
RC25318 (WAT1210-050) October 12, 2012
Mathematics

IBM Research Report

Global Optimization of Nonconvex Problems with
Multilinear Intermediates

Xiaowei Bao
Sabre Airline Solutions

Aida Khajavirad
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 208

Yorktown Heights, NY 10598
USA

Nikolaos V. Sahinidis
Department of Chemical Engineering

Carnegie Mellon University

Mohit Tawarmalani
Krannert School of Management

Purdue University

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Global optimization of nonconvex problems with

multilinear intermediates

Xiaowei Bao · Aida Khajavirad ·

Nikolaos V. Sahinidis · Mohit Tawarmalani

Received: date / Accepted: date

Abstract We consider global optimization of nonconvex problems containing multi-

linear functions. It is well known that the convex hull of a multilinear function over a

box is polyhedral, and the facets of this polyhedron can be obtained by solving a linear

optimization problem (LP). When used as cutting planes, these facets can significantly

enhance the quality of conventional relaxations in general-purpose global solvers. How-

ever, in general, the size of this LP grows exponentially with the number of variables

in the multilinear function. To cope with this growth, we propose a graph decompo-

sition scheme that exploits the structure of a multilinear function to decompose it to

lower-dimensional components, for which the aforementioned LP can be solved very

efficiently by employing a customized simplex algorithm. We embed this cutting plane

generation strategy at every node of the branch-and-reduce global solver BARON, and

carry out an extensive computational study on quadratically constrained quadratic

problems, multilinear problems, and polynomial optimization problems. Results show

that the proposed multilinear cuts enable BARON to solve many more problems to global

optimality and lead to an average 60% CPU time reduction.

Keywords Multilinear functions · Global optimization · Convex envelope · Polyhedral

relaxations

This research was supported in part by National Science Foundation award CMII-1030168.

Xiaowei Bao
Sabre Airline Solutions, e-mail: xiaoweib@gmail.com.

Aida Khajavirad
Mathematical Sciences Department, IBM T. J. Watson Research Center, e-mail:
aidakhajavi@us.ibm.com.

Nikolaos V. Sahinidis
Department of Chemical Engineering, Carnegie Mellon University, e-mail: sahinidis@cmu.edu.
Address all correspondence to this author.

Mohit Tawarmalani
Krannert School of Management, Purdue University, e-mail: mtawarma@purdue.edu.

2

1 Introduction

We consider a nonconvex optimization problem, where the objective function and/or

constraints contain multilinear subexpressions. A function L(x1, . . . xn) is said to be

multilinear if its restriction to each variable xj , j = 1, . . . , n is a linear function; i.e.,

L(x1, . . . , xn) =
∑

T∈Ω

cT
∏

j∈T

xj , (1)

where Ω is a collection of subsets of {1, . . . , n}, cT ∈ R \ {0}, and xj ∈ R. We focus

on the case where L(x) is defined over a box x ∈ H =
∏n

j=1 [lj , uj], which is a case

of central importance in rectangular branch-and-bound algorithms. We further assume

that H is bounded and has a nonempty interior; i.e., −∞ < lj < uj < +∞ for all

j = 1, . . . , n. Throughout the paper, we refer to each product
∏

j∈T xj in (1) as a

multilinear term.

Multilinear functions, including bilinear functions as special cases, are building

blocks of many difficult nonconvex problems, such as quadratic programs (QPs), quadrat-

ically constrained quadratic programs (QCQPs), and polynomial programs. Building

tight convex relaxations for multilinear functions has been the subject of extensive

research by the mathematical programming community for over four decades now [19,

1,5,6,24,30,25,22,31,2]. It has been shown that the quality of these relaxations sig-

nificantly affects the convergence rate of global optimization algorithms [2]. Given a

nonconvex function z = φ(x) over a convex set C, the tightest convex relaxation of

the set S = {(x, z) : z = φ(x), x ∈ C} is obtained by replacing φ(x) by its convex

and concave envelopes (cf. Chapter 2 of [35] for an exposition). Recall that the convex

envelope of φ over C, denoted by convCφ, is the greatest convex underestimator of

φ over C. Similarly, the concave envelope of φ over C is the lowest concave function

minorized by φ over C, and we denote it by concCφ. It is well known that the convex

and concave envelopes of a multilinear function over a box are polyhedral and can be

fully characterized by the extreme points of the box (cf. [24]). Let vert(H) = {vi}i∈I ,

I = {1, . . . , 2n} denote the set of vertices of H, and let λi be a convex multiplier as-

sociated with vi for all i ∈ I . It follows that, for any x ∈ H, the value of the convex

envelope of L(x) over H can be obtained by solving the following minimizing LP:

convHL(x) = min
λ

{

∑

i∈I

λiL(v
i) : x =

∑

i∈I

λiv
i,
∑

i∈I

λi = 1, λi ≥ 0,∀i ∈ I

}

. (2)

Similarly, the value of the concave envelope of L(x) over H is equal to the optimal

value of the following maximizing LP:

concHL(x) = max
λ

{

∑

i∈I

λiL(v
i) : x =

∑

i∈I

λiv
i,
∑

i∈I

λi = 1, λi ≥ 0,∀i ∈ I

}

. (3)

The above descriptions for the envelopes of a multilinear function grow exponen-

tially with the number of variables (n), limiting their direct application in practice to

multilinears with a small number of variables. In fact, it has been shown that finding

the convex envelope of a multilinear function over the unit hypercube is an NP-hard

problem, in general [5]. For several classes of multilinears with special structures, ex-

plicit characterizations of the envelopes are available in the literature. These results

3

address bilinear terms [1] and trilinear terms [20,21] over a box, special forms of bilin-

ear functions over the unit hypercube [24], special forms of multilinear functions over

the unit hypercube and some discrete sets [30], bilinear and polynomial covering sets

with certain sign restrictions and no upper bounds on variables [33], and submodu-

lar (supermodular) functions over a box and over various polyhedral subdivisions of a

box [34,32]. For bounding a general multilinear function, however, a common practice

is to utilize a termwise scheme in which each multilinear term is relaxed by a recur-

sive application of bilinear envelopes [19,6,25,36]. This so-called standard linearization

is simple to implement and has been employed in the general-purpose global solvers

BARON [26], LindoGlobal [17], and Couenne [3]. Crama [6] derives necessary and suf-

ficient conditions under which the standard linearization is equivalent to the convex

hull relaxation. However, in general, the standard linearization can lead to very poor

bounds and, for dense multilinears in particular, utilizing the convex hull relaxation

has shown to be highly beneficial [2,18].

Bao et al. [2] consider the generation of multiterm polyhedral relaxations for non-

convex QCQPs. They show that adding the cuts corresponding to the facets of the

envelopes of multiple bilinear terms at the root node of BARON significantly enhances

the convergence rate of BARON’s branch-and-reduce algorithm. Motivated by this initial

success, in this paper, we introduce a new class of cutting planes, namely, multilin-

ear cutting planes for multiple multilinear terms based on the convex and concave

envelopes of the multilinear function, and describe its implementation in a branch-

and-bound algorithm for general nonconvex problems. With the goal of generating

strong cuts that are cheap to compute, we propose a novel decomposition scheme that

exploits the structure of a multilinear function to decompose it to lower-dimensional

multilinears, for which the facets of the envelopes can be computed very efficiently by

utilizing a customized simplex algorithm. To exploit the local information regarding

bounds on variables for cut generation, as well as to utilize the multilinear cuts for

local feasibility-based and optimality-based range reductions, we embed the proposed

cutting plane generation technique at every node of the branch-and-reduce algorithm.

Extensive computational results are presented for globally solving various sets of QC-

QPs, multilinear problems, and polynomial optimization problems. Results show that

the incorporation of the multilinear cuts in BARON reduces the average CPU time and

number of nodes in the search tree by 60% and 90%, respectively.

The remainder of the paper is structured as follows. We first review some basic

material on constructing the convex envelopes of multilinear functions in Section 2.

In Section 3, we describe the decomposition scheme and detail how the proposed cut

generation algorithm is embedded in a branch-and-bound global solver. Section 4 de-

scribes computational experience with the algorithm and compares the proposed mul-

titerm cuts with conventional termwise relaxations. Finally, conclusions are offered in

Section 5.

2 Relaxation of multilinear functions and cutting plane generation

In this section, we review some preliminary material on constructing the envelopes

of multilinear functions, and present a cutting plane generation scheme to generate a

facet of the convex envelope that separates the epigraph of the convex envelope from

a pre-specified point. Analogous results for the concave envelope can be established in

a similar manner. While we focus on multilinear functions over hyper-rectangles, most

4

of our results are valid for any function whose envelope over a polytope can be finitely

generated (cf. [31] for an introduction to functions with polyhedral envelopes). For

several classes of multilinears with special structures, explicit characterizations of the

convex and/or concave envelopes are known [24,30,20,21,34], or it has been shown that

the recursive factorable relaxation provides the convex envelope of the multilinear [6,

25,18]. In the following, we consider multilinear functions for which (i) no analytical

description for the envelope is available and (ii) the envelope is strictly tighter than

the term-wise recursive relaxation.

As we discussed in the previous section, the convex envelope of a multilinear func-

tion over a box can be constructed by solving the LP given by (2). It then follows

that, using the dual representation of this LP, we can construct nonvertical facets of

convHL(x), as stated in the following theorem:

Theorem 1 (Theorem 2.4 in [2]) Let g(a, b) be an affine function, with a ∈ R
n and

b ∈ R. Then, z = a∗
T
x + b∗ defines a non-vertical facet of the convex envelope of

the multilinear function L(x) over H =
∏n

j=1[lj , uj] if and only if (a∗, b∗) is a basic

feasible solution of the following linear optimization problem:

(F1) max g(a, b)

s.t. aT vi + b ≤ L(vi), ∀vi ∈ vert(H)

a ∈ R
n, b ∈ R.

Any affine underestimator of L(x) is associated with a feasible solution of (F1),

and an optimal solution of (F1) defines a facet of the epigraph of convHL(x). The

objective function g(a, b) can be any affine function, which leaves the flexibility to

generate proper facets for obtaining sharp relaxations. Based on this fact, we next

present a scheme to generate strong cuts that separate a given point from the convex

hull of a multilinear function.

Consider the set S = {(x, z) : z = L(x), x ∈ H}. We assume that z = L(x) in an

intermediate constraint that is generated after a factorable reformulation of a general

nonconvex optimization problem (cf. [36]). Suppose that an initial relaxation of this

nonconvex problem is constructed and let (x∗, z∗) denote the relaxation solution in the

space of (x, z). Assume z∗ < L(x∗). If (x∗, z∗) is in the epigraph of the convex envelope

of L(x), then z∗ ≥ convHL(x∗). Otherwise, there exists a facet h(x) of convHL(x) that

cuts off the relaxation solution from the feasible region, i.e., z∗ < h(x∗). It then follows

that, to find or examine the existence of such a facet, it suffices to solve the following

LP:

(F2) max aTx∗ + b

s.t. aT vi + b ≤ L(vi), ∀vi ∈ vert(H)

a ∈ R
n, b ∈ R.

By Theorem 1, any basic feasible solution of (F2) defines a facet of convHL(x). In

addition, every feasible solution of (F2) denoted by (ã, b̃), with an objective value

greater than z∗ yields a valid inequality ãTx + b̃ ≤ z that cuts off the relaxation

solution (x∗, z∗). Defining the violation measure as d = aTx∗ + b − z∗, we conclude

that an optimal solution of (F2) produces a facet of convHL(x) that is violated by

the relaxation solution by the largest amount. Moreover, if the optimal value of (F2)

is less than or equal to z∗, then we conclude that (x∗, z∗) belongs to the epigraph

5

of the convex envelope of L(x). Similarly, we can examine whether (x∗, z∗) can be

separated from the hypograph of the concave envelope of L(x), by solving an analogous

LP. Obviously, if L(x∗) ≤ z∗ (resp. L(x∗) ≥ z∗), then (x∗, z∗) is in the epigraph of

convHL(x) (resp. hypograph of concHL(x)). Therefore, one needs to solve at most one

separation problem to generate the desired cutting plane.

These cutting planes capture the strength of the convex and concave envelopes of

the entire multilinear function, while bypassing the requirement of describing the entire

envelope, which may be impractical in terms of the computational cost and memory

requirements for large problems. Furthermore, the cutting plane generation strategy is

flexible and can be embedded in branch-and-bound algorithms with adjustable config-

urations, as discussed in the sequel.

3 Implementation in a branch-and-bound algorithm

In this section, we describe an efficient implementation of multilinear cutting planes

introduced in Section 2. The implementation is integrated within the global solver

BARON, which relies on a branch-and-reduce framework [26]. The main components of

our implementation are:

(i) a recognition tool that identifies multilinear functions in the original formulation

as well as hidden multilinear structures in a general nonconvex problem,

(ii) a novel decomposition scheme to construct a collection of low-dimensional dense

components of a multilinear function to manage the size of the separation problem,

(iii) a customized simplex algorithm for solving the separation problem, and

(iv) an efficient cut generation scheme that is embedded at every node of the branch-

and-reduce algorithm.

Next, we detail each of these four components.

3.1 Identification of multilinear structures in general nonconvex problems

To construct tight relaxations for general nonconvex problems, we identify multilinear

functions that are present in the original problem, as well as intermediate multilinear

structures that are introduced by the factorable reformulation. In the factorable pro-

gramming module in BARON, each factorable expression is recursively decomposed into

linear, logarithmic, exponential, monomial, and bilinear expressions. The linear expres-

sions are stored in a sparse matrix data structure while the nonlinear expressions are

stored in arrays linking the dependent and independent variables. Here, we provide a

brief formal description of the parts of this recursive reformulation that we need in

order to present the developments of the current paper. The reader is referred to [36]

for additional details.

Consider a factorable optimization problem of the following form:

(P) min f0(x)

s.t. fi(x) ≤ 0, ∀i = 1, . . . , q

Ax ≤ b

x ∈ R
n.

6

We assume that all linear constraints of the above problem are embedded in Ax ≤ b,

where A ∈ R
m×n, b ∈ R

m, and fi(x), i ∈ Q = {0, 1, . . . , q} are nonlinear factorable

functions. Algorithm 1 outlines a factorable reformulation of Problem (P) as imple-

mented in BARON. In this algorithm, original variables are denoted by x, while interme-

diate variables are denoted by y. For notational simplicity, in the following, we denote

by x all variables in the reformulated problem.

Algorithm 1 Factorable reformulation in BARON

Given a collection of nonlinear factorable functions F = {fi(x), x ∈ R
n, i ∈ Q}.

Initialize the number of intermediate variables j = 0 and the list of intermediate relations
M = ∅.
For each function fi(x) ∈ F :

If fi is a basic univariate function (i.e., monomial, power, or logarithm), then
update j ← j + 1 and add the univariate relation yj = fi(x) toM

else if fi = g(x)/h(x), then:
update j ← j + 3 and introduce the variables yj−2, yj−1, and yj
let yj−2 = g(x) and yj−1 = h(x); add h(x) and g(x) to F
add the bilinear relation yj−2 = yj−1yj toM

else if fi =
∏l

k=1 gk(x), then:
for k = 1 to l,

update j ← j + 1, let yj = gk(x), and add gk(x) to F
end of for
update j ← j + 1 and add the bilinear relation yj = yj−lyj−l+1 toM
for k = 3 to l,

update j ← j + 1 and add the bilinear relation yj = yj−1yj−l+1 toM
end of for

else if fi =
∑l

k=1
akgk(x), then:

for k = 1 to l,
update j ← j + 1, let yj = gk(x), and add gk(x) to F

end of for

update j ← j + 1 and add the linear relation yj =
∑l

k=1 akyj−k toM
else if fi = h(g(x)), then:

update j ← j + 2 and introduce the variables yj−1, and yj
let yj−1 = g(x) and yj = h(yj−1); add g(x) and h(yj−1) to F

end of if
end of for

As an example of this reformulation, consider the polynomial

f(x) = x21x2x3 + x21x
2
2 + x1x

2
2x3. (4)

Obviously, this function does not contain any multilinear subexpression. However, ac-

cording to the factorable reformulation, auxiliary variables are first introduced for each

monomial: x4 = x21, x5 = x22. Consider f in the augmented space: f = x4x2x3+x4x5+

x1x5x3. Now, we observe that f(x), x ∈ R
5 is indeed a multilinear function. As we will

demonstrate in the next section, cutting planes for these lifted multilinears are very

powerful for polynomial optimization problems.

Algorithms 2-4 contain the outline of our recognition approach. Given the factorable

reformulation of an optimization problem as obtained by Algorithm 1, we start from

intermediate linear relations of the form ` =
∑

k akxk (see Algorithm 2). For auxiliary

variables xk that correspond to bilinear relations, we apply a recursive expansion to

identify the multilinear functions (see Algorithm 3). By Algorithm 1, any multilinear

7

function containing at least two terms corresponds to an intermediate linear relation in

the reformulated problem. Thus, this simple technique identifies all multi-term multi-

linears. However, multilinears L(x) that consist of a single term and appear in the form

of h(L(x)), where h is a nonlinear function, are not recognizable by examining linear

relations (see the last case in Algorithm 1). To capture such multilinears, we employ

Algorithm 4, in which we start from nonlinear relations (i.e., fractions, monomials,

powers, and logarithms) and apply a recursive decomposition to identify multilinear

terms. For example, consider

f(x) = log x1(x2x3x4)
22x2 + exp(x1x2x32

x2).

The proposed recognition approach identifies the following multilinears: L1 = x2x3x4,

L2 = x1x2x3x7, and L3 = x5x6x7, where x5 = log x1, x6 = (x2x3x4)
2, and x7 = 2x2 .

The first two multilinears L1 and L2 are found by Algorithms 4, as they are com-

posed by monomial and exponential functions, respectively. However, L3 is identified

by Algorithm 2, as it appears in a linear relation. It is important to note that, since

BARON’s relaxations are already built in the lifted space [36], these intermediate mul-

tilinear cuts can significantly enhance the convergence rate of the branch-and-reduce

algorithm. For simplicity, we chose not to employ product disaggregation; that is, for

a bilinear relation of the form f = x4x5, where x4 = x1 + x2 and x5 = x2 + x3, we do

not distribute the products to obtain the bilinear function L = x1x2+x1x3+x2x3. In

addition, our algorithm does not capture multilinear functions that are implied by mul-

tiple constraints in the original space. For example, consider an optimization problem

containing the following constraints:

x4 = x1x2
x5 = x1x3
x6 = x2x3
x4 + x5 + x6 ≤ 1

Our recognition algorithm does not identify any multilinear expression as the first three

constraints contain a single bilinear term and the last constraint is linear. Clearly,

the above set is equivalent to x1x2 + x1x3 + x2x3 ≤ 1, which contains a multilinear

function. However, for general nonconvex problems, there are often multiple ways for

performing such substitutions and employing a naive scheme leads to the generation of

a large number of multilinear functions, which may increase the overall computational

cost of the global solver. In such cases, a more systematic approach is to consider a

collection of constraints simultaneously and generate the facets of the convex hull of

the entire set (cf. [32]). Convexifying multiple constraints is beyond the scope of this

paper and is a subject of future research.

3.2 Decomposition algorithm

The computational cost of generating multilinear cutting planes depends on the num-

ber of variables in each multilinear function. The proposed cuts are most beneficial

for relaxing multilinears that consist of many terms but have a small number of vari-

ables. In such cases, multilinear cuts are often significantly stronger than conventional

termwise relaxations since they capture the interactions between different terms, and

they are constructed efficiently since the corresponding separation problem has a rea-

sonable size. For multilinear functions that do not naturally satisfy this property, one

8

Algorithm 2 Identifying multilinear structures in general nonconvex problems

Given a factorable reformulation of an optimization problem.
Initialize the list of multilinear functionsM = ∅ and a temporary list for storing potential
multilinears S = ∅.
Scan each intermediate linear relation `i =

∑
k akxk, i ∈ I`:

Initialize the multilinear function Li = 0.
For each intermediate variable xk in `i:

if xk corresponds to a bilinear relation xk = xixj with k > max{i, j}, then
iteratively decompose xk to reconstruct the multilinear term xk =

∏
t∈T xt using

Algorithm 3. Let Li = Li + ak
∏

t∈T xt and update the list S.
else

store xk for further investigation: S = S ∪ {xk}.
end of if

end of for
If Li contains at least three variables and Li is unique, then store itM =M∪ {Li}.

Algorithm 3 Identifying a multilinear term by recursive expansion of bilinear terms

Given a bilinear relation xk = xixj and a list for storing potential multilinears S.
Initialize the index set of variables in xk: T = {i, j}. Let nt = |T | and l = 1.
Repeat:

Consider the variable xs associated with the lth element in T ; Initialize ξ = 0.
If xs represents a bilinear relation xs = xrxw with s > max{r, w}, then

if xr or xw is already stored as a variable in xk (i.e., r ∈ T or s ∈ T), then
do not decompose xs, as it will result in a monomial function.
add xs to S for further investigation.

else
add xr and xw to the variables list and remove xs:

s← r, T = T ∪ {w}, and nt ← nt + 1.
update ξ = 1.

end of if
else if xs is an intermediate variable, then

add xs to S for further investigation.
end of if
if ξ = 0, then l← l + 1.

Until l ≤ nt.

can devise a decomposition technique to construct lower-dimensional multilinears and

then utilize Problem (FD) to generate strong cuts for subfunctions. Clearly, the qual-

ity of such relaxations depends on the decomposition strategy. With the objective of

minimizing the overall cost of the branch-and-bound tree, in this section, we propose

a decomposition technique that exploits the structure of multilinear functions to bal-

ance the trade-off between the cost of solving separation problems and the sharpness

of resulting relaxations.

Consider a multilinear function L(x) : H → R, as defined by (1). Let m denote the

number of multilinear terms in L(x). Suppose thatm ≥ 2. We will revisit the case where

L(x) has a single term but too many variables later. Ideally, one would like to break

down L(x) to multilinears in lower dimensions Lκ(xκ), κ ∈ K with xκ = [xκ1, . . . , xκq]

for some 2 ≤ q < n, while maintaining the tightness of the relaxation. An important

instance is the case where the convex envelope of L(x) is sum decomposable; i.e.,

convHL(x) =
∑

κ∈K

convHκLκ(xκ), (5)

9

Algorithm 4 Identifying intermediate multilinear terms that are composed with other

nonlinear functions

Given the list of potential multilinears S and a list for storing multilinearsM.
Initialize l = 1.
Repeat:

1. Let xs be the lth element of S:
2. Do while xs is not a bilinear relation:

if xs = xa
r or xs = axr or xs = log xr, then

xs ← xr.
else if xs = xr/xw, then

add xr and xw to S for further investigation.
go to Step 5.

else if xs represents a linear relation, then
go to Step 5.

end of if
end of while

3. Iteratively decompose xs to obtain the multilinear term t(x) using Algorithm 3.
4. If t(x) is unique and contains at least three variables, then add it toM.
5. l← l + 1.

Until l ≤ |S| .

where K is a partition of the set Ω as defined by (1), and Hκ is the projection of H
onto the space of variables defined by xκ. Furthermore, Lκ(xκ) denotes a multilinear

subfunction containing one or more terms of L(x). If L(x) is separable, i.e., if we can

write L(x) as a sum of multilinears Lκ(xκ) such that {Hκ : κ ∈ K} forms a partition

of H, then Condition (5) holds [8]. Thus, in the following, we assume that L(x) is

not separable. Rikun [24] derives the necessary and sufficient condition under which

the convex envelope of addends is equal to the polyhedral convex envelope of their

sum. In addition, he presents a number of special cases for which the aforementioned

condition is easy to verify. Tardella [31] also studies the problem of sum decomposability

of edge concave functions over polytopes and provides generalizations and alternative

characterizations of the earlier results in [24,22]. We will make use of the following

sufficient condition (Theorem 1.4 in [24]) as a preprocessing step in our decomposition

algorithm.

Theorem 2 ([24]) Let P be a Cartesian product of polytopes, P = P0×P1× . . .×Pk,

Pi ∈ R
ni , and let fi be a continuous function defined on P0 × Pi, for all i = 1, . . . , k.

If each fi(x0, xi) is a concave function of x0 when xi is fixed and P0 is a simplex, then

convP

(

m
∑

i=1

fi(x0, xi)

)

=

m
∑

i=1

convP0×Pi
fi(x0, xi)

As a special case of the above result, consider a multilinear function L(x) over

a box and let n0 = 1. It follows that, if all multilinear subfunctions Lκ(xκ) depend

on a single common variable x0, then L(x) is sum decomposable. We now present a

slightly different characterization of this result. Let us define a graph representation

for the multilinear function L(x). Consider an undirected graph G = (V,E), where V

represents the index set of variables in L(x), i.e., if L(x) contains the variable xi, then

there exists a vertex i in G. Vertices i and j are connected by an edge eij if xi and xj
appear in a common term in L(x). Recall that a connected graph is said to be bicon-

nected if it does not have any articulation point (i.e., a node whose removal disconnects

10

the graph). Moreover, a biconnected component is a maximal biconnected subgraph.

The following proposition provides a sufficient condition for decomposing a multilinear

function without compromising the strength of the corresponding relaxation.

Proposition 1 Let G(V,E) be the graph representation of the multilinear function

L(x) defined over the box H. Suppose that G is connected. Let Gκ, κ ∈ K be the

biconnected components of G, and let Lκ(xκ), xκ ∈ Hκ be the multilinear function

corresponding to Gκ. Then

convHL(x) =
∑

κ∈K

convHκLκ(xκ). (6)

Proof We prove by induction on the number of biconnected components in G. If G is bi-

connected, then clearly (6) is valid. Suppose that (6) holds if G has k biconnected com-

ponents. We now prove that Equation (6) is valid if G has k+1 biconnected components.

We decompose G into two subgraphs at a certain articulation point; namely, the last

articulation point xs found in the depth first search tree of G. It follows that one sub-

graph denoted by Gk+1 is biconnected, while the other subgraph, denoted by G1,...,k,

has k biconnected components. Let Lk+1(xk+1), xk+1 ∈ Hk+1 and L1,...,k(x1,...,k),

x1,...,k ∈ H1,...,k denote the multilinears associated with Gk+1 and G1,...,k, respec-

tively. Furthermore, the hyper-rectangle H1,...,k (resp. Hk+1) is obtained by projecting

H on the space of x1,...,k (resp. xk+1). By definition of the articulation point, there

exists no edge between the two sets of vertices given by V1 = {i : xi ∈ x1,...,k, i 6= s}
and V2 = {i : xi ∈ xk+1, i 6= s}. In other words, L(x) does not contain a bilinear term

xixj such that i ∈ V1 and j ∈ V2. Thus, we have the following decomposition for L(x):

L(x) = L1,...,k(x1,...,k) + Lk+1(xk+1).

Since by construction G1,...,k and Gk+1 have one shared vertex, the corresponding

multilinears L(x1,...,k) and L(xk+1) have a single variable in common. Hence, by The-

orem 2 we have

convHL(x) = convH1,...,kL1,...,k(x1,...,k) + convHk+1Lk+1(xk+1).

By the induction hypothesis, convH1,...,kL1,...,k(x1,...,k) =
∑k

j=1 convHjLj(xj). Thus,

Equation (6) is valid for a graph with k + 1 biconnected components. ut

For instance, consider the bilinear function L(x) = x1x2 − 2x1x3 + 0.5x2x3 −

x3x4+3x3x5−x4x5+x5x6. By the above result, L(x) decomposes into three bilinears

L1(x) = x1x2 − 2x1x3 + 0.5x2x3, L2(x) = −x3x4 + 3x3x5 − x4x5, and L3(x) = x5x6.

Clearly, Proposition 1 can be equivalently stated for the concave envelope of multilinear

functions. To find the biconnected components of a graph, we employ the classical depth

first search algorithm of Hopcroft and Tarjan [13] that runs in linear time. We remark

that the connectivity assumption of G in Proposition 1 can be relaxed. It is simple

to check that G is not connected when the corresponding multilinear function L(x) is

separable. Thus, finding the connected components of G is equivalent to finding non-

separable multilinear subfunctions of L(x). Indeed, we employ this preprocessing step

prior to searching for biconnected components, as shown in Algorithm 5.

In Algorithm 5, L denotes the set of multilinears for which Problem (FD) will be

solved for cut generation, whereas U denotes the set of multilinears that should be

decomposed into smaller functions using the techniques that will be discussed next.

11

Algorithm 5 Decomposing a multilinear function into components that are not sum-

decomposable

Given a multilinear function L(x) represented by an undirected graph G(V, E) and nmin.
1. Find all connected components of G: G = {Gt : t ∈ T}.

Let nt be the number of nodes in Gt and let Lt be the corresponding multilinear.
For each Gt:

if nt < 3, then
update G = G \ {Gt}

else if nt = 3, then
store Lt for cut generation L = L ∪ {Lt} and update G = G \ {Gt}

end of if
end of for

2. Find all biconnected components of each connected component Gt: Gt = {Gtk : k ∈ K}.
Let ntk be the number of vertices of Gtk and let Ltk be the corresponding multilinear.
For each Gtk:

if ntk < 3, then
discard Gtk

else if ntk ≤ nmin, then
store Ltk for cut generation: L = L ∪ {Ltk}

else
add Ltk to the list of uncovered multilinears U for further decomposition

end of if
end of for

Moreover, nmin represents the threshold for further decomposition. Namely, if the

number of variables in L(x) does not exceed nmin, we do not attempt to break it down

to smaller multilinears but store it for cut generation.

Next, suppose that the n-dimensional multilinear L(x) with n > nmin is not de-

composable by means of Proposition 1. We are interested in identifying a collection

of multilinear subfunctions {Lκ(xκ) : κ ∈ K} for which generating the proposed cuts

is, in some sense, more advantageous than generating the facets of the envelope of

the entire multilinear L(x). Namely, we address the trade-off between solving an ex-

pensive separation problem and the strength of the resulting relaxation by identifying

lower-dimensional dense components of L(x). This decomposition differs from the sum

decomposability property in that (i) the strength of the relaxation is no longer main-

tained; in the current setting we are willing to compromise on the sharpness of cuts, in

the hope of reducing the overall CPU time, and (ii) the equality L(x) =
∑

κ∈K
Lκ(xκ)

is no longer satisfied, as we will allow some terms of L(x) to appear in multiple multi-

linears Lκ(xκ), while some other terms may not be included in any of the subfunctions.

We start by defining a weighted graph G(V,E) for L(x). Let the nodes and vertices of

G be defined as before. We associate a weight wij with each edge eij , such that wij

represents the number of occurrences of the bilinear term xixj in L(x). Obviously, for

a bilinear function we have wij = 1 for all eij ∈ E. However, for multilinear functions

containing products of three or more variables, defining these weights is essential for

our decomposition algorithm. In addition, we impose an upper bound on the num-

ber of variables nmax in each subfunction. As a result, the largest separation problem

to be solved will involve no more than 2nmax variables. In each subfunction Lκ, we

would like to include as many terms as possible, while satisfying the size constraint.

Let nterm = maxi ni, where ni denotes the number of variables in the ith term of

the multilinear function. Suppose than nterm ≤ nmax. We motivate our decomposition

approach by a simple example.

12

Example 1 Let

L(x1, . . . , x10) =x1x2x4 − x1x3 + x2x3 + x3x4 − x3x4x5 + x5x6 + x5x6x7 + x5x7

+x4x9 + x7x10 + x8x9x10 − x9x10,

and let nmax = 6. Consider the following decomposition of L(x):

L1(x1, x2, x3, x4) = x1x2x4 − x1x3 + x2x3 + x3x4
L2(x5, x6, x7) = x5x6 + x5x6x7 + x5x7
L3(x8, x9, x10) = x8x9x10 − x9x10
L4(x3, x4, x5, x7, x9, x10) = x3x4 − x3x4x5 + x5x7 + x4x9 + x7x10 − x9x10

(7)

Denote by Gκ, κ ∈ K the weighted graph associated with each subfunction Lκ. The

main characteristics of the decomposition defined by (7) are (see Figure 1):

1. All terms in L(x) are included in at least one subfunction Lκ, κ ∈ K.

2. The subfunctions Lκ, κ ∈ K are not sum-decomposable (i.e., Gκ, κ ∈ K is bicon-

nected).

3. The number of multilinear terms that are included in more than one Lκ(xκ) is

minimal; i.e., if such a term is removed from any of the associated subfunctions,

the resulting multilinear has the same number of variables or is sum-decomposable.

4. The subfunctions Lκ(xκ), xκ ∈ Hκ are maximal:

• All multilinear terms in L(x) whose variables are contained in Hκ are present in

Lκ(xκ).

• Denote by nκ the number of variables in Lκ(xκ). If nκ < nmax, then construct an

augmented multilinear L̃κ(x) = Lκ +
∑

l tl(x), where tl(x) denotes a multilinear

term in L(x) that is not present in Lκ(x). Suppose that L̃κ(x) has ñk variables

such that nκ < ñκ ≤ nmax. Then, two cases arise: (i) L̃κ(x) violates Condition 3,

or (ii) the graph of L̃κ(x) is not biconnected, and has a biconnected component

with the corresponding multilinear given by Lκ(x).

�

� �

�

�

��

�

�

�

�

�

�

�
�

�
�

�
� �

�

�

� �

��
	

(a)

�

� �

�
�

�

�

�

�

� �

�

��

�
�

� �

�
��

� �

� ��

�� �

�

�
	

� �

� �
G�

G�

G�

G��

(b)

Fig. 1 The graph representation for multilinear functions in Example 1. The graph of L(x) is
shown in Fig 1(a) and the subgraphs of its decomposition defined by (7) are shown in Fig 1(b).

In Example 1, Condition 1 ensures that the set of subfunctions Lκ, κ ∈ K provides

a good cover for L(x). Condition 2 simply states that a subfunction is stored for cut

generation only if it is not sum-decomposable; otherwise, the decomposition scheme

13

of Algorithm 5 should be employed as a post-processing step, as it reduces the com-

putational cost of solving the separation problem without compromising the quality

of resulting relaxations. Condition 3 avoids the generation of too many subfunctions

by imposing restrictions on multilinear terms that appear in multiple subfunctions.

Finally, Condition 4 ensures that each subfunction contains as many multilinear terms

as possible while satisfying the constraint on the maximum number of variables in it.

In general, constructing a decomposition that satisfies Conditions 1-4 is not a tractable

task. Moreover, as we detail later, additional factors regarding the computational cost

of solving the separation problems need to be considered as well. In the following,

we propose an efficient heuristic that often yields decompositions for which the above

conditions are (almost) satisfied. To this end, consider the following graph partitioning

problem as defined in [16]:

Graph Partitioning : Given a weighted graph G(V,E), partition the nodes of G into

subsets no larger than nmax, so as to minimize the total weight of the edges cut.

This so-called partitioning or clustering problem essentially decomposes a graph

into dense subgraphs whose numbers of nodes do not exceed nmax. The objective

function of the above problem is often referred to as the edge-cut. A partition ofG(V,E),

|V | = n into ρ subgraphs is commonly represented by a partition vector p of length

n, where pj is equal to the partition element i, i ∈ {1, . . . , ρ} to which the jth node

belongs. For example, consider the graph G of Example 1. As shown in Figure 2(a),

the optimal partitioning for G with nmax = 6 is given by p = [1, 1, 1, 1, 2, 2, 2, 2, 2, 2].

We utilize such a partitioning of G to construct dense subfunctions of L(x) as follows.

Let L′
i(x) = 0 for all i = 1, . . . , ρ. Denote by Ik the index set of variables that are

present in the kth multilinear term tk in L(x). If pj = i for all j ∈ Ik and some

i ∈ {1, . . . , ρ}, then add tk to the ith subfunction L′
i(x) = L′

i(x)+ tk(x). Denote by G′
i

the weighted graph associated with L′
i(x). As we discussed before, we are interested in

subfunctions that are not sum-decomposable. Hence, we employ Algorithm 5 to identify

biconnected components of each subgraph G′
i and store the proper multilinears for cut

generation. Applying this procedure to the multilinear function of Example 1, we first

obtain the two subfunctions L′
1(x) = x1x2x4 − x1x3 + x2x3 + x3x4 and L′

2(x) =

x5x6+x5x6x7+x5x7+x7x10+x8x9x10−x9x10. The graphs of L′
1 and L′

2 are shown

in Figure 2(b). Since G′
2 is not biconnected, it is further decomposed into two smaller

subgraphs, denoted by G2 and G3 in Figure 2(c). Thus, we store the three multilinears

corresponding to the graphs shown in Figure 2(c) for cut generation. Observe that

these subfunctions are the first three multilinears in the decomposition of L(x) given

by (7).

It is well known that the graph partitioning problem is NP-complete [9]. How-

ever, many heuristics have been developed to find good partitions at a reasonable cost

(cf. [16,15]). In particular, multilevel graph partitioning schemes reduce the size of the

graph by collapsing vertices and edges, partition the smaller graph, and then uncoarsen

it to construct a partition for the original graph [12]. A widely-used successful imple-

mentation of these methods is the METIS graph partitioner that provides high quality

partitions for large graphs and is extremely fast [15]. It turns out that the execution

time of our decomposition scheme is determined by the partitioning step. Thus, we

utilize METIS to generate a number of high quality partitions and subsequently select

a partition that yields multilinears for which the proposed cutting planes are cheap

to compute. To partition a graph, METIS requires the number of partition elements as

14

well as partition sizes as inputs arguments. However, it allows to search for partitions

with different sizes by defining a load imbalance parameter. In our graph partitioning

problem, the only constraint is an upper bound on the size of each partition element.

The number of partition elements and their sizes are not known a priori. Thus, we

employ METIS to solve our problem as follows. Denote by ρmin and ρmax a lower and

an upper bound on the number of partition elements, respectively. For a graph with n

nodes, we define ρmin = dn/nmaxe and ρmax = bn/nminc, where nmin is as defined in

Algorithm 5. For each number of partition elements ρ, we define a nominal partition

size sρ = dn/ρe, and then use METIS to obtain a partition with the minimum edge-cut

by specifying a load imbalance rρ = nmax/sρ, in order to explore all partitions within

our size limits. Subsequently, we construct the corresponding set of multilinears, as

described before. Let Dρ be the set of multilinear functions associated with ρ and let

NLP = |Dρ|. Denote by Ne the total number of multilinear terms in Dρ that are not

present in the cut generation list L, and let δ denote the maximum number of variables

in the multilinear functions in Dρ. For each partition, we define a gain factor Θρ as

follows:

Θρ =
Ne

Nβ1

LPβ
δ
2

, (8)

where 0 < β1 ≤ 1 ≤ β2. The above relation is designed to capture the trade-off between

the strength of a relaxation (i.e., Ne) and the cost of solving the corresponding sepa-

ration problems (i.e., NLP and δ). We select the partition with the largest gain factor;

namely, we prefer partitions with higher-dimensional multilinears only if they provide

a considerably stronger relaxation. As we will see in the next section, such an adaptive

scheme is crucial for the performance of a global solver as dense problems significantly

benefit from the cutting planes corresponding to the envelopes of high-dimensional

multilinears (i.e., 10 ≤ n ≤ 15), while for sparser problems the best performance is

obtained by decompositions that consist of many low-dimensional multilinears (i.e.,

4 ≤ n ≤ 8). The outline of our approach is presented in Algorithm 6.

Algorithm 6 Identifying a subset of dense components of a multilinear function using

graph partitioning

Given a multilinear function L(x) with the weighted biconnected graph G(V, E), and the set
of parameters {β1, β2, nmin, nmax}.
Initialize the gain factor Θ̃ = 0, and the set of dense components D = ∅.
Compute ρmin and ρmax. Let ρ = ρmin.
Repeat

1. Use METIS to find an optimal partition of G into ρ subgraphs, with sρ and rρ as inputs.
2. Construct the multilinears Dρ corresponding to this partitioning and compute NLP,
Ne and δ.

3. Compute the gain factor Θρ for this partition.

If Θρ > Θ̃, then

Θ̃ ← Θρ

D ← Dρ

end if.
4. ρ← ρ+ 1.

Until ρ ≤ ρmax.
Store the set of dense components D for cut generation: L = L ∪ D.

Algorithm 6 is not guaranteed to generate dense components. For example, consider

L(x) =
∑n−1

i=1 xixi+1 + x1xn, and let nmax be any number such that nmax < n.

15

Then, it is simple to verify that, if we remove any term from L(x), by Proposition 1,

the resulting function decomposes into n bilinear terms. Clearly, this is due to the

structure of L(x) and is not a shortcoming of our algorithm. However, we can construct

multilinears containing dense components that Algorithm 6 is not able to capture. Let

L(x) = x1x2x3 + x2x4 + x3x4 and nmin = nmax = 3. Clearly, L1(x) = x1x2x3 is a

valid dense component. However, in Algorithm 6, the partition p = [1, 2, 2, 2] is also

optimal, which yields D = ∅. In our implementation, for such cases, we randomly

remove a few terms from the multilinear and then reapply Algorithm 6 to search for

dense components. If after a few iterations no multilinear is found, then the algorithm

terminates with L = ∅.

� �

�

� �

� �

�

�

�
	

�

�

�
�

�
�

�
� �

�

�

� �

�

��

(a)

�

� �

�
�

�

�

�

�
�

�
�� �

�

�
�

	 �

� �

G'�

�

G'�

��

(b)

�

� �

�
�

�

�

�

�
�

� ��

�� �
�

�
�

	 �

� �G�

G�

G�

(c)

�
�

� �

��
�

�

� �

�

�

��

G�

(d)

Fig. 2 Illustration of the proposed decomposition on the multilinear function L(x) of Exam-
ple 1. In Fig. 2(a), the graph of L is partitioned to two subgraphs. Using this partitioning,
two low-dimensional multilinears are constructed whose graphs are shown in Fig. 2(b). The
decomposition of these graphs into biconnected components is depicted in Fig. 2(c). To cover
all of the terms in L(x), a reduced multilinear is constructed with the graph shown in Fig. 2(d).

By employing the above procedure, we generated a collection of lower-dimensional

multilinears that contain 75% of terms in the multilinear function of Example 1. Clearly,

for dense multilinears, a simple application of this partitioning approach yields poor

decompositions. For example, for a fully dense bilinear function L(x) with n = 20

and nmax = 6, the proposed method yields subfunctions that contain at most 24% of

the bilinear terms in L(x). Intuitively, if we remove a proper subset of the terms in

L(x) and reapply the same partitioning technique, we can capture additional dense

subfunctions of L(x). Next, we present an algorithm that formalizes this idea.

As before, denote by L the set of subfunctions stored for cut generation. For each

term tk in L(x), let µk denote the number of multilinears in L in which tk appears.

In other words, µk represents the number of times that tk has been covered so far.

If µk > 0 for some tk, then we say that tk is a covered term. In addition, if for two

covered terms tk1 and tk2, we have µk1 > µk2, then we say that tk1 is covered more

than tk2. In the following, we present an algorithm to construct a reduced multilinear

16

Lrd(x) by removing a certain percentage of terms in L(x) that are covered most. We

denote by Tj the set of terms in which the variable xj appears.

Algorithm 7 Constructing a reduced multilinear function by removing a specific sub-

set of the multilinear terms that are already stored for cut generation

Given a multilinear function L(x) with ncv covered terms, and α ∈ (0, 1].
1. Let xj be a covered variable if, for all terms tk in Tj , we have µk > 0. Let Lrd be the

multilinear obtained by removing all terms of L(x) in which at least one covered variable
appears. Let nrd be the number of terms in Lrd.
If nrd < αncv , then

quit
else

go to Step 2
end if

2. Let nrs = αncv − nrd. Remove from Lrd the nrs terms with largest µ values. In case of
a tie, remove terms with a minimal number of common variables.

Let us apply Algorithm 7 to the multilinear of Example 1. The number of covered

terms in this case is ncv = 9. We construct a reduced multilinear by removing at least

30% of covered terms in L(x); i.e., α = 0.7. It is simple to check that all terms containing

x1, x2, x6, and x8 are covered by the subfunctions L1, L2, and L3. After eliminating all

such terms, we obtain Lrd = x3x4−x3x4x5+x5x7+x4x9+x7x10−x9x10, with nrd = 6.

Since 6 < 0.7 × 9, no further reduction is required. The graph of Lrd is depicted in

Figure 2(d). Since this graph is biconnected and nrd ≤ nmax, we let L4 = Lrd and store

L4 for cut generation. Thus, Algorithm 7 generates the last subfunction of Example 1,

which was not obtained after a single application of METIS. To simplify the presentation,

in this example, we had β1 = β2 = 1; i.e., partitions with best cover were selected.

We are now in a position to present our complete decomposition scheme that is

composed of an iterative application of Algorithms 5-7. The outline of our approach

is shown in Algorithm 8. In this algorithm, the parameter γc controls the strength of

the relaxation. By letting γc = 1.0, we require all terms in the original multilinear

to be included in the decomposition. However, in many cases, such a choice for γc
leads to the generation of many subfunctions with a large number of terms covered

multiple times, which in turn slows down the convergence of the global solver. In our

implementation, we found that γc = 0.85 provides reasonable decompositions for a

wide range of problems.

Finally, let us revisit the case where the multilinear function contains a term

tk =
∏nk

j=1 xj with nk > nmax. Clearly, there exist many different ways to rewrite

tk as a system of lower-dimensional multilinears. The relative strength of the resulting

relaxations depends on the variable bounds and, in general, cannot be determined a

priori. We employ a simple approach in which, prior to the application of Algorithm 8,

we replace each term tk with nk > nmax by d = 1+ d(n−nmax)/(nmax − 1)e multilin-

ear terms, given by t̃1 =
∏nmax

j=1 xj , t̃k+1 = t̃k
∏u

j=l xj , for all k = 1, . . . , d − 1, where

l = k(nmax − 1) + 2 and u = min{(k + 1)nmax − k, n}.

Now that multilinears have been identified and decomposed, the separation problem

must be solved to identify facets of their convex envelopes.

17

Algorithm 8 Constructing a collection of low-dimensional components of a multilinear

function that yields strong and cheaply computable relaxations

Given a multilinear function L(x) with m terms and γc ∈ (0, 1).
Initialize the number of covered terms Nc = 0 and the list of uncovered functions U = ∅.
Decompose L(x) to functions that are not sum-decomposable using Algorithm 5; update
Nc and U .
Repeat

1. Select a multilinear Li with mi terms from the list of uncovered functions U .
2. Decompose Li into lower-dimensional subfunctions using Algorithm 6 and update Nc.
4. Let Ne be the number of covered terms in Li (i.e., those with µ > 0).

If Ne < γcmi, then
Construct a reduced multilinear Lrd by removing a subset of covered terms
from Li using Algorithm 7.
Decompose Lrd into components that are not sum-decomposable using Algorithm 5;
update Nc and U .

end of if
Until U is nonempty and Nc < γcm.

3.3 A customized simplex algorithm for solving the separation problem

The proposed cut generation scheme requires the solution of the LP given by (F2), the

size of which grows exponentially in the number of variables of the multilinear function.

We choose to solve the dual of (F2), given by:

(FD) min
λ

∑

i∈I

λiL(v
i)

s.t.
∑

i∈I

λiv
i = x∗

∑

i∈I

λi = 1

λi ≥ 0, ∀i ∈ I,

where I = {1, . . . , 2n}. The exponentially many variables of the above LP make it

difficult to directly solve the entire problem. However, the number of constraints in

Problem (FD), which is one more than the number of variables in the multilinear

function, is usually not too large. Moreover, as detailed in Section 3.2, we employ a

decomposition technique to control the size of this problem for larger multilinears.

Thus, during the execution of a simplex-type algorithm, the size of the basis and

basic feasible solutions of the above problem are relatively small and can be handled

efficiently by modern computational techniques.

We solve Problem (FD) by a simplex algorithm whereby we choose the first nonbasic

column associated with a negative reduced cost to enter the basis at each iteration

(cf. [4] for details on the simplex algorithm). Let λ0 denote the basic feasible solution

of (FD) examined at a given iteration of the simplex algorithm. It is simple to verify

that if
∑

i∈I

λ0iL(v
i) ≤ z∗,

then the relaxation solution (x∗, z∗) belongs to the epigraph of the convex envelope of

L(x). Thus, at any iteration of the simplex algorithm, if the above condition is satisfied,

the algorithm terminates with the proof that a separating hyperplane does not exist.

18

In the following, we discuss some of the key features of our customized simplex

algorithm.

3.3.1 Initialization

In order to start the simplex algorithm, we must first identify a basic feasible solution

(BFS) of (FD). To obtain such a starting point, it suffices to express the relaxation

solution x∗ as a convex combination of n+ 1 affinely independent vertices of the box

H. The corresponding set of convex multipliers λ0 is then a BFS of (FD). In [29], the

author proposes a polynomial time algorithm to construct such a representation for

a point that belongs to a polyhedral set. Bao et al. [2] present a similar approach

for the special case where the point belongs to a box. In this paper, we propose to

use a different initialization approach for reasons that will become clear shortly. Let

ek denote the kth unit vector in R
n. Given any x∗ ∈ H =

∏n
k=1 [lk, uk], let x̃k =

(x∗k − lk)/(uk − lk), k ∈ {1, . . . , n}. Denote by π a permutation of {1, . . . , n} such

that x̃π(1) ≥ x̃π(2) ≥ ... ≥ x̃π(n). It can be shown that the region defined by this

set of inequalities is a simplex ∆π ⊂ H, whose vertices are given by vert(∆π) =

{νj : νj = l + (u − l)
∑j−1

k=1 e
π(k), j = 1, . . . n + 1}. By construction, x∗ ∈ ∆π .

We can therefore express x∗ as a convex combination of vert(∆π) as follows: x∗ =

(1 − x̃π(1))ν
1 +

∑n
j=2 (x̃π(j−1) − x̃π(j))ν

j + x̃π(n)ν
n+1. Thus, the convex multipliers

associated with vert(∆π) are given by:

λ̃1 = 1− x̃π(1), λ̃j = x̃π(j−1) − x̃π(j), j = 2, . . . , n, λ̃n+1 = x̃π(n).

Let I = {i ∈ I : vi = νj , for some j ∈ {1, . . . , n + 1}} and, for each i ∈ I, let q(i) be

equal to a j such that vi = νj . Then, the set λ0 given by:

λ0i =

{

λ̃q(i), if i ∈ I

0, otherwise,
(9)

is a BFS of Problem (FD). As we discussed in Section 1, for certain types of multilinear

functions, explicit characterizations of the envelopes are known. Ideally, we would like

to solve Problem (FD), only if the facets of the convex envelope are not available in

closed form. In particular, the authors of [34] prove that the convex envelope (resp.

concave envelope) of a multilinear function whose restriction to the vertices of the box

is submodular (resp. supermodular), is given by its Lovász extension. In [5], the au-

thor presents polynomial time algorithms to identify certain submodular/supermodular

functions of the form (1). In addition, it can be shown that, for such functions, the set

of convex multipliers defined by (9) are optimal for the envelope representation prob-

lem (see [34] for details). In our implementation, instead of including a preprocessing

step to identify multilinears that satisfy the aforementioned conditions and avoiding

the solution of an LP for constructing the envelope, we choose to utilize (9) as the

starting point of the simplex algorithm, which is optimal for (FD) if L(x), x ∈ vert(H)

is submodular.

3.3.2 Efficient storage and fast reduced cost computation

To solve the separation problem, all vertices of the box will be used by the sim-

plex algorithm. Given a multilinear function with n variables, this requires the stor-

age of n2n real numbers. To reduce the memory usage and speed up the compu-

tation of reduced costs, we utilize a one-to-one mapping from these vertices to the

19

integer set I = {0, 1, . . . , 2n − 1}, defined as follows. Given an integer i ∈ I, con-

sider its n-bit binary reflected Gray code representation [11], denoted by βi. If the

jth bit of βi has a value equal to zero, then in the corresponding vertex, we have

vij = lj ; otherwise, vij = uj . Recall that a binary reflected Gray code is an encod-

ing of numbers so that adjacent numbers have a single digit differing by one. For

example, for n = 3 we order the vertices of the unit hypercube as follows V =

{(0, 0, 0), (0, 0, 1), (0, 1, 1), (0, 1, 0), (1, 1, 0), (1, 1, 1), (1, 0, 1), (1, 0, 0)}. Now, consider two

consecutive vertices vi and vi+1 in set V . Assume that the Gray code representations

of vi and vi+1 differ in the jth bit. Define ηi = j, if vij = lj and ηi = −j, if vij = uj ;

i.e., ηi represents a rule for obtaining vi+1 from vi. For example, for the set V defined

above, we have η = [1, 2,−1, 3, 1,−2,−1]. Hence, we can fully characterize the vertices

of an n-dimensional box by an integer array of length 2n − 1, as opposed to n2n real

numbers, which is required by the normal representation.

More importantly, ordering the vertices according to Gray code, as we discuss next,

reduces the computational cost of the simplex algorithm considerably. Computing the

reduced costs at each iteration of the simplex algorithm turns out to be one of the most

time-consuming steps in solving the separation problem. At a given simplex iteration,

denote by N the index set of nonbasic variables in (FD). Then, it can be shown that

the reduced costs are given by di = L(vi) − (aT vi + b) for all i ∈ N , where a ∈ R
n,

b ∈ R are as defined in (F2). Consider the subexpression yi = aT vi in di. Clearly,

computing yi requires n multiplications. As we described earlier, in our Gray code

representation of vert(H), consecutive vertices correspond to adjacent vertices of the

box. Now, consider two vertices vi and vi+1 in the list. It is simple to check that

yi+1 = yi − ak(uk − lk), where k = |ηi|, and η is the integer vector relating the

consecutive vertices, as defined above. Thus, assuming that yi is given, it follows that

yi+1 can be computed in O(1). Since we may need to compute an exponential number

of reduced costs to find a negative one at each iteration, this recursive method can

speed up the algorithm significantly.

3.3.3 Preprocessing, LU factorization, and updates

In the course of the branch-and-bound algorithm, certain variables may be fixed at

bounds due to branching and range reduction. This is most likely to happen in the

case of integer variables. Such variables are eliminated in a preprocessing step in our

implementation, thus reducing the size of the separation problem to be solved. The

remaining problem (FD) is almost always fully dense and involves a relatively small

number of rows. For this reason, we have built the implementation of the simplex

algorithm on top of LUMOD [28], which provides routines for factorizing a dense basis

matrix and updating a dense LU factorization. The LUMOD package allows for thousands

of LU updates without refactorization and is highly efficient for the sizes of LP bases

involved in the current application.

3.4 Cut generation

To exploit the local information regarding bounds on variables for cut generation, as

well as to utilize the multilinear cuts for range reduction, we embed the proposed

cutting plane generation scheme at every node of the branch-and-bound based solver

20

BARON. As we described in Section 2, for a general nonconvex problem containing mul-

tilinear structures, we can enhance the quality of an existing relaxation by solving

Problem (FD). Namely, we obtain a facet h(x) of the convex envelope of a multilinear

function that separates the relaxation solution from the feasible region of the noncon-

vex problem (if such a facet exists). Now, suppose that we add h(x) to the current

relaxation and solve Problem (FD) to separate the optimal solution of the augmented

relaxation from the feasible region. Clearly, we can continue this iterative procedure

until no separating hyperplane can be generated. In addition to capturing the strength

of the envelopes of multilinear functions, this cut generation technique bypasses the

requirement of including exponentially many facets of the entire envelope, which is im-

practical for large problems. In fact, due to the cost of solving the separation problem,

it is often highly beneficial to continue the iterative cut generation scheme only if the

resulting cuts are sufficiently deep. Next, we describe our implementation in BARON.

At each node of the branch-and-bound tree, BARON first constructs and solves an

initial outer-approximation of the problem based on a conventional factorable frame-

work (see [37] for details). Subsequently, various classes of cutting planes are generated

and added to the current relaxation iteratively, only if they reduce the size of the fea-

sible region of the relaxation. These cuts are used locally in the sense that they are not

passed on to the descendant nodes in the branch-and-bound tree.

We follow a similar approach to generate the multilinear cutting planes. Given

a nonconvex factorable problem, recognition and decomposition algorithms of Sec-

tions 3.1 and 3.2 are employed prior to the initialization of the branch-and-bound tree.

The resulting multilinear functions are stored in proper data structures and the re-

quired memory for storing the corresponding cutting planes is allocated. We do not

include the multilinear cuts in the initial outer-approximation but consider them for

the subsequent iterative cut generation. Suppose that the recognition and decomposi-

tion routines have identified nL multilinear functions stored in list L. At each node of

the branch-and-bound tree, we utilize the multilinear cuts as follows. At a given cut

generation iteration, we examine all multilinear functions z = Li(x) in L. Denote by

(x∗, z∗) the projection of the current relaxation solution to the (x, z) space. Using the

techniques described in Section 2, we determine the type of the envelope (i.e., convex

or concave) for cut generation. Suppose that a facet of the convex envelope is desired in

this case. Next, we solve the separation problem using the simplex algorithm described

in Section 3.3 to obtain a facet h(x) of the convex envelope of Li(x). If h(x
∗) > z∗,

then we add h(x) to the current relaxation. In addition, we compute the distance be-

tween the relaxation solution (x∗, z∗) and h(x) to quantify the strength of the cut.

If at the current iteration, the percentage of deep cuts does not exceed a predefined

threshold, then the iterative multilinear cut generation algorithm terminates; that is, in

the next round of BARON’s cut generation module, no multilinear cut will be examined.

Algorithm 9 presents the outline of our cut generation scheme.

4 Numerical Experiments

The purpose of this section is to demonstrate the computational benefits of incor-

porating multilinear cutting planes at every node of the branch-and-reduce global

solver BARON [26,37]. To this end, we consider a variety of randomly generated test

sets containing QCQPs, multilinear problems, and polynomial optimization problems.

We solve these problems to global optimality using BARON 11.5 with and without mul-

21

Algorithm 9 Generating multilinear cutting planes at each node of the branch-and-

bound tree

Given the relaxation solution, nL multilinear functions stored in L, parameters θ > 0 and
γr ∈ (0, 1).
1. Initialize the list of cuts to be added to the relaxationM = ∅, and the number of deep

cuts nd = 0.
2. For each multilinear function z = Li(x), in L:

Determine the type of the envelope (i.e., convex or concave).
Solve the separation problem given by (FD) to obtain the cut h(x):

if h(x) cuts off the relaxation solution, then
add h(x) to the relaxationM =M∪ {h(x)}
compute the distance d between the relaxation solution and h(x).
if d > θ, then h(x) is a deep cut: nd ← nd + 1

end of if
end of for

3. If the number of deep cuts nd is smaller than γrnL, then this is the last round of
multilinear cut generation.

Table 1 Default settings for the proposed cut generation scheme

Option Description Value

nmin Threshold for decomposing multilinears (Algorithms 5, 6) 4
nmax Maximum number of variables in multilinears (Algorithm 6) 15
β1 Penalty parameter for the gain factor (Algorithm 6) 0.1
β2 Penalty parameter for the gain factor (Algorithm 6) 1.25
α Reduction parameter for the decomposition scheme (Algorithm 7) 0.6
γc Covering parameter for the decomposition scheme (Algorithm 8) 85%
γr Threshold to proceed to the next round of cut generation (Algorithm 8) 0.05
θ Deep cut measure (Algorithm 9) 10−3

tilinear cuts. In addition, we assess the efficiency of the proposed decomposition and

cut generation schemes by examining a number of simpler strategies. After extensive

experimentation, we set the main parameters of our cut generation scheme as listed

in Table 1. Throughout this section, all problems are solved with relative/absolute

optimality tolerance of 10−6 and a CPU time limit of 500 seconds. Other algorithmic

parameters are set to the default settings of the GAMS/BARON distribution [27]. When

comparing the performance of different algorithms, we say that a problem is trivial,

if all algorithms take less than one second to solve it to global optimality. All tests

were performed on a 64-bit Intel Xeon X5650 2.66Ghz processor using a development

version of BARON 11.5 [37] interfaced with CPLEX 12.4 [14], IPOPT 3.9.0 [38], MINOS

5.5 [23] and SNOPT 7.2.4 [10] for solving LP/NLP subproblems.

4.1 The test set

We consider a polynomial optimization problem of the form:

(PL) min f0(x)

s.t. fi(x) ≤ bi, ∀i = 1, . . . , q

x ∈ [0, 1]n,

22

where b ∈ R
q, fi(x), i = 0, 1, . . . , q are multivariate polynomials

fi(x) =
∑

T∈Ωi

cT
∏

j∈T

x
aj

j ,

Ωi is a collection of subsets of {1, . . . , n}, cT , T ∈ Ωi are nonzero real-valued coeffi-

cients, and the exponents aj , j ∈ T are positive integers. By convention, the degree of a

monomial
∏

j∈T x
aj

j is the sum of its exponents, and the degree a polynomial function

fi(x) is the largest degree of its monomials, i.e., di = maxT
∑

j∈T aj . Similarly, the

degree of the polynomial optimization problem (PL) is defined as the largest degree

of its polynomials d = maxi di, i = {0, 1, . . . , q}. If d = 2, then (PL) is a QCQP. In

addition, by letting q = 0, we obtain a box-constrained optimization problem. In the

following, we assume that di > 1 for all i ∈ {0, 1, . . . , q}.

For a polynomial fi with n variables and degree di, it can be shown that the

maximum number of monomial terms is given by Wi =
∑di

k=1

(

di

k

)(

n
k

)

, where
(

n
k

)

is

zero if n < k. Denote by wi the number of nonlinear monomials in fi. We associate

a density with each polynomial fi defined as νi = wi/(Wi − n). Accordingly, when

νi = ν for all i ∈ {0, 1, . . . , q}, we say that the density of Problem (PL) is given by

ν. Throughout this section, we characterize a polynomial optimization problem by its

degree (d), number of variables (n), number of constraints (q), and density (ν). We

also consider multilinear optimization problems that can be obtained by replacing the

polynomial functions of Problem (PL) by multilinear functions; i.e., aj = 1 for all j.

For multilinear problems, we adapt the terminology defined above for polynomials, by

noting that in this case we have Wi =
∑di

k=2

(

n
k

)

. For our numerical experiments, we

generated three sets of problems:

Set 1. Quadratic problems with n ∈ {20, 30, 40, 50}, and ν = {0.25, 0.5, 0.75, 1.0}.

Set 2. Polynomial problems of degree 3 with (n, ν) ∈ {(10, 0.75), (15, 0.25), (20, 0.1)},
and multilinear problems of degree 3 with (n, ν) ∈ {(10, 1.0), (15, 0.5), (20, 0.15)}.

Set 3. Polynomial problems of degree 4 with (n, ν) ∈ {(10, 0.25), (15, 0.05)}, and mul-

tilinear problems of degree 4 with (n, ν) ∈ {(10, 1.0), (15, 0.15), (20, 0.02)}.

In all three sets, we let q ∈ {0, n/5, n/2, n}. For each combination of {d, n, q, ν},
we generated five problem instances, where the problem data were randomly gener-

ated from uniform distributions: the polynomial coefficients cT were generated in the

range [−1, 1], while the righthand side values bi were generated in the range [0, 100].

Overall, our test sets contains 320 quadratic problems, 120 polynomial problems of

degree three, and 100 polynomial problems of degree four. This collection is designed

to examine the effect of multilinear cuts on small- to medium-sized problems with dif-

ferent sparsity characteristics, ranging from boxed-constrained problem to those that

are highly constrained.

4.2 Comparisons with termwise relaxations

We solve the three test sets described in the previous subsection to global optimality

using BARON 11.5, with and without multilinear cutting planes. For nonconvex prob-

lems of form (PL), BARON’s factorable bounds consist of supporting hyperplanes and

affine envelopes for univariate monomials, along with a recursive application of bilinear

envelopes to bound multilinear terms (see Algorithm 1). In order to construct stronger

23

0 100 200 300 400 500
0

100

200

300

400

500

With cuts

W
it
h
o
u
t
cu

ts

(a) CPU time (s)

0 5000 10000 15000
0

5000

10000

15000

With cuts

W
it
h
o
u
t
cu

ts

(b) Iterations

0 1000 2000 3000 4000
0

1000

2000

3000

4000

With cuts

W
it
h
o
u
t
cu

ts

(c) Memory

0 0.25 0.5 0.75
0

0.25

0.5

0.75

With cuts

W
it
h
o
u
t
cu

ts

(d) Relative gap

Fig. 3 Performance of BARON 11.5 with and without multilinear cutting planes for 320 ran-
domly generated quadratic optimization problems. In Figs. 3(a)-3(c), nontrivial problems that
are solved in less than 500 s are compared with respect to CPU time, number of iterations,
and memory requirements. In Fig. 3(d), final relative gaps for problems that are not solvable
within the time limit are compared.

relaxations, we employ the cut generation scheme of Section 3.4 to incorporate multi-

linear cutting planes in BARON. For quadratic (resp. multilinear) problems, these cuts

correspond to bilinear (resp. multilinear) functions present in the original formula-

tion, whereas, for polynomial problems multilinear cuts are generated for intermediate

multilinears in the lifted space (see Equation (4) and the discussion that follows).

To compare the performance of the two algorithms, we consider the following fac-

tors: (i) execution time, (ii) total number of nodes in the branch-and-bound tree (iter-

ations), (iii) maximum number of nodes stored in memory (memory), (iv) number of

problems solved within the time limit, and (v) the normalized difference between the

best lower bound (L) and upper bound (U) for problems that are not solved to global

optimality within the time limit: (U − L)/|L| (relative gap).

Computational results for the quadratic test set are presented in Figure 3. For a

meaningful comparison, we eliminated trivial problems from the test set (61 instances).

For those problems that are solvable within 500 s by at least one of the two algorithms

(119 instances), incorporating multilinear cuts in BARON results in average reductions

of 60% in CPU time, and 90% in number of iterations as well as in maximum number

of nodes in memory. Furthermore, utilizing multilinear cuts leads to a 35% increase in

the number of nontrivial problems that are solved to global optimality in less that 500

seconds.

24

40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

Separation problem size

S
o
lu
ti
o
n
ti
m
e
(m

s)

(a)

40 60 80 100

10

20

30

40

Separation problem size

S
im

p
le
x
it
er
a
ti
o
n
s

(b)

0 2000 4000 6000
0

200

400

600

800

1000

Separation problems per iteration

C
u
ts

p
er

it
er
a
ti
o
n

(c)

Fig. 4 Multilinear cutting plane statistics for quadratic optimization problems. In Fig. 4(a),
average solution time (in milliseconds) versus average size of separation problems are shown
for each problem in the test set. In Fig. 4(b), average number of simplex iterations for solving
separation problems versus average size of separation problems is shown. In Fig. 4(c), the
average number of separation problems solved per iteration of the branch-and-bound tree is
compared with the average number of multilinear cutting planes generated per iteration.

The results of Figure 3 are analyzed in Table 2(a) to further quantify the effect of

incorporating the multilinear cuts. The first line of Table 2(a) provides the percentage of

nontrivial problems for which multilinear cutting planes lead to at least a factor of two

improvement with respect to the total number of iterations, memory requirements, and

CPU time. The subsequent lines of the table provides similar statistics for problems

for which the algorithm was improved by at least 30% but no more than an order

of magnitude, problems for which there was no significant performance change after

addition of cutting planes, and problems for which there was some deterioration in

performance because of cutting planes. As can be seen from Table 2(a), for more than

60% of quadratic optimization problems, multilinear cutting planes improve BARON’s

execution time by at least an order of magnitude. Clearly, improvements in total and

maximum number of nodes are more significant due to the time spent on generating

the multilinear cuts. For this test set, it turns out that on average 5% of the overall

time is spent on recognition and decomposition of multilinears, while 15% is spent on

solving the separation problem to generate multilinear cuts. In Figure 4, we provide

detailed statistics regarding the size of separation problems and the computational

cost of the proposed simplex algorithm. In this test set, separation problems are small

25

Table 2 Effect of adding multilinear cutting planes to BARON

(a) Quadratic optimization problems

Effect of adding cuts Iterations Memory CPU time

Better by a factor at least 2 84% 86% 61%
Between 30% and 100% better 3% 1% 22%
Difference smaller than 30% 11% 13% 17%
Between 30% and 100% worse 1% 0% 0%
Worse by a factor of at least 2 1% 0% 0%

(b) Third-order polynomial and multilinear optimization problems

Effect of adding cuts Iterations Memory CPU time

Better by a factor at least 2 93% 99% 82%
Between 30% and 100% better 4% 0% 14%
Difference smaller than 30% 3% 1% 3%
Between 30% and 100% worse 0% 0% 1%
Worse by a factor of at least 2 0% 0% 0%

(c) Fourth-order polynomial and multilinear optimization problems

Effect of adding cuts Iterations Memory CPU time

Better by a factor at least 2 92% 98% 81%
Between 30% and 100% better 2% 2% 6%
Difference smaller than 30% 6% 0% 11%
Between 30% and 100% worse 0% 0% 2%
Worse by a factor of at least 2 0% 0% 0%

size LPs with 16 − 128 variables, and are often solved after a few tens of simplex

iterations, which takes less than 0.1 milliseconds. Moreover, on average, one fourth

of the separation problems yield facets that strengthen the existing relaxation. We

will provide further details on the performance of decomposition and cut generation

schemes in the next subsection.

Next, we consider polynomial and multilinear problems of degree three. Our results

are shown in Figure 5, and summarized in Table 2(b). In this case, we do not have

any trivial problems. For 96 instances that are solvable within 500 s by at least one

of the two algorithms, adding multilinear cuts results in average reductions of 70% in

CPU time, 85% in number of iterations, and 90% in maximum number of nodes in

memory. In addition, by utilizing multilinear cuts, we are able to increase the number

of solvable problems by 33%. For this test set, on average 1.0% of the total time is

spent on recognition and decomposition, while 45% is spent on cut generation. The

computational effort to solve the separation problems, in terms of average number of

simplex iterations and average solution time, is shown in Figure 8. Compared to the

quadratic test set, the average size of separation problems is considerably larger. For

LPs with 215 variables, the simplex algorithm takes 103 − 5 × 103 iterations, which

translates into solution times from 0.1 s to 1.0 s. For this test set, on average, 40%

of the separation problems yield cutting planes that violate the existing relaxation.

Generation of the multilinear cuts takes a significant fraction of the total CPU time of

the algorithm but the derived cuts improve the performance of BARON by least an order

of magnitude for more than 80% of the test problems (see Table 2(b)). Details on the

26

0 100 200 300 400 500
0

100

200

300

400

500

With cuts

W
it
h
o
u
t
cu

ts

(a) CPU time (s)

0 2000 4000 6000
0

2000

4000

6000

With cuts

W
it
h
o
u
t
cu

ts

(b) Iterations

0 400 800 1200
0

400

800

1200

With cuts

W
it
h
o
u
t
cu

ts

(c) Memory

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

With cuts

W
it
h
o
u
t
cu

ts

(d) Relative gap

Fig. 5 Performance of BARON 11.5 with and without multilinear cutting planes for 120 ran-
domly generated third-order polynomial optimization problems. In Figs. 5(a)-5(c) nontrivial
problems that are solved in less than 500 s are compared with respect to CPU time, number
of iterations and memory requirements. In Fig. 5(d), final relative gaps for problems that are
not solvable within the time limit are compared.

relation between the dimension of multilinear cuts and the structure of the nonconvex

problems are provided in the next subsection.

Finally, we examine the effect of multilinear cuts on polynomial and multilinear

problems of degree four. Out of 100 problems, 64 instances are solvable to global op-

timality within 500 s, none of which is trivial. As can be seen from Figure 7 and

Table 2(c), the proposed cuts significantly improve the performance of BARON for this

test set. Specifically, we obtain average reductions of 70% in CPU time, 90% in num-

ber of iterations, and 95% in maximum number of nodes in memory. Moreover, the

number of problems that are solvable within 500 s has increased from 25 to 63; i.e., an

improvement of 152%. For this test set, on average 1.5% of the total time is spent on

recognition and decomposition, while 55% is spent on cut generation. Figure 6 shows

average characteristics of the separation problems solved in this test set. Similar to the

third-order test set, solution times vary from a few milliseconds for multilinears with

n < 10, to one second for multilinears with n = 15. In addition, for this collection,

on average, approximately half of the separation problems provide cutting planes that

reduce the size of the feasible region of the relaxation.

We should remark that in all three test sets, the decomposition time ranges from

0.001 s for smaller problems with a few constraints to 1.0-2.0 s for larger problems with

many constraints. The relatively large value for the average ratio of decomposition time

27

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

103 104102

100

10−1

10−2

10−4

10−3

Separation problem size

S
o
lu
ti
o
n
ti
m
e
(s
)

(a)

10
1

10
2

10
3

10
410

1

10
2

10
3

10
4

101

102

103

104

104103102101

Separation problem size

S
im

p
le
x
it
er
a
ti
o
n
s

(b)

0 500 1000 1500 2000
0

100

200

300

400

500

Separation problems per iteration

C
u
ts

p
er

it
er
a
ti
o
n

(c)

Fig. 6 Multilinear cutting plane statistics for third-order polynomial optimization problems.
In Fig. 6(a), average solution time versus average size of separation problems are shown for
each problem in the test set. In Fig. 6(b), average number of simplex iterations for solving
separation problems versus average size of separation problems is shown. In Fig. 6(c), the
average number of separation problems solved per iteration of the branch-and-bound tree is
compared with the average number of multilinear cutting planes generated per iteration.

to total time for quadratic problems (i.e., 5%) is due to the presence of simple problems

in this test set. These are problems that can be solved within a few seconds even without

multilinear cuts. Results of Table 2 indicate that multilinear cuts are more effective

for problems containing higher order multilinears. Moreover, in all three test sets, the

strength of multilinear cuts degrades by increasing the number of constraints. This

empirical observation is in agreement with theory, as the proposed cuts correspond

to a single constraint, and finding tight relaxations for individual constraints does

not necessarily provide a strong relaxation for the feasible region. However, our cut

generation technique can be extended to convexify a collection of constraints whose

convex hull can be finitely generated (cf. [32]).

4.3 Decomposition and cut generation schemes

The goals of this section are two fold. First, to demonstrate the key role of our de-

composition algorithm in efficient solution of nonconvex problems with multilinear

intermediates to global optimality. Second, compare the dynamic cut generation strat-

egy proposed in Section 3.4 with static approaches that add cutting planes to the

28

0 100 200 300 400 500
0

100

200

300

400

500

With cuts

W
it
h
o
u
t
cu

ts

(a) CPU time (s)

0 500 1000 1500 2000 2500
0

500

1000

1500

2000

2500

With cuts

W
it
h
o
u
t
cu

ts

(b) Iterations

0 300 600 900 1200
0

300

600

900

1200

With cuts

W
it
h
o
u
t
cu

ts

(c) Memory

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

With cuts

W
it
h
o
u
t
cu

ts

(d) Relative gap

Fig. 7 Performance of BARON 11.5 with and without multilinear cutting planes for 100 ran-
domly generated fourth-order polynomial optimization problems. In Figs. 7(a)-7(c) nontrivial
problems that are solved in less than 500 s are compared with respect to CPU time, number
of iterations and memory requirements. In Fig. 7(d), final relative gaps for problems that are
not solvable within the time limit are compared.

relaxation for a predefined number of rounds. To assess the performance of alternative

algorithms, we make use of performance profiles, as described in [7]. In the following,

we use the ratio of the CPU time of an algorithm versus the best time of all algorithms

as the performance metric. Denote by tp,s the time that algorithm s takes to solve

problem p. For comparisons, we define a time ratio as rp,s = tp,s/min{tp,s : s ∈ S},

where S refers to the set of all algorithms. It follows that the distribution function of

time ratio is given by:

Φs(τ) = size{p ∈ P : rp,s ≤ τ}/|P|,

where P denotes the set of all problems.

The first experiment is designed to analyze the importance of decomposing mul-

tilinears to lower-dimensional components prior to solving the separation problem.

We disable the decomposition algorithm and solve the three problem sets of previous

section, while keeping all other parameters unchanged. Compared to the results with

decomposition, for the quadratic test set, the average CPU time for nontrivial prob-

lems that are solvable within 500 s increases by 1645%, and the number of solvable

problems degrades by 82%. Interestingly, for this test set, even BARON with no multi-

linear cuts wins over the no-decomposition strategy by a large margin. This significant

29

10
2

10
3

10
410

−4

10
−3

10
−2

10
−1

10
0

Separation problem size

S
o
lu
ti
o
n
ti
m
e
(s
)

(a)

10
2

10
3

10
410

1

10
2

10
3

Separation problem size

S
im

p
le
x
it
er
a
ti
o
n
s

(b)

0 400 800 1200
0

100

200

300

Separation problems per iteration

C
u
ts

p
er

it
er
a
ti
o
n

(c)

Fig. 8 Multilinear cutting plane statistics for fourth-order polynomial optimization problems.
In Fig. 8(a), average solution time versus average size of separation problems are shown for
each problem in the test set. In Fig. 8(b), average number of simplex iterations for solving
separation problems versus average size of separation problems is shown. In Fig. 8(c), the
average number of separation problems solved per iteration of the branch-and-bound tree is
compared with the average number of multilinear cutting planes generated per iteration.

deterioration is due to the high computational cost of solving the separation problem

for multilinears with more than 15 variables. In fact, for quadratics with more than 30

variables, the entire execution time is often spent on solving the first separation prob-

lem. For the polynomial problems of order three and four, disabling the decomposition

algorithm leads to a CPU time increase of 415% and 150%, respectively. The latter

degradations are less significant than that of the quadratic test set, as quadratic test

problems have more variables and fewer terms; i.e., the case that benefits the most

from decomposition (see Figure 9).

As we described in Section 3.2, to identify dense components of a multilinear, we

employ an adaptive graph partitioning scheme in which we use the METIS solver to find

a number good partitions, and subsequently choose the one with the largest gain factor,

defined by (8). We now demonstrate the computational benefits of this dynamic scheme

in comparison to a simpler approach in which the size of sub-multilinears is determined

a priori. More precisely, in Step 2 of Algorithm 8, instead of using Algorithm 6 to

generate dense components, we apply the following strategy. Let n be the number

of variables in a multilinear function L(x) and let nmax be the maximum number

of variables in subfunctions. Let G denote the weighted graph associated with L(x),

30

10
0

10
1

10
20

20

40

60

80

100

τ

Φ
(τ
)%

ND
nmax = 4
nmax = 6
nmax = 8
nmax = 10
dynamic

(a) Quadratic problems

10
0

10
1

10
2

10
30

20

40

60

80

100

τ

Φ
(τ
)%

ND
nmax = 6
nmax = 8
nmax = 10
nmax = 12
dynamic

(b) Third-order problems

10
0

10
1

10
20

20

40

60

80

100

τ

Φ
(τ
)%

ND
nmax = 8
nmax = 10
nmax = 12
nmax = 14
dynamic

(c) Fourth-order problems

Fig. 9 Effect of different decomposition strategies. Each figure shows the performance profiles
of BARON with alternative decompositions schemes for a test set: ND refers to the algorithm
without decomposition, nmax is the maximum number of variables in each multilinear, and
“dynamic” refers to the proposed decomposition algorithm. The time ratio is denoted by τ
with the distribution function denoted by Φ(τ).

defined as before. We define the number of subgraphs of G as ρ0 = dn/nmaxe, and the

size of subgraphs as sρ = nmax for ρ = 1, . . . , ρ0 − 1, and sρ0 = n − (ρ0 − 1)nmax.

Subsequently, we use METIS to find a partition with minimum edge-cut, and construct

the resulting subfunctions as before. In addition, in Algorithm 5, we let nmin = nmax;

i.e., any multilinear function corresponding to a biconnected component with no more

than nmax nodes is stored for cut generation. We now show that the performance of

this static approach highly depends on the value of nmax, and a good choice for nmax

depends on the structure of the problem.

Performance profiles for our three test sets with different values of nmax are shown

in Figure 9. As Figures 9(a) indicates, for quadratic problems, the best performance is

achieved for 4 ≤ nmax ≤ 8, and increasing the value of nmax beyond this range results

in rapid deterioration. For this collection, the average CPU time attains its minimum

value at nmax = 6. As seen in Figure 9(b), for the third-order problems, nmax = 10

significantly outperforms nmax = 6 and, for larger values, the performance of the

global solver degrades. Finally, Figure 9(c) shows that for the fourth-order collection,

nmax = 8 is a poor choice as it is dominated by the algorithm with no decomposition.

In addition, even larger values for nmax do not lead to significant improvements for

this test set. These results support our earlier discussion in Section 3.2, as the graphs

of higher-order multilinears have a much larger density than the graphs of quadratics

31

Table 3 Size statistics for multilinear functions constructed by the proposed decomposition
scheme. For each quantity, we report the average value over the entire set of problems in the
corresponding collection with its standard deviation shown in parentheses

Test set smin save smax

Quadratic 3.3 (0.5) 5.6 (0.3) 6.8 (0.4)

Third order 7.2 (4.9) 9.3 (3.4) 11.2 (2.0)

Fourth order 9.2 (4.9) 11.0 (2.8) 11.7 (2.3)

(density of a weighted graph is defined as the sum of its edge-weights). Hence, by

allowing higher-dimensional subfunctions, we construct a much stronger relaxation. As

can be seen from Figure 9, the adaptive decomposition scheme performs well across

the three test sets, and in fact significantly outperforms all static algorithms for third-

and fourth-order problems.

In Table 3, we provide the statistics for the size of multilinears obtained by the adap-

tive decomposition approach. Namely, for each problem, we present minimum (smin),

average (save), and maximum (smax) number of variables per multilinear and report the

average value and the standard deviation for each quantity over the corresponding test

set. The results of Table 3 are in complete agreement with the performance profiles

of Figure 9. For the quadratic collection, the decomposition scheme constructs low-

dimensional subfunctions, most of which have 4 to 6 variables, while for higher-order

problems, most of the subfunctions contain 8 to 12 variables. Moreover, large standard

deviations for third-order and fourth-order problems indicate that a fixed value for

nmax is a poor choice, a conclusion that is confirmed by Figures 9(b) and 9(c).

Finally, let us revisit the cut generation scheme outlined in Algorithm 9. As de-

scribed in Section 3.4, at each node of the branch and bound tree, BARON adds various

classes of cutting planes to the relaxation in multiple rounds. Cuts are added only if

they violate the relaxation, and if no such cutting planes exist at a given round, then

the cut generator terminates. By BARON’s default setting, up to 4 rounds of cutting

planes are allowed. In our implementation of multilinear cuts, we departed from this

static strategy in order to be able to address potentially costly separation problems.

We do this through a dynamic strategy as follows. Let nrd denote the maximum allow-

able rounds of cut generation. To examine the efficiency of the proposed cut generation

scheme, we solve the test sets using BARON’s static cut generation for nrd = 1, . . . , 4.

Performance profiles of the alternative algorithms are depicted in Figure 10. Clearly,

in all test sets, nrd = 1 is dominated by other schemes. Among the static strategies,

for the quadratic and for third-order problems nrd = 3, 4 are preferable, and for the

fourth-order collection nrd = 4 is dominant. Figure 10 indicates that, dynamic cut

generation is quite competitive with the best static approaches for all three test sets.

5 Conclusions

In this paper, we described an efficient implementation of multilinear cutting planes for

global optimization of problems with multilinear intermediates. We developed a decom-

position scheme that exploits the structure of a multilinear to identify low-dimensional

multilinear subfunctions, whose convex hulls can be approximated closely within a rea-

sonable computational effort. Moreover, we complemented this decomposition strategy

32

1 2 5
0

20

40

60

80

100

τ

P
ro
b
le
m
s

dynamic

nrd = 1
nrd = 2
nrd = 3
nrd = 4

(a) Quadratic problems

1 5 25
0

20

40

60

80

100

τ

P
ro
b
le
m
s

dynamic

nrd = 1
nrd = 2
nrd = 3
nrd = 4

(b) Third-order problems

1 5 15 35
0

20

40

60

80

100

τ

P
ro
b
le
m
s

dynamic

nrd = 1
nrd = 2
nrd = 3
nrd = 4

(c) Fourth-order problems

Fig. 10 Effect of different cut generation strategies. Each figure shows the performance profiles
of BARON with alternative cut generation schemes for a test set: nrd denotes the number of cut
generation rounds for static strategies, and “dynamic” refers to the proposed cut generation
scheme. The time ratio is denoted by τ with the distribution function denoted by Φ(τ).

by a customized simplex algorithm that features efficient initializations and tailored

data structures, with dense LU factorization and updates. We incorporated the pro-

posed cut generation scheme at every node of the branch-and-reduce global solver

BARON. To demonstrate the efficiency of the proposed implementation, we considered

various sets of test problems, including QCQPs, multilinear problems, and polynomial

problems. Results show that multilinear cutting planes significantly accelerate the con-

vergence rate of the branch-and-bound algorithm, and enable BARON to solve many

more problems to global optimality. In particular, for a total number of 279 problems,

the average CPU time and total number nodes in the branch-and-bound tree were

reduced by 60% and 90%, respectively. Several extensions of this work are possible,

as the developed approach provides building blocks for simultaneous convexification

of a collection of multilinear functions, as well as convexification of general nonconvex

functions with polyhedral envelopes.

References

1. F. A. Al-Khayyal and J. E. Falk. Jointly constrained biconvex programming. Mathematics
of Operations Research, 8:273–286, 1983.

2. X. Bao, N. V. Sahinidis, and M. Tawarmalani. Multiterm polyhedral relaxations for non-
convex, quadratically-constrained quadratic programs. Optimization Methods and Soft-
ware, 24:485–504, 2009.

33

3. P. Belotti. COUENNE: A user’s Manual, 2009. Technical report, Lehigh University.
4. D. Bertsimas and J. N. Tsitsiklis. Introduction to linear optimization. Athena Scientific,

1997.
5. Y. Crama. Recognition problems in polynomials in 0−1 programming. Mathematical

Programming, 44:139–155, 1989.
6. Y. Crama. Concave extensions for non-linear 0−1 maximization problems. Mathematical

Programming, 61:53–60, 1993.
7. E. Dolan and J. More. Benchmarking optimization software with performance profiles.

Mathematical programming, 91:201–213, 2002.
8. J. E. Falk and R. M. Soland. An algorithm for separable nonconvex programming problems.

Management Science, 15:550–569, 1969.
9. M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete problems.

In Proceedings of the sixth annual ACM symposium on Theory of computing, pages 47–63.
ACM, 1974.

10. P. E. Gill, W. Murray, and M. A. Saunders. User’s Guide for SNOPT 7.2.4: A FOR-
TRAN Package for Large-Scale Nonlinear Programming. Technical report, University of
California, San Diego and Stanford University, CA, 2008.

11. F. Gray. Pulse code communication. U.S. patent no. 2,632,058, 1953.
12. B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graphs. In Pro-

ceedings of the 1995 ACM/IEEE conference on Supercomputing, page 28. ACM, 1995.
13. J. Hopcroft and R.Tarjan. Efficient algorithms for graph manipulation. Communications

of the ACM, 16:372–378, 1973.
14. IBM. CPLEX Optimizer, 2011. http://www-01.ibm.com/software/integration/

optimization/cplex-optimizer/.
15. G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning

irregular graphs. SIAM Journal on Scientific Computing, 20:359–392, 1999.
16. B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. The

Bell system technical journal, 49:291–307, 1970.
17. Y. Lin and L. Schrage. The global solver in the LINDO API. Optimization Methods and

Software, 24:657–668, 2009.
18. J. Luedtke, M. Namazifar, and J. T. Linderoth. Some results on the strength of relaxations

of multilinear functions. Technical Report, Computer Sciences Department, University of
Wisconsin-Madison, 2010.

19. G. P. McCormick. Computability of global solutions to factorable nonconvex programs:
Part I—Convex underestimating problems. Mathematical Programming, 10:147–175, 1976.

20. C. A. Meyer and C. A. Floudas. Trilinear monomials with positive or negative domains:
Facets of the convex and concave envelopes. Frontiers in Global Optimization, C.A.
Floudas and P.M. Pardolos (eds.), Kluwer Academic Publishers, 103:327–352, 2003.

21. C. A. Meyer and C. A. Floudas. Trilinear monomials with mixed sign domains: Facets of
the convex and concave envelopes. Journal of Global Optimization, 29:125–155, 2004.

22. C. A. Meyer and C. A. Floudas. Convex envelopes for edge-concave functions. Mathemat-
ical Programming, 103:207–224, 2005.

23. B. A. Murtagh and M. A. Saunders. MINOS 5.5 User’s Guide. Technical Report SOL
83-20R, Systems Optimization Laboratory, Department of Operations Research, Stanford
University, CA, 1995.

24. A. D. Rikun. A convex envelope formula for multilinear functions. Journal of Global
Optimization, 10:425–437, 1997.

25. H. S. Ryoo and N. V. Sahinidis. Analysis of bounds for multilinear functions. Journal of
Global Optimization, 19:403–424, 2001.

26. N. V. Sahinidis. BARON: A general purpose global optimization software package. Journal
of Global Optimization, 8:201–205, 1996.

27. N. V. Sahinidis and M. Tawarmalani. BARON 10.3: Global Optimization of Mixed-Integer
Nonlinear Programs, User’s Manual, 2012.

28. M. A. Saunders. LUMOD: Fortran software for updating dense LU factors. http://www.
stanford.edu/group/SOL/software/lumod.html.

29. H. D. Sherali. A constructive proof of the representation theorem for polyhedral set
based on fundamental definitions. American Journal of Mathematical and Management
Sciences, 7:253–270, 1987.

30. H. D. Sherali. Convex envelopes of multilinear functions over a unit hypercube and over
special discrete sets. Acta Mathematica Vietnamica, 22:245–270, 1997.

34

31. F. Tardella. Existence and sum decomposition of vertex polyhedral convex envelopes.
Optimization Letters, 2:363–375, 2008.

32. M. Tawarmalani. Inclusion certificates and simultaneous convexification of functions.
Mathematical Programming, submitted.

33. M. Tawarmalani, J-P. Richard, and K. Chung. Strong valid inequalities for orthogonal
disjunctions and bilinear covering sets. Mathematical Programming, 124:481–512, 2010.

34. M. Tawarmalani, J-P. Richard, and C. Xiong. Explicit convex and concave envelopes
through polyhedral subdivisions. Mathematical Programming, submitted.

35. M. Tawarmalani and N. V. Sahinidis. Convexification and Global Optimization in Con-
tinuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and
Applications. Kluwer Academic Publishers, Dordrecht, 2002.

36. M. Tawarmalani and N. V. Sahinidis. Global optimization of mixed-integer nonlinear
programs: A theoretical and computational study. Mathematical Programming, 99:563–
591, 2004.

37. M. Tawarmalani and N. V. Sahinidis. A polyhedral branch-and-cut approach to global
optimization. Mathematical Programming, 103:225–249, 2005.

38. A. Wächter and L. T. Biegler. On the implementation of a primal-dual interior point filter
line search algorithm for large-scale nonlinear programming. Mathematical Programming,
106:25–57, 2006.

