algorithm can be used for supporting more than
one models. For instance, neural networks can be used for clus-
tering or classification. Finally, depending on how the problem is
formulated, each algorithm uses specific data structures and ker-
nels. For example, many algorithms formulate the problem us-
ing dense or sparse matrices and invoke kernels like matrix-matrix
and matrix-vector multiplication, matrix factorization,and linear
system solvers. These kernels are sometimes optimized for the
underlying system architecture, in form of libraries such as IBM
ESSL [15] or Intel MKL [17]. Any kernel implementation can
be characterized according to how it manages parallel execution,
if at all, and how it manages data and maps it to the system mem-



Analytical applications Functional goals Problem types
Supply chain management, Product scheduling, Prescription Optimization
Logistics, Routing, Workforce management
Revenue prediction, Disease spread prediction, Prediction Unsupervised/Supervised learning
Semiconductor yield analysis, Predictive policing Descriptive/Inferential statistics
Retail sales analysis, Financial reporting, Budgeting, Reporting Structured/Unstructured data analysis
System management analysis, Social network analysis
VLSI sensitivity analysis, Insurance risk modeling, Simulation Modeling and simulation
Credit risk analysis, Physics/Biology simulations, Games Descriptive/Inferential statistics
Topic/Sentiment analysis, Computational chemistry, Pattern matching Structured/Unstructured data analysis
Document management, Searching, Bio- and Chemo-informatics Unsupervised/Supervised learning
Cross-sale analysis, Customer retention, Music/Video and Recommendation Unsupervised/Supervised Learning
restaurant recommendation, Intrusion detection Structured/Unstructured data analysis
Web-traffic analysis, Fraud detection, Geological Alerting Descriptive/Inferential statistics
Sensor networks, Geographical analytics (Maps) Unsupervised/Supervised learning
Customer relationship analysis, Weather forecasting, Medical Quantitative analysis Descriptive/Inferential statistics
Informatics, Econometrics, Computational finance Unsupervised/Supervised learning

Table 2. Examples of analytics applications, associated functional goals, and analytical problem types

ory and I/O architecture. Many parallel kernels can use shared or
distributed memory parallelism. In particular, if the algorithm is
embarrassingly parallel, requires large data, and the kernel is ex-
ecuting on a distributed system, it can often use the MapReduce
approach [10]. At the lowest level, the kernel implementation can
often exploit hardware-specific features such as short-vector data
parallelism (SIMD) or task parallelism on multi-core CPUs,mas-
sive data parallelism on GPUs, and application-specific parallelism
using Field-programmable gate arrays (FPGAs).

3 Analytics Exemplars

Given the wide variety of algorithmic and system alternatives for
executing analytics applications, it is difficult for solution develop-
ers to make the right choices to address specific performanceis-
sues. To alleviate this problem, we have analyzed the functional
flow (Figure 2) of a wide set of key applications across multiple an-
alytics domains and have isolated repeated patterns in analytical ap-
plications, algorithms, data structures, and data types. At IBM, we
use this information to optimize analytic applications andlibraries
for modern system structures and to evolve and in some cases spe-
cialize our processor and system designs to better suit analytic ap-
plications.

Towards this goal, we have identified a set of widely-used analytical
models that capture the most important computation and dataaccess
patterns of the analytics applications that we have studied[5, 25].
These models, referred to asAnalytics Exemplars, cover the preva-
lent analytical problem types and each exemplar can be used to ad-
dress one or more functional goals. Table 3 presents the listof
thirteen exemplars, along with target functional goals andkey al-
gorithms used for implementing these exemplars. As Table 3 illus-
trates, each exemplar can be implemented by one or more distinct
algorithms. Some of the algorithms can be used for implementing
more than one exemplars, e.g., the Naive Bayes algorithm canbe
used in text analytics and for general clustering purposes.Each al-
gorithm, depending on the runtime constraints, i.e., whether the ap-
plication data can fit into main memory or not, can use a variety of
algorithmic kernels (Figure 2). For more details on the algorithms
and their implementations, the reader is referred to [5, 34].

Table 4 presents a summary of computational patterns, key data
types, data structures and functions used by algorithms foreach
exemplar. As Table 4 illustrates, while different exemplars demon-
strate distinct computational and runtime characteristics, they also

exhibit key similirities. Broadly, the analytic exemplarscan be clas-
sified into two classes: the first class exploits linear-algebraic for-
mulations and the second uses non-numeric data structures (e.g.,
hash tables, trees, bit-vectors, etc.). Exemplars belonging to the
first class, e.g., Mathematical Programming, Regression Analysis,
and Neural Networks, operate primarily on matrices and vectors.
Matrices are either sparse or dense, and are used in various linear
algebraic kernels like the matrix multiplication, inversion, trans-
pose, and factorization. The second class, which includes clus-
tering, nearest-neighbor search, associative rule mining, decision
tree learning, use data structures like hash-tables, queues, graphs,
and trees, and operate on them using set-oriented, probabilistic,
graph-traversal, or dynamic programming algorithms. Exemplars
like mathematical programming, text analytics, and graph analytics
can use either of these approaches. The analytic exemplars use a va-
riety of types, such as Integers, Strings, Bit-vector, and single and
double precision floats, to represent the application data.This in-
formation is then processed using different functions thatcompare,
transform, and modify input data. Examples of common analytic
functions include various distance functions (e.g., Euclidian), ker-
nel functions (e.g., Linear, Sigmoid), aggregation functions (e.g.,
Sum), and Smoothing functions (e.g., correlation). These functions,
in turn, make use of intrinsic library functions such aslog, sine or
sqrt.

Table 5 summarizes the runtime characteristics of the analytics ex-
emplars. The key distinguishing feature of analytics applications
is that they usually process input data in read-only mode. The in-
put data can be scalar, structured with one or more dimensions, or
unstructured, and is usually read from files, streams or relational
tables in the binary or text format. In most cases, the input data
is large, which requires analytics applications to store and process
data from disk. Notable exceptions to this pattern are MonteCarlo
Methods and Mathematical Programming, which are inherently in-
memory as they operate on small input data. The results of analysis
are usually smaller than the input data. Only two exemplars,asso-
ciation rule mining and on-line analytical processing (OLAP) gen-
erate larger output. Finally, analytics applications can involve one
or more stages (real-time execution can be considered to have only
one stage), where each stage invokes the corresponding algorithm
in an iterative or non-iterative manner. For the iterative workloads,
for the same input data size, the running time can vary depending
on the precision required in the results.



Model Exemplar (Problem type) Functional goals Key algorithms
Regression analysis Prediction, Quantitative analysis Linear, Non-linear, Logistic, and Probit regression
(Inferential statistics)
Clustering Pattern matching, Recommendation,K-Means and Hierarchical clustering
(Supervised learning) Prediction, Reporting Expectation-Maximization Clustering, Naive Bayes
Nearest-neighbor search Pattern recognition, Prediction, K-d, Ball, and Metric trees, Approximate Nearest-neighbor
(Unsupervised learning) Recommendation Locality-sensitive Hashing, Kohonen networks
Association rule mining Recommendation Apriori, Partition, FP-Growth,
(Unsupervised learning) Eclat and MaxClique, Decision trees
Neural networks Prediction, Pattern matching Single- and Multi-level perceptrons,
(Supervised learning) Radial-Basis Function (RBF), Recurrent, and Kohonen networks
Support Vector Machines (SVMs) Prediction, Pattern matching SVMs with Linear, Polynomial, RBF,
(Supervised learning) Sigmoid, and String kernels
Decision tree learning Prediction, Recommendation ID3/C4.5, CART, CHAID, QUEST
(Supervised learning)
Time series processing Prediction, Pattern matching, Trend, Seasonality, Spectral analysis,
(Structured/Unstructured data analysis)Reporting, Alerting ARIMA, Exponential smoothing
Text analytics Pattern matching, Reporting Naive Bayes classifier, Latent semantic analysis,
(Structured/Unstructured data analysis) String-kernel SVMs, Non-negative matrix factorization
Monte Carlo methods Simulation, Quantitative analysis Markov-chain, Quasi-Monte Carlo methods
(Modeling and simulation)
Mathematical programming Prescription, Quantitative analysis Primal-dual interior point, Branch & Bound methods,
(Optimization) Traveling salesman, A* algorithm, Quadratic programming
On-line analytical processing (OLAP) Reporting, Prediction Group-By, Sliceand Dice, Pivoting,
(Structured data analysis) Rollup and Drill-down, Cube
Graph analytics Pattern matching, Reporting, Eigenvector Centrality (e.g., PageRank), Routing, Coloring,
(Unstructured data analysis) Recommendation Searching and flow algorithms, Clique and motif finding

Table 3. Analytics exemplar models, along problem types andkey application domains

Model Exemplar Computational pattern Key data types, Data structures, and Functions
Regression Analysis Matrix inversion, LU decomposition, Transpose Double-precision and Complex data

Cholesky factorization Sparse/dense matrices, Vectors
Clustering Metric-based iterative convergence Height-balanced tree, Graph, Distance functions (Euclidean,

Manhattan, Minkowski, and Log-Likelihood),log functions
Nearest-Neighbor Search Non-iterative distance calculations via metric functionsHigher-dimensional data structures (k-d, and Metric trees),

Singular value decomposition, Hashing Hash tables, Euclidean and Hamming distance functions
Association Rule Mining Set intersections, Unions, and Counting Hash-tree, Relational tables, Prefix trees, Bit vectors
Neural Networks Iterative Weighted Feedback networks Sparse/dense matrices, Vectors, Double-precision/Complex data

Matrix multiplication, Inversion, Cholesky factorization Gaussian, Multiquadric, Spline, Logistic, Smoothing functions
Support Vector Machines Cholesky factorization, Matrix multiplication Double-precision floats, Sparse matrices, Vectors

Kernel functions (e.g., Linear, Sigmoid, Polynomial, String)
Decision Tree Learning Dynamic programming, Recursive tree operations Integers, Double-precision floats, Trees, Vectors,log function

Time Series Processing Smoothing via averaging, Correlation Integers, Single-/Double-precision floats, Dense matrices, Vectors
Fourier and Wavelet transforms cosine, sine, log functions, Distance and Smoothing functions

Text Analytics Parsing, Bayesian modeling, String matching Integers, Single/Double precision, Characters, Strings
Hashing, Singular value decomposition Sparse matrices, Vectors, Inverse indexes,
Matrix multiplication, Transpose, Factorization String functions, Distance functions

Monte Carlo Methods Random number generators (e.g., Mersenne, Gaussian)Double-precision floats, Bit vectors
Polynomial evaluation, Interpolation Bit-level operations (shift, mask),log, sqrt functions

Mathematical Programming Matrix multiplication, Inversion, Cholesky factorization Integers, Double-precision floats, Sparse Matrices,
Dynamic programming, Greedy algorithms, Vectors, Trees, Graphs
Backtracking-based search

On-line Analytical Processing Grouping and ordering multi-dimensionsal elements Prefix trees, Relational tables, OLAP Operators (e.g.,CUBE), Strings
Aggregation over hierarchies Sorting, Ordering, Aggregation operators, e.g., Sum or Average

Graph Analytics Graph traversal, Eigensolvers, Matrix-vector and Integer, Single-/Double-precision floats, Adjacency/incident lists
Matrix-matrix multiplication, Factorization Trees, Queues, Dense/Sparse matrices

Table 4. Computational characteristics of the analytics exemplars



Model Exemplar Execution characteristics Input-Output characteristics
Methodology Memory Issues (Read-only) Input Data Output Data

Regression Analysis Iterative In-memory Large historical Small
Disk-based Structured Scalar

Clustering Iterative In-memory Large historical Small scalar
Disk-based Unstructured or structured Unstructured or structured

Nearest-Neighbor Non-iterative In-memory Large historical Small
Search Structured Scalar or structured
Association Rule Iterative In-memory Large historical Larger
Mining Non-iterative Disk-based Structured Structured
Neural Networks Iterative In-memory Large Small

Two Stages Disk-based Structured Scalar
Support Vector Iterative In-memory Large Small
Machines Two Stages Disk-based Structured Scalar
Decision Tree Learning Iterative In-memory Large Small

Two Stages Disk-based Structured & Unstructured Scalar
Time Series Non-iterative In-memory High volume streaming Small scalar or streaming
Processing Real-time Structured or unstructured Structured or unstructured
Text Analytics Iterative In-memory Large historical or streaming Large or small

Non-iterative Disk-based Structured or unstructured Structured or unstructured
Monte Carlo Methods Iterative In-memory Small Large

Scalar Scalar
Mathematical Programming Iterative In-memory Small Small

Scalar Scalar
On-line Analytical Processing Non-iterative In-memory Large historical Larger

Disk-based Structured Structured
Graph Analytics Iterative In-memory Large historical Small

Disk-based Unstructured Scalar or unstructured

Table 5. Runtime characteristics of the analytics exemplars

4 System Implications

Given the varied computational and runtime characteristics of the
analytics exemplars, it is clear that a single systems solution for
different analytics applications would be sub-optimal. AsTables 4
and 5 demonstrate, each exemplar has a unique set of computa-
tional and runtime features, and ideally, every exemplar would get
a system tailor-made to match its requirements. However, wehave
also observed that different analytic exemplars share manycompu-
tational and runtime features. Therefore, for a systems designer, the
challenge is to customize analytics systems using as many re-usable
software and hardware components as possible.

Table 6 describes system opportunities for accelerating analytics
exemplars. Based on the computational and runtime characteris-
tics described in Tables 4 and 5, we first identify key bottlenecks
in the execution of analytic exemplars, namely compute-bound,
memory-bound, and I/O bound (which covers both disk and net-
work data traffic). As Table 6 illustrates, a majority of the ana-
lytics exemplars are compute bound in the in-memory mode and
I/O-bound when in the disk-based mode. The compute-bound ex-
emplars can benefit from traditional task-based parallelization ap-
proaches on multi-core processors, as well as by hardware-based
acceleration via SIMD instructions or using GPUs. When usedin
the disk-based scenarios, these exemplars can improve their I/O per-
formance by using solid state drives or data compression. Some
of the analytics exemplars are memory-bound due to their reliance
on algorithms that traverse large in-memory data structures such
as trees or sparse matrices. For these exemplars, a better mem-
ory sub-system, with faster, larger, and deeper memory hierarchies,
would be most beneficial. Once the memory accesses are opti-
mized, these exemplars can also benefit from traditional compu-
tational acceleration techniques. Finally, some of the exemplars ex-
hibit unique computational patterns (e.g., bit-level manipulations,
pattern matching, or string processing) which could be accelerated

using special-purpose processors such as FPGAs or by introducing
new instructions in general-purpose processors. In most cases, the
exemplars can be accelerated using commodity hardware compo-
nents (e.g., multi-core processors, GPUs or SSDs). These hardware
components can be then used to optimize re-usable software kernel
functions (e.g., numerical linear algebra, distance functions, etc.),
which themselves can be parallelized by a variety of parallelization
techniques such as task parallelism, distributed-memory message-
passing parellelism or MapReduce [24, 2]. These functions be used
as a basis of specialized implementations of the exemplars.Such
hardware-software co-design enables optimized analyticssolutions
that can balance customization and commoditization.

An example of hardware-software co-design is the Netezza data
warehouse and analytics appliance. The Netezza appliance sup-
ports both SQL-based OLAP and analytics queries. Netezza uses a
combination of FPGA-based acceleration and customized software
to optimize data-intensive mixed database and analytics workloads
with concurrent queries from thousands of users. The Netezza sys-
tem uses two key principles to achieve scalable performance: (1)
Reduce unnecessary data traffic by moving processing closerto the
data, and (2) Use parallelization techniques to improve theprocess-
ing costs. A Netezza appliance is a distributed-memory system with
a host server connected to a cluster of independent servers called the
snippet blades (S-Blades). A Netezza host first compiles a query us-
ing a cost-based query optimizer that uses the data and querystatis-
tics, along with disk, processing, and networking costs to generate
plans that minimize disk I/O and data movement. The query com-
piler generates executable code segments, called snippetswhich are
executed in parallel by S-blades. Each S-blade is a self-contained
system with multiple multi-core CPUs, FPGAs, gigabytes of mem-
ory, and a local disk subsystem. For a snippet, the S-Blade first
reads the data from disks into memory using a technique to reduce
disk scans. The data streams are then processed by FPGAs at wire
speed. In a majority of cases, the FPGAs filter data from the origi-



Model Exemplar Bottleneck Acceleration requirements and opportunities
Regression Analysis Compute-bound Shared- and Distributed-memory task parallelism, Data parallelism via SIMD or GPUs
Clustering I/O-bound Faster I/O using solid state drives
Nearest-Neighbor Search
Neural Networks
Support Vector Machines
Association Rule Mining I/O-bound Shared-memory task parallelism, Faster I/O using solid state drives

Faster bit operations or tree traversals via FPGAs
Decision Tree Learning Memory-bound Larger and deeper memory hierarchies, Data parallelism viaSIMD
Time Series Processing Compute-bound Shared- and Distributed-memory task parallelism, Data parallelism via SIMD or GPUs

Memory-bound High-bandwidth, low-latency memory subsystem, Pattern matching via FPGA
Text Analytics Memory-bound Shared- and Distributed-memory task parallelism, Data parallelism via SIMD or GPUs

I/O-bound Larger and deeper memory hierarchies, Faster I/O via solid state drives
Pattern matching and string processing via FPGA

Monte Carlo Methods Compute-bound Shared- and Distributed-memory task parallelism, Data parallelism via SIMD or GPUs
Faster bit manipulations using FPGAs or ASICs

Mathematical Programming Compute-bound Shared-memory task parallelism, Massive data-parallelism via GPUs
Larger and deeper memory hierarchies, Search-tree traversals via FPGAs

On-line Analytical Processing Memory-bound Shared- and Distributed-memory task parallelism, Data parallelism via SIMD or GPUs
I/O-bound Larger and deeper memory hierarchies, Pattern Matching viaFPGAs,

Faster I/O using solid state drives
Graph Analytics Memory-bound Shared-memory task parallelism, Larger and deeper memory hierarchies

Table 6. Opportunities for parallelizing and acceleratinganalytics exemplars

nal stream, and only a tiny fraction is sent to the S-Blade CPUs for
further processing. The FPGAs can also execute some additional
functions which include decompression, concurrency control, pro-
jections, and restrictions. The CPUs then execute either database
operations like sort, join, or aggregation or core mathematical ker-
nels of analytics applications on the filtered data streams.Results
from the snippet executions are then combined to compute thefi-
nal result. The Netezza architecture also supports key datamining
and machine learning algorithms on numerical data (e.g., matrices)
stored in relational tables.

A key lesson learned from the design of Netezza has been the huge
value of specializing system design for analytics. Orders of magni-
tude improvements in efficiency can be achieved by carefullyana-
lyzing the system requirements and innovating using a collaborative
software-hardware design methodology.

5 Summary

In this survey paper and the accompanying research report [5], we
have reviewed the growing field of analytics that uses mathematical
formulations to solve business and consumer problems. We have
identified some of the key techniques employed in analytics,called
analytics exemplars, both to serve as an introduction for the non-
specialist and to explore the opportunity for greater optimization for
parallel computer architectures and systems software. We hope this
work spurs follow-on work on analyzing and optimizing analytics
workloads.
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