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SIMPLE EXTENDED FORMULATION FOR THE DOMINATING SET

POLYTOPE VIA FACILITY LOCATION

MOURAD BAÏOU AND FRANCISCO BARAHONA

Abstract. In this paper we present an extended formulation for the dominating set
polytope via facility location. We show that with this formulation we can describe
the dominating set polytope for cacti graphs, though its description in the natural
node variables dimension has been only partially obtained. Moreover, the inequalities
describing this polytope have coefficients in {−1, 0, 1}. This is not the case for the
dominating set polytope in the node-variables dimension, because it is known from
[9] that for any integer p, there exists a facet defining inequality having coefficients in
{1, . . . , p}. We also give a linear time algorithm to solve the minimum weight domi-
nating set problem in cacti graphs.

Then we study the p-dominating set problem, where the cardinality of the set is re-
quired to be exactly p. We show that the natural linear programming formulation gives
an integral polytope when the graph is a cycle. We also give a polynomial combinatorial
algorithm for cacti.

1. Introduction

let G = (V,E) be an undirected graph. A set D ⊆ V is called a dominating set if
every node of V \ D is adjacent to a node of D. The minimum weight dominating set
problem (MWDSP) consists of finding a dominating set D that minimizes

∑

v∈D w(v),
where w(v) is a weight associated with each node v ∈ V . The natural linear relaxation
of the MWDSP is defined by the linear program below

min
∑

v∈V

w(v)x(v)(1)

∑

u∈N [v]

x(u) ≥ 1 ∀v ∈ V,(2)

x(v) ≥ 0 ∀v ∈ V,(3)

x(v) ≤ 1 ∀v ∈ V,(4)

where N [v] denotes the set of neighbors of v including it. Define DSP (G) to be the
convex hull of the integer vectors satisfying (2)-(4).

The MWDSP is a special case of the set covering problem. It is NP-hard even when all
the weights are equal to 1, this may be shown using a simple reduction from the vertex
cover problem. A large literature is devoted to this case and many of its variants, for
a deep understanding of the subject we refer to [20, 19]. It has been shown that when
the weights are all equal to 1, the MWDSP is solvable in many classes of graphs, a non-
exhaustive list is cactus graphs [24], trees [24], series-parallel graphs [21], permutation
graphs [11, 12, 13, 17], cocomparability graphs [22], (see chapter 2 in [19] for more
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2 M. BAÏOU AND F. BARAHONA

classes). For the weighted case of the MDWDSP we only know three classes of graphs
where this problem may be solved in polynomial time, namely for threshold graphs [23],
for cycles [8] and for strongly chordal graphs [16]. Little is known from the point of view
of polyhedral approach, and complete characterizations of the polytope are known only
for the three classes of graphs mentioned above. For the case of strongly chordal graphs
Farber [16] gives a primal-dual algorithm to solve the MWDSP this shows that DSP (G)
is defined by (2)-(4).

The polytope DSP (G) has been first characterized for cycle graphs in [8], and later
published in [9]. This result has also been established in [26] using a different approach.
Namely if C = (V,E) is a a cycle, V = {1, . . . , n}, they proved that two types of
inequalities have to be added to (2)-(4) to define DSP (C). These are

(5)
∑

v∈V

x(v) ≥

⌈

|V |

3

⌉

,

when |V | is not a multiple of 3. And

(6) 2
∑

v∈W

x(v) +
∑

v∈V \W

x(v) ≥
∑

ki +
⌈p

2

⌉

,

where W = {v1, . . . , vp} ⊂ V , v1 < v2 < . . . < vp, p ≥ 3, p is odd, and

|C(vi + 1, vi+1 − 1)| = 3ki,

ki ≥ 1, for i = 1, . . . , p (mod p). Here C(u, v) denotes the path u, u+1, . . . , u+ t between
u and v, where t is such that u+ t = v, (the integers are taken modulo n). Notice that
for each set W satisfying the definition above, one inequality (6) is required.

For a family F of inequalities, the separation problem consists of given a vector x̄,
finding an inequality in F violated by x̄, or show that none exists. In [9] they gave a
polynomial algorithm for the separation problem for inequalities (6). This combined with
the Ellipsoid Method [18] shows that the MWDSP is polynomially solvable for cycles. A
combinatorial algorithm for the MWDSP in cycles was not given in [9].

One may also use the results related to the set covering polytope [15, 5, 6, 14, 25],
to cite a few, to establish new results for the MWDSP. The set covering polytope is the
convex hull of {x ∈ R

n : Ax ≥ 1, x ∈ {0, 1}n}, where A is an m × n matrix with 0,1
entries. For example, the polytope DSP (G) when G is a cycle with n nodes coincide
with the set covering polytope when A is the C3

n circulant matrix. Recently in [7] a
complete description of the set covering polytope is established when A is the circulant
matrix Ck

2k or Ck
3k, k ≥ 3.

Let G = (V,E) be an undirected connected graph, the graph G is a cactus if each edge
of G is contained in at most one cycle of G. We give an extended formulation via facility
location to completely characterize the DSP (G) when G is a cactus. This description has

been studied in the original dimension that is R|V | in [8, 9]. They developed several facet
defining inequalities for this case, and showed that this polytope has a more complicated
structure than the case when G is a cycle. Even with the 1-sum composition developed
in [10], the complete characterization of DSP (G) in cactus graphs has not been found.
The main difficulty reported in [8, 9] is the description of the polytope when restricted
to the auxiliary graphs obtained after the decomposition. In our work we show that
with the extended formulation this task is easy and allows us to completely describe this
polytope in a higher dimension. Moreover in [8, 9], it has been shown that for any fixed
integer p, there exist a cactus G such that DSP (G) has a facet defining inequality with
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coefficients 1, . . . , p. In our description all the facets defining inequalities have coefficients
in {0,−1,+1}.

We also use results about the p-median problem to study the p-dominating set problem,
i.e., when the dominating set is required to have a fixed cardinality. For cycles we show
that the natural formulation gives a polytope with all integer extreme points. We also
give a polynomial combinatorial algorithm for cacti.

We complete this introduction with some definitions. An undirected graph G = (V,E)
decomposes by means of a 1-sum, if G may be decomposed into two graphs G1 = (V1, E1)
and G2 = (V2, E2), with V = V1 ∪ V2, V1 ∩ V2 = {u} and E1 ∪E2 = E, E1 ∩E1 = ∅. For
directed graphs a 1-sum is defined similarly. If a graph is a cactus, it can be obtained
by means of 1-sums of cycles and paths.

To an undirected graph G = (V,E) we associate a directed graph
↔

G = (V,A), where
for each edge uv ∈ E we include the arcs (u, v) and (v, u) in A.

For a directed graph G = (V,A) and a set W ⊂ V , we denote by δ+(W ) the set of
arcs (u, v) ∈ A, with u ∈ W and v ∈ V \W . Also we denote by δ−(W ) the set of arcs
(u, v), with v ∈ W and u ∈ V \W . We write δ+(v) and δ−(v) instead of δ+({v}) and
δ−({v}), respectively. If there is a risk of confusion we use δ+G and δ−G.

This paper is organized as follows. In Section 2 we review polyhedral results on Facility
location. In Section 3 we give an extended formulation of DSP (G) for cacti. In Section 4
we study algorithmic aspects. In Section 5 we study the p-dominating set problem.

2. Facility location

Here we review results on the facility location polytope that will be used in the next
section. If G = (V,A) is a directed graph, not necessarily connected, where each arc
and each node has a cost (or a profit) associated with it. Consider the following version
of the uncapacitated facility location problem (UFLP), where each location v ∈ V has
a weight w(v) that corresponds to the revenue obtained by opening a facility at that
location, minus the cost of building this facility. Each arc (u, v) ∈ A has a weight w(u, v)
that represents the revenue obtained by assigning the customer u to the opened facility
at location v, minus the cost originated by this assignment. The goal is to select some
nodes where facilities are opened, and the non selected nodes might be assigned in such
a way that the overall profit is maximized. This version of the UFLP is called the prize-
collecting uncapacitated facility location problem (pc-UFLP). The following is a linear
programming relaxation of the pc-UFLP.

max
∑

(u,v)∈A

w(u, v)y(u, v) +
∑

v∈V

w(v)x(v)(7)

∑

(u,v)∈A

y(u, v) + x(u) ≤ 1 ∀u ∈ V,(8)

y(u, v) ≤ x(v) ∀(u, v) ∈ A,(9)

y(u, v) ≥ 0 ∀(u, v) ∈ A,(10)

x(v) ≥ 0 ∀v ∈ V,(11)

For each node u, the variable x(u) takes the value 1 if the node u is selected and 0
otherwise. For each arc (u, v) the variable y(u, v) takes the value 1 if u is assigned to v
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and 0 otherwise. Inequalities (8) express the fact that either node u can be selected or
it can be assigned to another node. Inequalities (9) indicate that if a node u is assigned
to a node v then this last node should be selected.

Let P (G) be the polytope defined by (8)-(10), and let LP (G) be the convex hull of

P (G) ∩ {0, 1}|V |+|A|. Clearly
LP (G) ⊆ P (G),

and in most cases new inequalities should be added to (8)-(11) to obtain LP (G). Below
we study this for cycles and cacti.

2.1. Facility location polytope of a bidirected cycle. A directed graph G = (V,A)
is called a bidirected cycle (BICr), if V = {1, . . . , r}, and for each i = 1, . . . , r, the
arcs (i, i + 1) and (i + 1, i) are in A, the indices are taken modulo r. The set of arcs is
A(BICr). A bidirected path is defined in a similar way. Two types of inequalities are
needed for BICr, they are shown below.

2.1.1. Bidirected cycle inequalities. It may be easily seen that the inequality
∑

a∈A(BICr)

y(a) ≤

⌊

2|r|

3

⌋

,(12)

is valid for LP (G). This inequality is called the bidirected cycle inequality. It has been
introduced in [1].

2.1.2. Lifted g-odd cycle inequalities. A simple cycle C is an ordered sequence

v0, a0, v1, a1, . . . , ap−1, vp,

where

• vi, 0 ≤ i ≤ p− 1, are distinct nodes,
• ai, 0 ≤ i ≤ p− 1, are distinct arcs,
• either vi is the tail of ai and vi+1 is the head of ai, or vi is the head of ai and
vi+1 is the tail of ai, for 0 ≤ i ≤ p− 1, and

• v0 = vp.

By setting ap = a0, we associate with C three more sets as below.

• We denote by Ĉ the set of nodes vi, such that vi is the head of ai−1 and also the
head of ai, 1 ≤ i ≤ p.

• We denote by Ċ the set of nodes vi, such that vi is the tail of ai−1 and also the
tail of ai, 1 ≤ i ≤ p.

• We denote by C̃ the set of nodes vi, such that either vi is the head of ai−1 and
also the tail of ai, or vi is the tail of ai−1 and also the head of ai, 1 ≤ i ≤ p.

Notice that |Ĉ| = |Ċ|. A cycle is called g-odd (generalized odd) if p+ |Ċ| (or |Ċ|+ |C̃|)

is odd, otherwise it is called g-even. A cycle C with Ċ = Ĉ = ∅ is a directed cycle. The
set of arcs in C is denoted by A(C).

Let C be a g-odd cycle. Now we define the lifting set Ã(C) as follows. For each node

i ∈ Ċ we have two cases:

• If i− 1 and i+ 1 are in C̃, we pick arbitrarily one arc from {(i− 1, i), (i+ 1, i)}
and add it to Ã(C).

• If only one of the neighbors of i is in C̃, say the node j. We add (j, i) to Ã(C).
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Once the set Ã(C) has been defined, a lifted g-odd cycle inequality has the form

(13)
∑

a∈A(C)

y(a) +
∑

a∈Ã(C)

y(a)−
∑

v∈Ĉ

x(v) ≤
|C̃|+ |Ĉ| − 1

2
.

Notice that given a g-odd cycle C, we might have several lifting sets Ã(C), therefore
we might have several lifted g-odd cycle inequalities.

The following characterization of LP (BICn) was proved in [4].

Theorem 1. LP (BICn) is described by the constraints (8)-(11), the bidirected cycle
inequality (12) with respect to BICn, if n = 3k+1, and the lifted g-odd cycle inequalities
(13). Moreover, these inequalities describe a minimal system for LP (BICn).

2.2. Polytope description for a cactus. Let G = (V,E) be an undirected graph that

is a cactus. We plan to build the directed graph
↔

G and study LP (
↔

G). Since G is obtained
by means of 1-sums of cycles and paths, we need the theorem below, proved in [2]. We
are going to use z to denote the vector (x, y). Also we use z(S) to denote

∑

e∈S z(e).

Theorem 2. Let D be a directed graph that is a 1-sum of D1 = (V1, A1) and D2 =
(V2, A2), with V1 ∩ V2 = {u}. Let D′

1 be the graph obtained from D1 by replacing u with
u′, and D′

2 is obtained from D2 by replacing u with u′′. Suppose that the system

Az′ ≤ b(14)

z′
(

δ+
D′

1

(u′)
)

+ z′(u′) ≤ 1(15)

describes LP (D′
1). Suppose that (14) contains the inequalities (8)-(11) except for (15).

Similarly suppose that

Cz′′ ≤ d(16)

z′′
(

δ+
D′

2

(u′′)
)

+ z′′(u′′) ≤ 1(17)

describes LP (D′
2). Also (16) contains the inequalities (8)-(11) except for (17). Then the

system below describes an integral polyhedron.

Az′ ≤ b(18)

Cz′′ ≤ d(19)

z′
(

δ+
D′

1

(u′)
)

+ z′′
(

δ+
D′

2

(u′′)
)

+ z′(u′) ≤ 1(20)

z′(u′) = z′′(u′′).(21)

Thus the theorem below follows from Theorem 1 and Theorem 2.

Theorem 3. If G is a cactus, then LP (
↔

G) is described by the constraints (8)-(11), the
bidirected cycle inequalities (12), and the lifted g-odd cycle inequalities (13).

2.3. Algorithmic decomposition. The polyhedral decomposition shown in the last
subsection, has the following algorithmic counterpart.

Consider the pc-UFLP in D. To decompose it we first treat in D1 the following three
cases.

• Let λ0 be the value of an optimal solution in D1 with the restriction x(u′) +
y(δ+D1

(u′)) = 0.
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• Let λ1 be the value of an optimal solution in D1 with the restriction x(u′) = 1.
• Let λ2 be the value of an optimal solution inD1 with the restriction y(δ+D1

(u′)) = 1.

Then we add a new node t to D2 and the arc (u′′, t). Let D′
2 be this new graph. Then

in D′
2 we give the weight λ1−λ0 to u′′, and the weight λ2−λ0 to (u′′, t′′). Let W be the

weight of an optimal solution in D′
2 with these weights, then the weight of an optimal

solution of D is W + λ0.

3. Extended formulation of DSP (G)

Here we use the results from the preceding section to give an extended formulation for
DSP (G), when G is a cactus. Starting from an undirected graph G = (V,E) we build
↔

G = (V,A), and associate the following system.
∑

(u,v)∈A

y(u, v) + x(u) = 1 ∀u ∈ V,(22)

y(u, v) ≤ x(v) ∀(u, v) ∈ A,(23)

y(u, v) ≥ 0 ∀(u, v) ∈ A,(24)

x(v) ≥ 0 ∀v ∈ V,(25)

Let P=(
↔

G) be the polytope defined by this system. This is a face of the polytope
defined by (8)-(10), because inequalities (8) have been transformed into equations. Let

LP=(
↔

G) be the convex hull of P=(
↔

G) ∩ {0, 1}|V |+|A|, LP=(
↔

G) is a face of LP (
↔

G). First
we need the following lemma.

Lemma 4. For any undirected graph G, the projection of LP=(
↔

G) onto the x’s variables
is exactly DSP (G).

Proof. We have to prove

DSP (G) = {x | there is a vector y such that (x, y) ∈ LP=(
↔

G)}

The proof consists of two parts.

(i) First consider x̄ ∈ DSP (G). We have

x̄ =
∑

αix
i,

∑

αi = 1, α ≥ 0,

where {xi} are extreme points of DSP (G).
Consider now a particular vector xk. Let Dk = {u |xk(u) = 1}. For each v ∈

V \Dk, there is at least one of its neighbors in Dk, wv say. We set yk(v, wv) = 1.

We set yk(i, j) = 0 for all other arcs (i, j) in
↔

G.

Each vector (xk, yk) is an extreme point of LP=(
↔

G). So

(x̄, ȳ) =
∑

αi(x
i, yi)

is a vector in LP=(
↔

G).

(ii) Consider now (x̄, ȳ) ∈ LP=(
↔

G). We have

(x̄, ȳ) =
∑

αi(x
i, yi),

∑

αi = 1, α ≥ 0,
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where each vector (xi, yi) is an extreme point of LP=(
↔

G). Then each vector xi

is the incidence vector of a dominating set Di, therefore it is an extreme point of
DSP (G). Then

x̄ =
∑

αix
i

is a vector in DSP (G). �

From this lemma and Theorem 3 we obtain the following.

Corollary 5. If G is a cactus, then LP=(
↔

G) is described by the constraints (22)-(25),
the bidirected cycle inequalities (12), and the lifted g-odd cycle inequalities (13). Since

DSP (G) is a projection of LP=(
↔

G), we have an extended formulation for DSP (G).

4. Algorithmic consequences

In [9] the authors they give the first polynomial algorithm to solve the minimum
weighted dominating set problem (MWDSP) in a cycle. They showed that the sepa-
ration of the inequalities defining the dominating set polytope in a cycle can be done
in polynomial time, then their algorithm is based on the ellipsoid method [18]. In this
section we show that using facility location techniques one can derive a simple combi-
natorial algorithm. In the next subsection, we give a simple linear time combinatorial
algorithm to solve the uncapacitated facility location problem when the underlying graph
is a bidirected cycle. As a consequence, we obtain a linear time algorithm to solve the
MWDSP in cycles. In subsection 4.2 we give the first polynomial time algorithms to

solve the UFLP in
↔

G when G is a cactus graph. As a consequence we obtain the first
polynomial time algorithm to solve the MWDSP in cacti.

4.1. Linear time algorithm for bidirected cycles. In this subsection we give an
algorithm to solve the prize-collecting uncapacitated facility location (pc-UFLP), when
G = BICn. That is we want to solve (7)-(11) with the additional constraint that (x, y)
must be a 0-1 vector.

For any index i we can decompose in the following three cases:

• Neither of (i, i+ 1) nor (i+ 1, i) is in the solution.
• (i, i+ 1) is in the solution.
• (i+ 1, i) is in the solution.

Each of the three preceding cases reduces to a pc-UFLP problem in a bidirected path.
Now let us solve pc-UFLP in a bidirected path.

Suppose that we deal with a bidirected path with nodes 1, . . . , n, and n ≥ 4. The
algorithm consists of the following two parts.

• First consider the bidirected path induced by n− 2, n− 1, n. We denote it by P0.
We keep the original weights, but we set w(n − 2) = 0. Let λ0 be the weight of
an optimal solution in P0 without the arcs (n−2, n−1) and (n−1, n−2). Let λ1

be the weight of an optimal solution in P0 with (n− 2, n− 1) in the solution. Let
λ2 be the weight of an optimal solution in P0 with (n− 1, n− 2) in the solution.

• Then denote by P1 the bidirected path induced by 1, . . . , n − 1. We give the
weight λ1−λ0 to (n−2, n−1) and the weight λ2−λ0 to (n−1, n−2). All other
nodes and arcs keep their original weights. Let W be the weight of an optimal
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solution in P1, then the weight of an optimal solution in the original path is
W + λ0.

The same procedure is applied recursively to P1. Since dealing with P0 takes constant
time, we have a linear time algorithm. Also, since treating a bidirected cycle reduces to
treating three bidirected paths, we have a linear time algorithm to pc-UFLP when the
underlying graph is a bidirected cycle.

Notice that the same algorithm is applied to solve the uncapacitated facility location
problem (UFLP). In this problem, all inequalities (8) are replaced by equations. The
MWDSP in a cycle reduces to the UFLP in a bidirected cycle. As a consequence we have
the following result

Theorem 6. The MWDSP in a cycle (and the UFLP in a bidirected cycle) can be solved
in linear time.

4.2. Polynomial time algorithm for cacti. First we will a give a cutting-plane poly-

nomial time algorithm to solve pc-UFLP in the graph
↔

G when G is a cactus. From
Theorem 3 it suffices to develop a polynomial time algorithm to solve the separation

problem associated with inequalities (12) and (13). Recall that
↔

G may be decomposed
by means of 1-sum into bidirected cycles and bidirected paths. The number of bidirected
cycles is at most the number of nodes of G and hence one can easily introduce the bidi-
rected cycle inequalities (12) in any linear program. Thus we only need to solve the

separation problem for the lifted g-odd inequalities (13) for each component of
↔

G that is
a bidirected cycle.

4.2.1. Separating lifted g-odd inequalities in a bidirected cycle. Given a vector (x̄, ȳ) we
want to find a lifted g-odd cycle inequality (13) violated by (x̄, ȳ), if there is any.

Theorem 7. The g-odd lifted cycle inequalities (13) may be separated in linear time for
bidirected cycles.

Proof. A lifted g-odd cycle inequality (13) has the form

∑

a∈A(C)

y(a) +
∑

a∈Ã(C)

y(a)−
∑

v∈Ĉ

x(v) ≤
|C̃|+ |Ĉ| − 1

2
,

with |A(C)|+ |Ĉ| odd. It can also be written as
∑

a∈A(C)

2y(a) +
∑

a∈Ã(C)

2y(a) +
∑

v∈Ĉ

(1− 2x(v)) ≤ |A(C)| − 1,

or

(26)
∑

a∈A(C)

(1− 2y(a))−
∑

a∈Ã(C)

2y(a) +
∑

v∈Ĉ

(2x(v)− 1) ≥ 1.

Thus we look for a cycle that violates (26). For that we create a directed graph
D′ = (V ′, A′) as follows. For every arc (i, i + 1) and (i + 1, i) we create a node in D′.
The arcs in A′ are as below. See Figure 1.

• From (i, i + 1) to (i + 1, i + 2) we create an arc with weight 1 − 2ȳ(i + 1, i + 2)
and label “odd.”
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• From (i, i+1) to (i+2, i+1) we create an arc with weight 2x̄(i+1)−2ȳ(i+2, i+1)
and label “even.”

• From (i + 1, i) to (i + 1, i + 2) we create an arc with weight 1 − 2ȳ(i + 1, i + 2)
and label “odd.”

• From (i + 1, i) to (i + 2, i + 1) we create an arc with weight 1 − 2ȳ(i + 2, i + 1)
and label “odd.”

• From (i, i− 1) to (i+ 1, i+ 2) we create an arc with weight

2− 2ȳ(i, i+ 1)− 2ȳ(i+ 1, i)− 2ȳ(i+ 1, i+ 2)

and label “even.” This arc corresponds to the case when either (i, i+1) or (i+1, i)

is in the lifting set Ã(C).

i + 1i

Figure 1

Then we look for a minimum weight directed cycle with an odd number of odd arcs
in D′. If the weight of such a cycle is less than one, we have found a violated inequality.

Now we give the details of how to find a minimum weight directed cycle with an odd
number of odd arcs. We pick and index i, and remove the arcs entering (i, i + 1) and
(i + 1, i). We add an extra node s and connect it to (i, i + 1) and (i + 1, i) with even
arcs of weight zero. For each node v in D′ let fo(v) (resp. fe(v)) be the weight of
a shortest path from s to v having an odd (resp. even) number of odd arcs. We set
fe(s) = 0, fo(s) = fo(v) = fe(v) = ∞ for every other node v in D′. We call the labels
of s permanent and all others temporary. For each arc (u, v) we denote by w(u, v) its
weight. Then for a node v such that all its predecessors have permanent labels we update
its labels as below.

fo(v) = min
{

min
u

{fo(u) + w(u, v) : (u, v) is even},(27)

min
u

{fe(u) + w(u, v) : (u, v) is odd}
}

fe(v) = min
{

min
u

{fo(u) + w(u, v) : (u, v) is odd},(28)

min
u

{fe(u) + w(u, v) : (u, v) is even}
}

Then the labels of v are called permanent, and we continue.

Once all labels are permanent, we use the arcs entering (i, i+1) and (i+1, i) to find a
shortest directed cycle with an odd number of odd arcs and including either (i, i+ 1) or
(i+1, i). Next we have to consider the case when neither (i, i+1) nor (i+1, i) is in the
shortest cycle. This is when the arc from (i, i− 1) to (i+ 1, i+ 2) is part of the shortest
cycle. For that we repeat the same procedure with i′ = i+ 1.

Since the indegree of each node in D′ is at most three, the labels in (27) and (28) are
computed in constant time for each node. Therefore this is a linear time algorithm. �
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The above discussion combined with the ellipsoid method implies the following.

Theorem 8. If G is a cactus, then the MWDSP can be solved in polynomial time. Also

the pc-UFLP in
↔

G can be solved in polynomial time.

4.2.2. Linear time combinatorial algorithm. We conclude this section by noticing that
the algorithmic decomposition given in subsection 2.3 together with the algorithm of
subsection 4.1 imply the following.

Theorem 9. If G is a cactus, then the MWDSP can be solved in linear time. Also the

pc-UFLP in
↔

G can be solved in linear time.

5. The p-dominating set problem

In this section we extend results from the p-median problem to the dominating set
problem. For a graph G = (V,E) and a positive integer p, we consider now dominating
sets D ⊆ V with |D| = p. In this section we show that for a cycle it is enough to add an
equation to system (2)-(4) to have an integral polytope. Surprisingly inequalities (12)
and (13) are not needed. This is stated in Theorem 10 below.

Theorem 10. If G = (V,E) is a cycle, then system below defines an integral polytope.

x(N [v]) ≥ 1 ∀v ∈ V,(29)

x(v) ≥ 0 ∀v ∈ V,(30)

x(v) ≤ 1 ∀v ∈ V,(31)
∑

v∈V

x(v) = p.(32)

Proof. Consider
↔

G = (V,A), and the system below,

∑

(u,v)∈A

y(u, v) + x(u) = 1 ∀u ∈ V,(33)

y(u, v) ≤ x(v) ∀(u, v) ∈ A,(34)

y(u, v) ≥ 0 ∀(u, v) ∈ A,(35)

x(v) ≥ 0 ∀v ∈ V,(36)
∑

v∈V

x(v) = p.(37)

This is a linear relaxation of the p-median problem in
↔

G, where the number of open
facilities is required to be exactly p. It was shown in [3] that this system defines an
integral polytope if and only if G is a path or a cycle.

To complete the proof we have to show that when we project the variables y, we
obtain the system (29)-(32). In order to apply Fourier-Motzkin elimination, we re-write
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the system (33)-(37) as below.
∑

(u,v)∈A

y(u, v) + x(u) ≤ 1 ∀u ∈ V,(38)

−
∑

(u,v)∈A

y(u, v)− x(u) ≤ −1 ∀u ∈ V,(39)

y(u, v)− x(v) ≤ 0 ∀(u, v) ∈ A,(40)

−y(u, v) ≤ 0 ∀(u, v) ∈ A,(41)

−x(v) ≤ 0 ∀v ∈ V,(42)
∑

v∈V

x(v) ≤ p,(43)

−
∑

v∈V

x(v) ≤ −p.(44)

Then to eliminate a variable x(u, v), we sum an inequality where this variable has the
coefficient 1 with an inequality where the variable has the coefficient -1. This is done for
all pairs of inequalities with these characteristics. The details are as follows.

• The combination of (39) and (40) gives inequalities (29).
• The combination of (38) and (41) gives inequalities (31).
• The combination of (40) and (41) gives inequalities (30).
• Inequalities (42), (43) and (44) remain unchanged.

The proof is complete. �

We obtain the result below.

Corollary 11. The p-dominating set problem in cycles is polynomially solvable.

Remark 12. In general, for cacti the polytope defined by (29)-(32) is not integral.
To see this, consider the graph G = (V,E), where V = {1, 2, 3, 4, 5, 6, 7} and E =
{{1, 2}, {1, 3}, {2, 4}, {3, 5}, {4, 6}, {5, 6}, {6, 7}}. Consider the vector x(1) = 1, x(2) =
x(3) = 0, x(4) = x(5) = x(6) = x(7) = 1/2. This is an extreme point, to see this, notice
that it is the unique solution of the following system of equations.

x(1) = 1

x(2) = 0

x(3) = 0

x(2) + x(4) + x(6) = 1

x(3) + x(5) + x(6) = 1

x(6) + x(7) = 1

x(1) + x(2) + x(3) + x(4) + x(5) + x(6) + x(7) = 3

5.1. Extension to Cacti. Here we give an algorithm for the p-median problem in cacti,
that is used to solve the p-dominating set problem.

5.1.1. Decomposition algorithm. Suppose that D is a directed graph that is a 1-sum of
D1 = (V1, A1) and D2 = (V2, A2), and V1 ∩ V2 = {u}. We need the definitions below.

• Let λ0(k) be the optimal value of the k-median problem in D2 \ u.
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• Let λ1(k) be the optimal value of the k-median problem in D2 with the constraint
that u is included in the solution.

• Let λ2(k) be the optimal value of the k-median problem in D2 with the constraint
that u is not included in the solution. In this case an arc (u, t) should be in the
solution, with t ∈ V2 \ u.

Let D′
1 be the graph obtained from D1 by adding the node u′, and the arc (u, u′).

Then in D′
1 we give the weight λ1(k + 1)− λ0(k) to u, and the weight λ2(k)− λ0(k) to

the arc (u, u′). If we solve the (p − k + 1)-median problem in D′
1, we obtain a solution

of value α(k). It contains p− k nodes in V1, and can be combined with a solution in D2

with k nodes in V2 \ u. This gives a solution in D whose value is β(k) = α(k) + λ0(k).
From this we obtain the optimal value of the p-median problem as

min
0≤k≤p

β(k).

5.1.2. Combinatorial algorithm for a cycle. Here we assume that D = (V,A) is a bidi-
rected cycle, and D′ has been obtained by adding a node u′ for each u ∈ V , and also the
arc (u, u′). These new arcs are called artificial. This is the general case that has to be
used in the decomposition algorithm above.

For any index i we decompose in the following three cases:

• Neither of (i, i+ 1) nor (i+ 1, i) is in the solution.
• (i, i+ 1) is in the solution.
• (i+ 1, i) is in the solution.

In each case we have a bidirected path with the artificial arcs defined above. This can
be decomposed by means of 1-sums. So the decomposition algorithm above is applied,
where one piece consists of a bidirected path with two original nodes and two artificial
nodes. This piece is treated in constant time. Since the algorithm uses p values of the
parameter k, we have an algorithm that requires quadratic time. We state this below.

Theorem 13. The p-dominating set problem in a cycle C = (V,E) can be solved in
O(|V |2) time.

When we apply this decomposition algorithm to a cactus, each piece is a cycle. Treat-
ing one piece once takes quadratic time, and since at most p values of the parameter k
are needed, the algorithm requires cubic time. We have the following.

Theorem 14. The p-dominating set problem in a cactus G = (V,A) can be solved in
O(|V |3) time.

6. Concluding remarks

We have used results for facility location to study the dominating set problem. Instead
of having only the node variables, having the arc variables allowed us to not only to derive
polyhedral characterizations, but to also obtain linear time algorithms.

We also used results from the p-median problem to study the p-dominating set prob-
lem, and prove Theorem 10. We have not been able to find a direct proof of this appar-
ently simple result.



EXTENDEND FORMULATION FOR THE DOMINATING SET POLYTOPE 13

References

[1] P. Avella, A. Sassano, and I. Vasilév, Computational study of large-scale p-median problems,
Mathematical Programming, 109 (2007), pp. 89–114.
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