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Abstract—The on-demand binding between applications and
information providers in loosely-coupled sensor-enabled systems
raises the challenge for selecting the providers (i.e., sensor
networks) supplying the most “relevant” sensory information.
This paper focuses on spatial relevancy of sensory information
determined by the quality and value of the desired and provided
information. Specifically, the paper introduces a metric for spatial
relevancy based on the concepts of quality of information (QoI)
functions. We introduce expansion-proof descriptions of the QoI
functions and we use those along with the the relevancy metric to
(a) identify the most relevant provider among a collection of sen-
sory information providers; and (b) select multiple providers with
the objective to: (b.1) identify the minimum number of providers
that cumulatively maximizes relevancy; and (b.2) considering the
cost in engaging with providers, select the subset of providers
that cumulatively maximizes the overall relevancy subject to
a budgetary constraint. The performance and robustness of
the proposed solutions are studied both analytically and by
simulation for a number of provider topologies.

I. INTRODUCTION

Consider the case where, say, a city agency needs to monitor
air-quality (or, hazmat concentration levels, etc.) throughout
the area of its authority. The agency would like to collect
air-quality information at different quality levels, e.g., higher
granularity in densely populated regions, and lower granu-
larity at other regions. To collect the needed information,
the agency uses sensors that it had deployed in the past.
Unfortunately though, due to budgetary constraints and other
logistics challenges, these sensors cover only portions of the
area of interest. To supplement its information needs, the
agency has decided to select and engage third-party fixed and
mobile sensory information providers with whom it would
create persistent or transient relations as necessary. The third-
party providers could be other city agencies, private operators
that, for example, monitor air-quality in public areas (parks,
arenas, etc.), fleet operators whose fleet vehicles are equipped
(for various reasons) with the necessary sensory devices, and
even individuals whose smart-phones are capable of sensing
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air-quality conditions. This sensory information could be ag-
gregated and “sold” to the city agency by sensory information
brokers.

The above scenario exemplifies a trend where increased
deployment and use of sensor networks is ushering a new
era where information-rich solutions are becoming even more
pervasive and integrated parts of our personal and professional
lives. Applications such as environmental and habitat monitor-
ing, infrastructure (highways, bridges, buildings, etc.) monitor-
ing, security, surveillance and tracking, public transportation,
traffic and utility management, commerce, manufacturing,
food production, remote patient care and so on are just a few of
the ever growing list of applications and market segments that
are benefiting from the deployment of sensory infrastructure
(and possibly contributed to our city-agency scenario). The
emergence of the Internet of Things (IoT) [1] and participatory
sensing [2] will further hasten the rate and ease with which
information from tethered and untethered sensors, the Web,
etc., will coalesce on demand to support our information needs
via both loosely- and tightly-coupled sensor-enabled systems.

There are undoubtedly several challenges in realizing the
“city agency” scenario. They relate, and not only, to tech-
nology; system (HW/SW) architecture and design, operation,
and management; regulatory constraints; and, this being a city
agency, public perception. It is the purpose of this paper to
study one of these challenges that of dealing with selecting
information providers that supply the most relevant informa-
tion for the user’s (e.g., the city agency’s) needs. Specifically,
we seek to establish procedures by which we can compare
information sources based on how relevant the information
they produce is to the desired and sought after information.
To this end, we need to develop means to capture properties of
the information against which relevancy can be assessed and
metrics to capture the ensuing levels of relevancy.

Assuming semantically identical pieces of sought and pro-
vided information, [3] proposed using the spatiotemporal
properties of information for identifying (or at least narrowing
down) the relevant information. These properties also serve
as the basis for quality of information (QoI) metadata [4]
representing the physical context of the information, i.e., the
time and space for which the information is applicable. In [3],
relevancy was measured by “how spatiotemporally close” a
piece of information provided was to the information desired.
Specifically, spatial relevancy was measured by the degree



of overlap between the region Rp describing the coverage
of sensory information from a provider and the region Rd

describing the coverage of sensor information desired by a
user.

As the number and variety of potential providers of infor-
mation as well as the number of applications that depend on
and search for them increases, the process of selecting the
most relevant providers becomes more and more challenging.
Furthermore, the fluidity of untethered sources (humans in
participatory sensing, sensor-equipped vehicles, etc.) adds to
the challenge as applications interested in information from
a particular region may need to seek for and bind repeatedly
to new(er) relevant sources. These challenges have a three-
fold impact: increased processing, storage, and communication
requirements, all of which raise concerns when considering
resource-constrained sensor networks. The processing chal-
lenge is the obvious and direct one as more and more candidate
sources have to be assessed and selected from. The other
two are more subtle. The increase in the number of sources
and applications will inadvertently result in an increase in the
pertinent advertisements and exchange of metadata about (at
least) the spatiotemporal and general QoI properties from the
sources and/or desired by the applications. These metadata will
also have to be stored at various nodes in the network.

There is an additional challenge that can further exacerbate
all three previous challenges: metadata expansion. As more
sources become available, new compound sources could (and
would) be created as needed. For example, a new source
reporting air-quality from the east (E) and north (N) regions
of a city can be created by the combination of regional
sources reporting air-quality from portions of the E, NE, and N
regions of the city. How should the spatiotemporal properties
of the compound source be represented? The obvious way
is to combine (e.g., take the union of) the corresponding
metadata from each of the constituent sources. This will result
in a more populous entry for these metadata. As more and
more sources are compounded this will lead to the unbounded
increase of the related metadata entry, which of course will
create major management burdens regarding their processing,
communication, and storage.

Taking into consideration the aforementioned multitude of
operational challenges, the contributions of our current work
are:
• the introduction of QoI functions for describing the

contextual desirability/quality of information;
• the definition of a novel problem and a new metric regard-

ing information relevancy based on the QoI functions;
• the provision of finite, expansion-proof metadata descrip-

tors for the QoI functions, using approximation tech-
niques, such as spline surfaces;

• the formulation of optimization problems for selecting
a single or multiple relevant providers with or without
constraints; and

• the solution algorithms and study of these optimization
problems.

The organization of the paper is as follows: Section II

introduces relevancy and its QoI function based metric. Within
the context of the relevancy definition and terminology in-
troduced in Section II, Section III presents the scope of the
problems to be addressed in the rest of the paper. Section IV
presents the expansion-proof description of QoI functions.
Section V introduces the multi-provider composition problem
and studies pertinent optimization problems along with solu-
tion algorithms. Section VI provides the numerical evaluation
of our solutions for various provider topologies. Section VII
presents related work and we conclude with Section VIII with
a summary of this work.

This paper extends [5], which focused on the multiple
providers selection problem, by presenting in depth the rel-
evancy metric (see Section II), including the definition of the
problem scope (see Section III), and adding the expansion-
proof description of QoI functions (see Section IV) along
with the pertinent numerical results and prior work (see
Sections VII and VIII.

II. THE RELEVANCY OF SENSORY INFORMATION

We start with a brief summary of relevancy from [3],
and then we built upon it focusing on a quality influenced
definition of it. We then present the problems at hand, and
discuss solution approaches in the following sections. For
ease of presentation, and without lack of generality, we will
study only two-dimensional regions; extensions to higher
dimensionalityities are possible, albeit at increased levels of
notational (and computational) complexity.

A. Background on Spatial Relevancy Metrics

In [3], we (implicitly) defined spatial relevancy as the degree
of spatial overlap that there exists between the information
sought and the information provided, e.g., the coverage of
the sensor networks supplying the sensor data feeds that an
application taps to. Consequently, we defined the metric rs of
spatial relevancy as:

rs(Rp;Rd) =
f
(
A[Rp, Rd]

)
f
(
A[Rd, Rd]

) ; (1)

where Rd is a description of the desired spatial properties
of the information sought (the d-information) and Rp are
the spatial properties for the information provided (the p-
information); mnemonically, R could stand for region, but not
necessarily.1 A maps a correlation of the spatial properties
of, say, Rd and Rp to the nonnegative reals (mnemonically,
A could stand for the area of the overlapping regions Rd

and Rp). Finally, f(·) is a non-negative, non-decreasing func-
tion of its argument, such as f(x) = x. The denominator
f
(
A[Rd, Rd]

)
plays the role of a normalization coefficient so

that rs ∈ [0, 1]. Note that both the normalization coefficient
and f(·) could have been incorporated in the definition of A,
however keeping them exposed aids the presentation.

1In [3], we wrote rs(Rd, Rp) instead. The slight change in notation in
this paper is to emphasize the relevancy as a property of the p-information
relative to the d-information.
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Fig. 1. Spatial properties of desired and provided sensor-originated
information—regions are shown as ellipses for illustrative purposes only.

As an example, consider Fig. 1 showing the spatial coverage
Rd for the d-information in the regions enclosed by the solid
red lines, and the corresponding region Rp for the sensor-
generated p-information enclosed in the dashed black lines;
ignore the superscript h for the moment. A[Rp, Rd] for this
example represents the area of overlap between regions Rp

and Rd, and assuming f(x) = x:

rs(Rp;Rd) =
area[Rp ∩Rd]

area[Rd]
. (2)

B. Generalizing Spatial Relevancy

Moving beyond [3], suppose that there is a desire for higher
accuracy in the information from the subregion Rh

d of region
Rd, e.g., receiving images of higher resolution, or detecting
events of interest with higher probability, etc. Likewise, sup-
pose that sensor feeds have two levels of accuracy, high level
at the subregion Rh

p of region Rp and low elsewhere. Then,
we can extend (2) and write:

rs(Rp;Rd) =

∑
i∈{h,l}

∑
j∈{h,l} αi · βj · area[Ri

d ∩Rj
p]∑

i∈{h,l} αi · area[Ri
d]

,

(3)
where Rl

k = Rk \Rh
k , k ∈ {d, p}. The α’s and the β’s are rel-

ative weights describing the level of desirability and/or utility
for data received from the corresponding areas. These weights
can further be selected to normalize the range of rs(Rp;Rd)
in [0, 1], where rs(Rp;Rd) = 1 represents perfectly relevant
information, i.e., the information provided was of quality equal
(or better) than desired across the entire region Rd. The four
regions Ri

d∩Rj
p correspond to the four regions R1–R4 shown

in Fig. 1 and together with the region R0 they form a partition
of the desired region Rd; R0 = Rd \ Rp and by convention
its relative weight is 0.

It should be clear that one can keep on extending (3) by
adding new gradations of desired and provided information
qualities and associate them with corresponding intersect re-
gions Ri

d ∩ Rj
p and weight products αi · βj (or, in general,

through weight functions w(αi, βj)). However, in generalizing
the above, we take a slightly different approach, while still
keeping the region “overlap” principle of this and previous
subsections.

Fig. 2. An example of a desired (or provided) QoI function

C. The QoI Functions

By adding gradations in the desirability or the QoI across
the regions Re, e ∈ {d, p}, we can generalize the “overlap”
principle in (2) and, consequently, the information spatial
relevancy definition and metric.

Specifically, let ω = (x, y) be a point in a two dimensional
region R and let

qd : ω ∈ Rd → [0, 1], with
∫
Rd

qd(ω) dω <∞ (4)

be a desired QoI function (or a QoI d-function) describing
the QoI of the desired d-information at point ω. For exam-
ple, at point ω0, a detection application “desires” to receive
information about occurrences of events of interest where
the probability of correctly detecting an event be z0 (i.e.,
qd(ω0) = z0), or, the concentration of air-pollutants at point
ω0 shall has an error no larger than ε0. The range of qd could
be the entire real line, but we assume that it is expressed in
relative terms and is normalized to [0, 1] with values closer
to 1 representing higher quality levels for the d-information.
By convention, we set qd(ω) = 0, for all points ω outside the
desired region Rd.

Fig. 2 shows an example of a QoI d-function, where an
application is highly interested in a concentrated area (i.e.,
requires information of high accuracy for that area). The
interest tempers off away from that area and eventually drops
to zero (outside the Rd region).

We can define the provided (or provider) QoI function
(the QoI p-function) qp(ω) on a region Rp in a completely
analogous fashion to qd(·) and Rd. Fig. 2 applies in this
case as well. For example, the figure could represent event
detection capability of a sensor network comprising of one
or more sensors concentrated in a particular region, hence,
having high detection accuracy in that area and decreasing
accuracy away from the area. In the sequel, when we do not
need to distinguish between the QoI d- and p-functions we will
collectively refer to them as the “QoI functions” q(·) dropping
the indexes d and p from the pertinent notation.

According to one operational mode, sensor-enabled applica-
tions may “announce” their information needs by broadcasting
their QoI d-function qd(·) and its support region Rd; interested



providers may then respond to the application in kind. Accord-
ing to another operational mode, providers may “advertise”
their sensing capabilities by broadcasting their QoI p-function
qp(·) and its support region Rp; applications may then sift
through these advertisements and select appropriate providers.

These (or other) operational modes are beyond the scope
of this paper. We are concerned only with the fact that an
application ends up with a collection of QoI p-functions
from various providers. Based on them and its own QoI d-
function, it assesses their relevancy to its information needs
and chooses an appropriate one (or ones) based on some
operational criteria.

D. The QoI Function-based Relevancy Metric

We are now ready to extend the relevancy metrics of
previous subsections as follows:

rvs (qp; qd) =

∫
Rp∩Rd

v
(
qp(ω); qd

)
dω∫

Rd
vd
(
qd(ω); qd

)
dω

, (5)

where v(·; qd) is a (non-negative) value function that repre-
sents the value the sensor-enabled application gains in exe-
cuting its task when it uses information of quality qp(ω) at
point ω. The notation v(·; qd) implies that, in general, the
value function can be expressed relative to qd, as was done,
in a different context, with the QoI satisfaction index in [6].
The denominator in (5), which is assumed to be finite, plays
the role of a normalization factor so that rvs (qp; qd) ∈ [0, 1].
We silently assume that an application gains nothing extra if
it receives information of higher quality than what it asked
for, and, hence, for each ω ∈ Rd ∩ Rp: v

(
qp(ω); qd

)
∈

[0, vd
(
qd(ω); qd

)
]. If the latter is not the case, one may

need to appropriately redefine the normalization role of the
denominator; we do not consider the latter case in this paper.

To reflect intuition, the value function is (selected) such
that the relevancy metric exhibits an increasing trend with
qp. Specifically, if there are two providers p1 and p2 with
p1 “closer” to the desired needs of the application than p2,
i.e., their QoI functions satisfy:

‖[qd− qp1
]+‖ ≤ ‖[qd− qp2

]+‖, where x+ def
= max(0, x), (6)

according to some function norm operator defined over the set
Rd, e.g., the l2 norm, then:∫

Rp1
∩Rd

v
(
qp1

(ω); qd
)
dω ≥

∫
Rp2
∩Rd

v
(
qp2

(ω); qd
)
dω. (7)

For the numerical results later in the paper, we will use
“min{·}” as the value function. In this case, we write (we
drop the superscript v for brevity):

rs(qp; qd) =

∫
Rp∩Rd

min
{
qp(ω), qd(ω)

}
dω∫

Rd
qd(ω)dω

. (8)

The numerator in the above expression can be thought as the
“volume” of the provider capability level function measured
only for the part of Rd that the provider can support, which
is the intersection of the areas Rd and Rp. In addition, the

min{·} term is used in order to make sure that values of
provided accuracy higher than what is desired will not be
taken into consideration in spatial relevancy calculations. The
denominator is a normalization factor so that rs ∈ [0, 1].

In closing this section, we remark that (5) can be inter-
preted as representing the aggregate, normalized utility that
can be achieved in relation to d-information when receiving
p-information from provider p. There might be alternative
interpretations of (5), such as probability expectations of
some form, or the conditional or relative entropy of the d-
information in the presence of the p-information [7]. There
could be some operational complications that these interpreta-
tions may introduce, such as the need for a priori knowledge
or on-demand computation of joint or conditional probability
densities between entities (the providers and the applications)
that had no prior kinship to each other. Nonetheless, in
principle, these alternative interpretations do not alter the
fundamentals of advertising desired or provided QoI functions
and making provider selections based on them, which is the
premise of this paper.

III. PROBLEM SCOPE DEFINITION

Ideally, communicating and manipulating general functions
such as qd and qp defined over general sets Rp and Rd in order
to calculate the relevancy metric in (5) could require unpre-
dictable (if not infinite) accuracy, storage, and computational
resources. Operationally, dealing with infinite accuracy is
impossible, and dealing with unpredictable quantities is highly
undesirable. Practically, the QoI functions and corresponding
support regions Re, e ∈ {d, p}, will be characterized approxi-
mately and communicated by a collection of (approximation)
descriptors. We will refer to these descriptors as the QoI
coverage metadata.

Clearly, approximate geospatial descriptions of regions,
based on various types of polygon representations, can serve
the above purpose for the boundaries of the Re regions [8]. The
geospatial descriptions are typically aid in answering queries
regarding topological relationships such as when querying
whether a point ω or a region A is internal, external, at the
boundary, or intersecting another region B. Owed to the fact
that we are dealing with region intersections as well, such as
Rp∩Rd, topological relationships play role in our case as well.
However, our queries are not topological in nature, at least not
in the traditional sense. Our objective is to order and select
providers based on relevancy assessed over the intersection
of support sets for the QoI functions qe, e ∈ {p, d}, and of
course their values, see (5), all described by the QoI coverage
metadata. These metadata will be communicated and stored
at recipient nodes, e.g., the application node, or a provider
registry, or other intermediary nodes.

Due to the nature of the situation, the QoI p-functions
(and their support sets) could be the result of aggregation
of constituent QoI p-functions and regions. For example, a
“super-provider” may be formed to represent the accumulation
of contributing providers in a set P = {p1, p2, . . . , p|P|}.



Thus, for example, if the QoI coverage metadata entry in the
registry of a provider accommodates only up to M elements,
then, this number is bound to be exceeded if the QoI coverage
metadata for the super-provider are simply the union of the
metadata of the constituent providers. Therefore, owed to the
latter fact, a predictable structure for these metadata will also
be required.

Hence the information relevancy problem at hand is sum-
marized as follows:
• Summarize the QoI functions of providers and appli-

cations through finite-sized, expansion-proof descriptors
(metadata). Using these descriptions,

• Assess the relevancy of providers to an application’s
needs. Using these assessments,

• Select one or more of the providers to satisfy the ap-
plication’s needs given selection criteria, such as the
most relevant provider, or the most relevant collection of
providers given a budget (e.g., energy, cost) constraint.

In the next section, we consider the expansion-proof de-
scriptors which along with their evaluation presented in the
numerical results Section VI covers the sub-problem of se-
lecting the single most relevant provider. The multi-provider
selection sub-problem will be covered in Section V.

IV. EXPANSION-PROOF QOI FUNCTION DESCRIPTION

As stated before, due to the generality of QoI functions, their
communication, storage, and processing requirements may be
quite unpredictable which has severe implication in managing
system resources effectively. Hence, it would be desirable to
describe them in a way that ensures predictable utilization of
system resources while acknowledging their role in the process
of selecting the most relevant information providers to serve
an application’s needs based on the relevancy metric rvs in (5).

To this end, we present two ways to describe QoI functions
using a collection M of QoI coverage metadata of finite
size |M| = M . One way is based on describing the QoI
functions discretely by sampling them, while the other involves
interpolating between samples using splines. Note that the
QoI coverage metadata (which, for brevity, will be referred
to simply as metadata) could be part of the bigger collection
of QoI metadata in [4]. The size M is a design parameter
seeking to balance efficiency and accuracy in describing
quality functions.

The two methods discussed next are clearly not the only
ones. Other approaches were considered (such as descriptors
based on contours) but not discussed here. The methods
discussed offer intuitive simplicity (sampling) and established
flexibility and utility (splines). Performance comparisons be-
tween these techniques are included in Section VI.

A. Sampling-based QoI Function Description

Sampling is a widely used method to approximate con-
tinuous functions while controlling the amount of generated
data [9]. Sampling has found numerous applications in signal
processing over the last years where a continuous signal

Δx

Samples

liner interpolation

( )q x

x

Fig. 3. Uniform sampling with linear interpolation for a 1-d QoI function.

must be stored and processed by a finite accuracy computer
system [10]. Uniform sampling, where samples are uniformly
distributed, is used for smooth functions while non-uniform
sampling is often preferred to approximate functions with
abrupt changes in subsets of their range. Given the sampled
values, the original continuous signal can be approximated
by using interpolation techniques such as linear, nearest
neighbor, and cubic interpolation [11]. For the numerical
evaluations later on, we use uniform sampling along with
linear interpolation, an example of which is shown in Fig. 3 for
the simple case of an one-dimensional QoI function defined
over a line segment.

Sampling can be used to approximate the QoI functions q
with a maximum of M parameters. Since we have defined the
QoI functions on R2, the M parameters can be generated by
sampling the continuous q function at M/3 points (either uni-
formly or non-uniformly) and storing a triplet (x, y, q(x, y))
for each sample; x and y are used to store the coordinates
of the sample and q(x, y) is the (desired or provided) quality
value at the sampling point. As expected, the larger the number
of sampling points are the more accurate the approximation
will be. These M parameters can be communicated so that
other parties can use an interpolation method to generate the
approximation points q̂.

The next subsection presents an alternative approximation
method based on splines. The way that these two methods can
be used within the “city agency” scenario and the comparison
of their approximation performance will also be also explained
in the sections to follow.

B. Spline-based QoI Function Description

Splines are piecewise polynomial curves which are dif-
ferential up to a prescribed order [12]. A B-spline has the
property that every spline of a given polynomial degree can
be expressed as linear combination of a set of B-splines of the
same degree. The B-spline surfaces are the result of the tensor
product of B-spline curves, where a tensor product surface is
generated by:

p(x, y) =

K∑
i=1

L∑
j=1

αijBi(x)Bj(y), (9)
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with Bi(·) and Bj(·) independent spline curves that form a
basis and αij the spline control points.

The construction of the B-spline curves Bi(·) and Bj(·) is
a two-pass process (one for each variable) and is based on the
calculation of the so-called knot vectors and control points αij

[13]. The design parameters of the method are the size of the
knot vectors, nxknot and nyknot, and the spline order along the
x and y dimensions, orderx and ordery . The spline order is in
essence the order of the polynomial used for the approxima-
tion. The input of the approximation procedure is the sample
matrix of the QoI function, q̃, along with the sampling vectors
x and y.2 The resulting finite description of q consists of M
parameters, the knot vectors of size nxknot and nyknot, and a
matrix of size (nxknot − orderx)× (nyknot − ordery) contain-
ing the control points, αij . Thus, the finite description of q will
be P = nxknot +nyknot + (nxknot − orderx) · (nyknot − ordery)
points. These M parameters are necessary to be communicated
so that the other parties can generate the approximated sample
points, q̂.

Due to their smooth, differentiable behavior, and ease
of construction, splines and spline surfaces have long been
studied and are popular in approximating single- and multi-
variate functions. Because they can be described by a finite
number of points, they are also our preferred approximation
choice in describing QoI functions q. Since, we define q on
R2, we make use of spline surfaces as in (9) and use the
aforementioned M control points and knots to describe it.
Increasing the number of knots of the approximation or the
order of the spline, and, hence, the number of control points,
and eventually M , would give better approximation results.
However, the simulation results presented later on show the
efficiency of the method even for low order approximations.

Rd
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p3R

3 3
1 1
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Fig. 5. Example of multiple desired/provided regions R and containing
rectangles.

C. Advertising the QoI Functions

While the specifics of how the providers and the con-
sumers, e.g., the city agency of our motivating use case,
exchange their QoI function descriptions is outside the scope
of this paper, we briefly discuss here what information is
to be exchanged. Fig. 4.a summarizes the information. This
shared information is grouped in two categories: persistent and
dynamic information. The persistent information represents
information that changes infrequently (if at all), such as the
constraint on the size M of metadata to be exchanged as
well as the interpolation technique to be used. Persistent
information can be thought as part of system-wide information
that could be configurable and does not need to be exchanged
frequently, e.g., the city agency may announce that it deals
only with spline interpolation for QoI function descriptions of
size M . The dynamic information pertains to the QoI coverage
metadata that providers and possibly consumers may need to
exchange on demand.

Next we summarize the steps followed in selecting
providers, highlighted in Fig. 4.b in conjunction of the ad-
vertised information noted in Fig. 4.a:
• Providers encode their QoI p-functions qp(·) using an

agreed upon approximation technique, such as sampling
or spline surfaces, based on M parameters. Being good
citizens, they also (optionally) calculate the minimum
rectangular R(Rp) containing the provided region Rp.
This requires three additional (x, y) points. The optional
rectangle R(Rp), which requires a total of 6 additional
pieces of metadata, can be used to quickly narrow down
the candidate providers, see shortly. A consumer may
encode its own QoI d-function qd(·) likewise.
In reference to Fig. 5, the selected approximation method
is used to generate M parameters describing qe(·) in re-
gion Re, e ∈ {d, p}. Three additional points {(xi, yi); i =

2The QoI function q, the sample matrix q̃ and the sampling vectors x and
y are connected by: q̃ (i, j) = q (x (i) ,y (j)).



1, 2, 3} are also used (optionally) to describe the mini-
mum rectangle containing these regions.

• A consumer may distribute/advertise a CfP (Call for
Providers) along with its M (or, M + 6), parameters
of its own QoI d-function and collects responses from
providers; alternatively, a consumer may passively listen
to providers distributing/advertising their QoI coverage
metadata.

• (optionally) The consumer may quickly filter out any
provider p whose minimum rectangle R(Rp) does not
intersect with its own minimum rectangle R(Rd)—note
that topological operations involving rectangles are very
straightforward and easy to implement.

• The consumer uses the M parameters it receives to ap-
proximate the QoI p-function of any remaining provider
(the “candidates” noted in Fig. 4.b) using the agreed
upon approximation technique, e.g., interpolating be-
tween sampled points or by generating Bi(·) and Bj(·),
based on the knot vectors for variables x and y, respec-
tively, and (9). Finally,

• The consumer determines each provider’s relevancy by
using the approximated QoI functions in (5); providers
may then be ranked accordingly.

The above procedure assumes that consumers and providers
interact with each other directly. However, it is quite possible
that a consumer, e.g., the city agency, may delegate the selec-
tion process to a proxy, or even a collection of proxies, e.g.,
city sub-agencies, acting on its behalf. Likewise, a provider
may be a logical entity representing (or, brokering for) a
collection of actual sensory information providers. In these
cases, the selection of relevant providers is accomplished at the
granularity of the QoI function exchanged and what entities
these represent.

In closing this section, we note, that whether:

• the CfP contains just the M parameters, or just the 6
rectangle parameters, or all M+6 parameters; or whether

• a provider pre-calculates its qp approximation, post-
calculates it based on the CfP, e.g., use its M points to
describe qp only in the region of interest and not on the
entire Rp; or whether

• the agency and the providers communicate with each
other directly or through a proxy/broker in the middle,
as note earlier; or whether

• only providers need to encode their qp; or whether
• any other related design choices are considered

are outside the scope of the current paper and left for fu-
ture investigations. Here we focus only on the fundamental
structures and procedures of the relevancy assessment and
provider selection on top of which all the other choices can
be considered and evaluated.

As earlier noted, Section VI contains performance com-
parisons of the two QoI function approximations within the

context of selecting the most relevant provider. The next
section develops the framework for selecting instead groups
of providers that, in aggregation, are the most relevant one
based on selection criteria.

V. MULTI-PROVIDER CONSIDERATION

While it is possible that a single provider may suffice in
satisfying an application’s needs, it is quite likely that it will
not. In this case, it would be desirable to be able to judiciously
select a number of providers that cumulatively provide the
most relevant information.

Using our finite-size, expansion-proof metadata principle,
in this section, we consider the composition of sensory in-
formation providers and the selection of the most appropriate
set of providers based on criteria such as maximum coverage
and maximum aggregate geospatial relevancy for a given
constraint. In the context of the city agency scenario, this may
correspond to the case that the city agency will have to select
the most appropriate providers given a budget constraint.

In general, we assume an application with qd and Rd

representing its desired QoI d-function and corresponding
region. There is also a set P of providers of size |P| = N with
qi(·)

def
= qpi(·) and Ri

def
= Rpi , i ∈ {1, . . . , N}, representing

the corresponding provider QoI p-functions and regions. Note
that, whenever the context permits it, in this section we will
drop the p from provider-related entities for notation brevity
and, instead, the index i will represent provider pi.

In the following subsections, we consider two cases: (a)
the no-cost case, where we seek to find the minimum num-
ber of providers that satisfy the application needs without
any budgetary constraints; (b) the cost case, where engaging
providers comes at a cost and applications (for example, the
aforementioned city agency) have budgetary constraints. In
both cases, we will first formulate a model for the problem
and then consider a solution for it.

A. Maximum Relevancy with Minimum Providers and No-cost

We start with the case of selecting the minimum number
of providers that can cover as much of the desired region as
possible while attaining as high QoI as possible. To this end,
let I = [I(1), . . . , I(N)] be the provider selection indicator
vector, where

I(i) =

{
1, if provider i is selected;
0, otherwise. (10)

Additionally, let the aggregate provider region RI
p be the union

of all the selected provider regions, i.e.,

RI
p =

N⋃
i=1

I(i) ·Ri, (11)

and let Rp
def
= R

{I=1}
p =

⋃N
i=1Ri.

The selection of the appropriate set of providers to maxi-
mize the coverage of the desired region with no cost can be
modeled by the following optimization problem Π0:



Problem Π0: For I(i) ∈ {0, 1}, i ∈ {1, . . . , N},

minimize
N∑
i=1

I(i), such that, ∀ω ∈ Rd ∩Rp :

(1)
∑

i:ω∈Rd∩Ri

I(i) ≥ 1; and (12)

(2) max
i:ω∈Rd∩Ri

[
I(i) · qi(ω)

]
= max

i:ω∈Rd∩Ri

[
qi(ω)

]
.

Constraint (1) is a coverage constraint that states that for each
point ω ∈ Rd covered by one or more providers, at least one of
them will be selected. Constraint (2) is a preference constraint
that states that the provider with the highest QoI at a point
ω shall be chosen. Note that this model allows the selection
of providers that overlap at some points, however, it assures
that the best provider at each point is among the selected
ones. Therefore, the formulation is implicitly maximizing the
aggregated spatial relevancy.

Problem Π0 is a generalization of the set covering problem
[14] on three dimensions (each 2D point ω is also associated
with QoI value qd(ω)) and for unity costs. The set covering
problem relates to finding the minimum number of sets whose
union includes all points of the “universe.” It is modeled by
the following integer programming formulation: For I(s) ∈
{0, 1}, for all s ∈ S,

minimize
∑
s∈S

c(s) · I(s), such that
∑
s:e∈s

I(s) ≥ 1, (13)

for all elements e ∈ U, where U is the universe of points,
S is a family of subsets of U and c(s) is the cost associated
with set s in S. The set covering problem is one of Karp’s
21 NP-complete problems [15]. Therefore, the Π0 problem
is NP-complete as well and, hence, there is no polynomial-
time algorithm that solves it. The most efficient algorithm
solving (approximately) the set covering problem is a greedy
algorithm that is based on the following simple operation: At
every iteration, choose the set that contains the largest number
of uncovered elements. The algorithm terminates when all
elements are contained in the sets already selected.

Based on the aforementioned iterative operation, we propose
a solution to problem Π0 described by Algorithm 1 which, at
each iteration, selects the most appropriate subset of providers
that maximize the total relevancy with respect to the desired in-
formation, which is described by the QoI function qd. Because
of the possibility that Rd∩RI

p contains infinitely many points,
the selection criterion at each iteration is not the number of
points contained in each set of providers but, instead, the
increase in the spatial relevancy metric. Thus, the provider
that results in the largest increase in the aggregate relevancy
is chosen at each iteration and the algorithm terminates when
none of the remaining providers can increase the aggregate
relevancy further.

More specifically, at each iteration t, the aggregate region
S of the already selected providers F , i.e., S = ∪k∈FRk, is
merged with the new candidate region Ri. Then, the relevancy
of the aggregated QoI p-function qFi (ω) (explained shortly)

is calculated for each candidate provider i when aggregated
with the providers in the set F of already selected ones.
Consequently, the provider leading to the highest aggregate
relevancy, V t, is selected, until there is no further increase in
the total relevancy.

Algorithm 1 – Aggregate Relevancy
1: Initialize: F = ∅, S = ∅, P = {1, . . . , N}, t = 1 and
V 0 = 0;

2: Set: F t
i = F ∪ {i}, Sti = S ∪Ri

p for all providers i ∈ P;

3: Calculate spatial relevancy, rts(i)
def
= rts

(
qFi (ω); qd(ω)

)
,

for all regions Sti using equation (5);
4: Set: k ← arg maxi

{
rts(i)

}
and V t ← rts(k);

5: if V t = V t−1 then
6: STOP;
7: else
8: Set: F ← F t

k, S ← Stk; P ← P \ {k};
9: Set: t← t+ 1;

10: GOTO step 2;
11: end if

In step 3 of Algorithm 1, we use the aggregated QoI p-
function qFi (ω) which represents the collective QoI behavior
of the already selected providers (in the set F) and the
new candidate provider i at the point ω ∈ S. Specifically,
given two providers i and j with qi(·), qj(·), Ri and Rj

their respective QoI p-functions and coverage regions, their
aggregated QoI p-function qji (·) is defined on Ri ∪Rj where
qji (ω) = h

(
qi(ω), qj(ω)

)
; recall that a QoI p-function is set to

0 outside its region Rp. The transformation h produces another
QoI function from the constituent QoI functions which reflects
how the quality of fused information is assessed. For example,
if the accuracy of a measurement from provider i at a point ω
is 97% and from provider j is 95%, the aggregated QoI from
the two providers could be taken to be the best of the two,
i.e., 95%, hence, “h ≡ max{·}.” We use the latter example h
in our numerical results later on, thus for ω ∈ Ri ∪ Rj , we
will use:

qji (ω)
def
= h

(
qi(ω), qj(ω)

)
= max

{
qi(ω), qj(ω)

}
. (14)

It should be noted here that it is cases like the above
where providers may aggregate their information provision
services that led to the consideration of managing the number
of parameters used to describe the QoI functions and cor-
responding coverage regions. If these parameters were left
to simply accumulate over successive (and unpredictable)
provider aggregations would have resulted in the unpredicted
and unbounded number of parameters mentioned in the previ-
ous section. Specifically, with regard to the QoI descriptions in
the aforementioned provider aggregation, we assume that the
values of qi(ω) and qj(ω) are reconstructed approximately
from their finite-sized parameter representations, e.g., the
spline surfaces, before calculating qji (ω). Should the resulting
aggregate QoI p-function needs to be stored or communicated,
it will be done so using its own bounded-sized QoI description
representation.



Algorithm 1 can be implemented in polynomial time. At
each iteration, the algorithm determines the optimal provider
to select, but, similarly to how the greedy algorithm behaves
for the original set covering problem, this may not always lead
to the overall optimal solution. However, it is easy to prove
that the performance of the algorithm is upper bounded by a
function of the optimal solution and the number of points in
the universe U [16]. In fact, this bound is m ln (n), where m
is the optimal number of providers and n is the number of
sample points trying to cover.

The problem model described in this section did not take
into consideration the possible cost for engaging with informa-
tion providers. Problem formulation Π0 and its solution in Al-
gorithm 1 identify the best subset of providers that maximize
the aggregate spatial relevancy of information independently
of the cost. Next we consider a problem model where cost
plays role in choosing the optimal provider set.

B. Maximum Relevancy with Budget Constraints

Since nothing comes for free, the consumer, and certainly
the city agency, will have to face the realities of budgetary
constraints sooner or later. In this case, we assume that the
consumer has a finite budget reserve B and engaging with
provider i costs ci, i = 1, . . . , N . The cost and the budget
could be in the form of monetary cost, e.g., a fee paid to
use the services of a provider, or resource cost, e.g., energy
consumed when engaging with a provider. Furthermore, the
cost ci could be a flat rate that the provider charges or a
contracted price reflective of the attained relevancy rs(qi; qd);
we will not delve further on this issue.

Given such a budgetary constraint, we are now interested
in finding the optimal set of providers that will maximize
the spatial relevancy of the provided information subject to
the constraint B. This case can again be modeled by a
combinatorial optimization problem. Specifically, let again
I(i) ∈ {0, 1} be the binary indicator variable for selecting
provider i, i = 1, . . . , N , and I the corresponding vector. Thus,
the formulation of the optimization problem in this case will
be:

Problem Π1: For I(i) ∈ {0, 1}, i ∈ {1, . . . , N},

maximize rs
(
qIp; qd

)
, such that

N∑
i=1

I(i) · ci ≤ B, (15)

where rs
(
qIp; qd

)
is the relevancy of a “super-provider” with

a QoI function aggregated from the providers indicated by
selection vector I (as discussed earlier in relation to (14)),
and defined on RI

p in (11).
Note that in problem Π1, the increase of the relevancy when

selecting provider i does not only depend on the relevancy
that provider i contributes in isolation, but depends on the
providers that have already been selected prior to provider i.
This is because of the possible spatial overlap between the
QoI coverage region of provider i and that of the regions of
the providers already selected. In the case that the providers
already selected are offering good enough quality on points

ω in Ri
p, adding provider i may not increase the relevancy

attained at all.
Problem Π1 is a generalization of the 0-1 knapsack problem

[17] where the value of each item is a function of the
items already selected to be included in the knapsack, as just
discussed; think of the case where adding a lighter in the
knapsack may reduce (even to zero) the value of adding a box
of light-matches in the knapsack later on. This is captured by
the use of qIp as the aggregate QoI p-function parameterized
on the selection vector I.

The 0-1 knapsack problem is an NP-hard optimization
problem which means that there is no algorithm that finds
the optimal solution in polynomial time. The greedy algorithm
would need to check all 2N different combinations between
the N providers, prune those that do not satisfy the available
budget and then choose the combination that maximizes the
aggregate relevancy. A dynamic programming algorithm has
been proposed that solves the problem in pseudo-polynomial
time. The algorithm splits the main problem into smaller
subproblems and stores some of the intermediate results for
later use to speed up the calculation of the main problem [17].
However, this algorithm can not be directly applied to Π1 since
the aggregated spatial relevancy when adding one provider
depends also on the selection of other providers, as explained
earlier. Nonetheless, Algorithm 2 has been developed to solve
Π1 using the same idea of storing intermediate results.

As a dynamic programming algorithm, Algorithm 2 is
trading memory space for time. In other words, it splits the
problem into smaller subproblems, stores their solutions into
memory, and, then, uses them to calculate the solution of the
main problem. Algorithm 2 iteratively constructs the N × B
matrix Values =

[
Values[i, b]

]
, where is the maximum

aggregate spatial relevancy of the first i providers for a budget
b; the corresponding provider selections reside in the indicator
vector Ibi . Entry Values[N,B] stores the maximum aggregate
spatial relevancy of all providers for budget B, which is the
optimal solution for Π1 and the optimal provider selection will
reside in the vector IBN .

As mentioned earlier, Π1 is an extended 0-1 knapsack
problem with variable item value. Therefore, lines 7–11 of
Algorithm 2 calculate the spatial relevancy (i.e., the “value”)
of the specific selection vector I. The spatial relevancy of
vectors I that have already been calculated at earlier iterations
are evoked from memory. This has a significant impact in
accelerating the algorithm. Moreover, lines 12–19 of the
algorithm determine whether selecting a new provider will
result in higher aggregate spatial relevancy (in which case the
provider is indeed selected), or not.

1) Algorithm complexity: The dynamic programming algo-
rithm for the 0-1 knapsack problem has complexity of O(nB),
where n is the number of items and B the available budget.
In the worst case, Algorithm 2 will calculate the spatial
relevancy rs

(
qIp; qd

)
at each iteration, which needs O(N)

time. Therefore, the absolutely worst case time complexity
of Algorithm 2 is O(N2B), where N is the total number of
providers. Regarding the memory requirements, in the worst



Algorithm 2 – Budget Constrained Aggregate Relevancy
1: Initialize: Values[0, b] = 0, b = 0, . . . , B;
2: for i = 1 to N do
3: for b = 0 to B do
4: if ci ≤ b then
5: I = Ib−cii−1 ; where: Ib−ci0

def
= 0 and I0i−1

def
= 0;

6: I(i) = 1;
7: if rs

(
qIp; qd

)
not calculated then

8: Calculate rs
(
qIp; qd

)
using (5);

9: else
10: Get rs

(
qIp; qd

)
from memory;

11: end if
12: if rs

(
qIp; qd

)
> Values[i− 1, b] then

13: Values[i, b] = rs
(
qIp; qd

)
; Ibi = I;

14: else
15: Values[i, b] = Values[i− 1, b]; Ibi = Ibi−1;
16: end if
17: else
18: Values[i, b] = Values[i− 1, b]; Ibi = Ibi−1;
19: end if
20: end for
21: end for

case, it is necessary to store the matrix Values of size N×B,
the relevancy values rs

(
qIp; qd

)
for each selection vector I,

which are in total min {2N , N ×B}, and the optimal selection
vector Ibi of size N for the N ×B iterations of the algorithm.

Based on the specifics of a usage scenario, the execution
of the algorithm can be accelerated both in time and memory
requirements in two ways. First, recalling the discussion about
the minimum bounding rectangle in the previous section,
instead of examining all N providers, the algorithm can be
run only for those providers whose QoI coverage region
intersects with the region from the desired QoI d-function.
The intersection operation will run only once at the beginning
of the process and can be implemented in linear time. Then,
instead of iterating for all values in the range [0, B], we can
calculate the greatest common divisor gcd of ci, i = 1, · · · , N
and B and then run the algorithm in the range [0, B/gcd] with
costs ci/gcd, i = 1, · · · , N .

VI. NUMERICAL RESULTS

The numerical results in this section were derived using
a combination of MATLAB-based computations and simula-
tions. We first compare the effectiveness of the two approx-
imation methods of QoI functions in calculating the spatial
relevancy of a single provider and, then, consider the multi-
provider case and the performance of the two algorithms
presented in Section IV.

A. Single-provider Spatial Relevancy

The objective of the single-provider study is assessing the
robustness of the two finite-size approximation methods of QoI
function descriptions in ordering providers according to their
relevancy to a desired QoI function.

Due to the ease by which they can flexibly approximate
several shapes with respect to orientation, flatness, peak(s),
etc., we constructed QoI d- and p-functions using mixtures (su-
perposition) of Gaussian density functions.3 The parameters of
these shapes included their relative position on the plane, their
maximum value and the number of Gaussian functions mixed.
These functions were approximated using the sampling and
B-spline methods with M parameters (see Section IV). Then,
these approximations were used to calculate the relevancy of
providers based on each method using expression (8) and order
the providers accordingly.

p1
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R

p5
R
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p4
R

Fig. 6. The rural topology case.

Fig. 7. QoI example d- and p-functions functions for the rural topology.

With regard to the regions R, we considered two topology
cases: (a) a rural topology where the desired and the various
provider regions are dispersed in an area, see Fig. 6; and (b) a
urban topology where the desired and the various provider
regions line-up along city streets (the “Manhattan street”
topology), see Fig. 8. Figures 7 and 9 show QoI example d-

3The result of such mixtures does not posses the properties of a density
function.



and p-functions corresponding to the two topology examples
in figures 6 and 8. Note that Fig. 7 shows the p-functions of
only 3 (p1 through p3) of the 5 rural providers shown in Fig. 6

R 1Rp1 Rp2

Rd Rp3

Fig. 8. The urban (Manhattan street) topology case.

Fig. 9. QoI example d- and p-functions for the urban topology.

We applied the single-provider relevancy method to these
example cases using different values of M , the maximum
number of approximation parameters. Then, the spatial rel-
evancy metric was calculated according to the two approxi-
mation methods and was compared against the actual spatial
relevancy of the providers using their original QoI function.
We studied: (a) the estimation error as a function of M ;
(b) the comparison of the two methods with respect to their
effectiveness to order providers; and (c) the effect of the esti-
mation error for each method on ordering providers according
to spatial relevancy. Note that the latter provider ordering is
what we are ultimately after. Specifically, the goodness of the
approximation is judged not in absolute terms (which is a
comparison over a continuum of values) but rather over an
ordering outcome (which is a comparison over a finite set of
alternatives).

The measurements presented in figures 10–12 illustrate the
robustness of each method with regard to this objective. The
top plots in Fig. 10 and Fig. 11 show the Spatial Relevancy
of the providers calculated using the sampling method for

the rural and urban topologies respectively, while the bottom
plots show the respective behavior of the B-spline method. As
Fig. 12 shows, the estimation error for the spatial relevancy of
each provider is relatively low even when using around 100
parameters for the QoI function approximation. Comparing
the performance of the two methods, Fig. 12 shows that the
B-spline method yields, in general, lower approximation error
despite the fact that the sampling method has smaller error
for very low number of parameters in the rural topology
scenario. However, the B-spline method is clearly superior
in the relative ordering of providers. More specifically, there
are no misordering effects even when the spatial relevancy of
some providers is almost identical, as in the case of providers
1 and 2 for the urban topology case. This is indicated in the
bottom plot in Fig. 11 by the fact that the red and blue lines do
not intersect; intersections, such as the ones appearing in the
sampling method case in the top plot, would mean a change
in the relative order of provider relevancy.
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Fig. 10. Spatial relevancy for the rural topology.

As previously mentioned, we have used (8) to compute
the provider relevancy. A couple of comments are in order
regarding these computations. The intersection of the desired
and provided regions was computed using the fast algorithm
to determine the intersection of convex polygons described in
[18]. Due to the requirement for convex regions, the convex
hull of (the generally) non-convex R regions was calculated
before applying the algorithm. However, this operation does
not affect the value of the spatial relevancy.

The sampling approximation and the spatial relevancy met-
ric in (8) involved uniform sampling within the regions R
of the QoI functions and the reconstruction of the estimated
values was done using linear interpolation. Both uniform
sampling and linear interpolation processes were made using
functions provided by MATLAB. Likewise, the B-splines
approximation and the spatial relevancy metric in (8) involved
a sampling process of the continuous QoI function. We made



0 50 100 150 200 250 300 350

0.35

0.4

0.45

0.5

0.55

Spline Approximation

Number of Spline parameters

S
pa

tia
l R

el
ev

an
cy

 

 

Provider 1
Provider 2
Provider 3

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5
Sampling Approximation

Number of Parameters

S
pa

tia
l R

el
ev

an
cy

 

 

Provider 1
Provider 2
Provider 3

Fig. 11. Spatial relevancy for the urban topology.

use of the B-spline generation algorithm provided in MATLAB
which minimized the squared-error at the sampling points;
these were uniformly spaced on the respective regions R. This
uniform sampling technique used during the two scenarios
gave sufficiently good approximations even for the case that
the special relevancy of providers was almost identical. How-
ever, as with most approximation methods, we would expect
that non-uniform sampling would have improved performance
especially for QoI functions that experience regions of signifi-
cant and/or abrupt changes. An example of such a case would
be a QoI function for which, given a region R, q(ω) = 1
for ω ∈ R and 0 otherwise. In such a case, dedicating more
samples around the boundaries of region R would yield better
results.

Note that testing the performance of the spline-generation
algorithms themselves is beyond the scope of this paper. We
chose B-splines as a flexible, convenient and well-studied
means to address our problem of describing QoI functions with
finite, expansion-proof collection of parameters. Through our
analysis study we confirmed that they are also a very effective
aid in ranking relevant providers compared to the standard
sampling method.

Building upon this procedure of calculating spatial rele-
vancy for single providers, in the next subsection we will
present the simulation results of the two algorithms proposed
for the multi-provider composition problem. Since the B-spline
method proved to be more robust in ordering providers based
on their relevancy, the simulation results for the multi-provider
case were obtained using only the B-spline method.

B. Multi-provider Spatial Relevancy

The two algorithms proposed to solve the multi-provider
composition problems with or without the budget constraint
were also simulated in a MATLAB environment. Again, the
QoI functions used were mixtures of a varying number of
Gaussian density functions, randomly scaled and placed on the
two-dimensional plane. Fig. 13 shows an example case, where
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Fig. 12. Error Comparison of Approximation Methods.

Fig. 13. QoI example functions for the multi-provider case.

the desired QoI function is colored in blue, and 9 providers
are colored in red, cyan and green.

The proposed algorithms are based on pseudo-polynomial
heuristics to solve NP-Hard problems. These algorithms were
adjusted to accommodate our objectives regarding the spatial
relevancy of providers. Hence, the objective of our simulation
study was the assessment of their effectiveness in selecting the
right providers that satisfy problems Π0 and Π1 in Section V.
The assessment is performed by comparing the solutions and
execution time of the proposed algorithms against those from
the exhaustive search algorithm. For the no-cost case, the
latter calculates the spatial relevancy of all (2N − 1) different
combinations between the N providers and the selection of
the best one according to the conditions (12) of problem Π0.
For the budget constraint case, the exhaustive search algorithm
includes the comparison of all feasible combinations, i.e.,
those with a total cost less than or equal to the budget, and
the selection of the optimal one among them according to the



conditions (15) of problem Π1.
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Fig. 14. Execution times comparison between algorithms 1, 2 and exhaustive
search using a 2.4 GHz dual core Windows PC with 4 GB of RAM.

Fig. 14 shows the comparison of the execution time be-
tween the proposed algorithms and the exhaustive method
in each case. For all cases studied, the solutions that the
proposed algorithms arrived at were the same as the ones
given by the exhaustive search methods, which of course
are the optimal ones. As expected, the execution time of the
exhaustive algorithms increases exponentially as the number
of providers increases, while algorithms 1 and 2 need almost
linear time. The execution of the proposed algorithms has
also been accelerated by a mechanism of pruning providers
not intersecting with the desired QoI function. In such cases,
these providers are removed from the rest of the process with
the result of further reducing the number of combinations
examined.

VII. RELATED WORK

Spatial aspects for sensor networks have been studied in
many occasions in the past. Even though not sufficiently
aligned with the pursuits in our work, these past studies in-
spired and influenced our work. For example, issues related to
deployment strategies for effective spatial coverage of sensor
networks are highlighted in [19], [20], [21] and references
therein. Moreover, supplementing our own cited work on
QoI, [22] discusses quality metadata describing geospatial
information. Ref. [8] provides an extensive review of the
models for spatio-temporal information databases and related
queries. Ref. [23] considers spatial and thematic relevancy
for matching documents to queries focusing in document
ranking. Ref. [24] considers the problem of selecting the
appropriate battery-operated sensors in order to maximize
the life-time of the network based on the spatio-temporal
relevancy correlation of the measured information between

sensors in the same area. Similar problem is also investigated
in [25] regarding in-network data aggregation of spatially and
temporally correlated information generated by neighboring
sensors.

Ref. [26] describes a process for merging topological maps
where the possibility of the unbounded increase of meta-
data/parameters becomes evident. Granted, our case is not
equivalent to merging topological maps, yet the underlying
problem of metadata explosion still exists whenever we com-
pose behaviors (the QoI functions) defined over different
spatial horizons; see also [27] which deals with building and
manipulating maps described by simple rectangles. Ref. [28]
considers summarizing 2D shapes via a bounded number of
parameters. These shapes could correspond to our regions R
and, thus, the proposed approach in [28] could serve as an
alternative to our B-spline approach. We do not discount the
latter approach and could have been used in our paper as
well. However, given that we ultimately pursue a comparison
and selection of relevant providers, we found the use of the
B-spline approach more flexible. Finally, our inspiration in
using splines comes from [29] which considers the explosion
of time-decaying security metadata of documents produced by
the combination of contributing documents.

Our work examines a distinctively different aspect for sensor
networks from the aforementioned studies. It is concerned with
the operational aspects of information consumers dynamically
selecting information providers (possibly representing multiple
sensor networks) under the novel context of spatially varying
interests and capabilities of the consumers and providers,
respectively, while considering both coverage and QoI aspects.

VIII. SUMMARY

In this paper, we introduced a novel problem area for
sensor networks that of identifying and selecting sensory-
information relevant providers based on their sensing ca-
pabilities in relation to an application’s information needs
along spatial dimensions. This problem will become more
and more prominent as the number of providers increases
and their sensing capabilities change spatially, such as when
using wireless and mobile sensor networks operating over a
multi-administrative domains, e.g., vehicle-mounted sensors,
participatory sensors, etc.

Within this area we derived a relevancy metric based on
the concept of QoI functions that describe the desirability
or quality levels of the information desired or produced at
a given location. We then developed a finite, expansion-
proof technique based on two methods: sampling- and spline-
based approximations to describe QoI functions and use these
to advertise desired and provided sensing capabilities. The
use of expansion-proof descriptors rises from the need for
predictable resource usage (e.g., storage, communications)
especially when considering composite providers built from
the aggregation of other “regional” providers. Finally, we
have formulated related optimization problems and proposed
efficient algorithms for selecting the best single, or multiple



collection of providers that are most relevant to our needs
given various constraint objectives.

Future work in this novel area, may include the study
of the various architectural aspects related to QoI function
advertisements eluded earlier in the paper, temporal extensions
to accommodate time-varying QoI functions that could result
by system impediments, such as loss of sensors, and fluidity
of sources such as in participatory sensing.
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