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Abstract

Split cuts are among the most important and well-understood cuts for general mixed-integer
programs. In this paper we consider some recent generalizations of split cuts and compare their
relative strength. More precisely, we compare the elementary closures of split, cross, crooked
cross and general multi-branch split cuts as well as cuts obtained from multi-row and basic
relaxations.

We present a complete containment relationship between the closures of split, rank 2 split,
cross, crooked cross and general multi-branch split cuts. More specifically, we show that 3-branch
split cuts strictly dominate crooked cross cuts, which in turn strictly dominate cross cuts. We
also show that multi-branch split cuts are incomparable to rank 2 split cuts. In addition, we
also show that cross cuts, and hence crooked cross cuts, cannot always be obtained from 2-row
relaxations or from basic relaxations. Together, these results settle some open questions raised
in earlier papers.

1 Introduction

Cutting planes are crucial for solving mixed-integer programs (MIPs), and the Gomory mixed-
integer (GMI) cut is currently among the most effective cutting planes for general MIPs. Cook,
Kannan and Schrijver [CKS90] studied a class of disjunctive cuts called split cuts (formal definitions
are presented in Section 2). Despite their simplicity, many known families of cutting planes (or
cuts for short) such as the GMI, lift-and-project, and flow cover cuts can be viewed as split cuts
from very simple disjunctions. Due to their importance, these cuts have been extensively studied,
both theoretically [NW90, MW01, OM01, CL01, BP03, ACL05, BCM12] and computationally
[BCCN96, BS08, DGL10, DG10, Bon12, FS11].

In the following, we refer to a mixed-integer set as the set of mixed-integer solutions of a given
set of linear equations or inequalities (a fixed subset of variables are restricted to be integral),
and refer to the polyhedron defined by these linear constraints as the the linear relaxation of the
mixed-integer set. Cuts for a mixed-integer set are linear inequalities valid for its convex hull. Split
cuts (and other structured families of cuts) for a mixed-integer set are assumed to be derived using
both the linear constraints and integrality restrictions defining the set. The elementary closure of
a family of cuts for a mixed-integer set is the set of (real) points in its linear relaxation satisfying
all cuts in the family.

When the linear constraints defining a mixed-integer set are given in inequality form, Andersen,
Cornuéjols and Li [ACL05] proved that any split cut can be obtained as a split cut from a basic
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relaxation; also see [DGR11] for a simpler proof. A basic relaxation is the mixed-integer set defined
by a maximal subset of linearly independent constraints of the linear relaxation and the original
integrality restrictions (the remaining linear constraints are dropped). These relaxations generalize
the corner relaxation introduced by Gomory [Gom69], as they also consider infeasible bases of
the linear relaxation. When a mixed-integer set is defined by linear equations and nonnegativity
constraints on some variables, then any split cut can be obtained as a mixed-integer rounding
(MIR) inequality, as described by Nemhauser and Wolsey; see [NW88, NW90]. MIR inequalities
are obtained by using nonnegativity constraints together with a single equation obtained as a linear
combination of (a linearly independent subset of) the constraints of the linear relaxation. Therefore,
depending on how the linear relaxation of the set is defined, it is possible to view split cuts as valid
inequalities obtained from basic relaxations, or, as cuts obtained from 1-row relaxations.

Recently, split cuts have been generalized in different ways to obtain more effective cutting
planes. One such generalization is to use two or more split disjunctions simultaneously to obtain
valid inequalities. This gives rise to multi-branch split cuts, or t-branch split cuts when t split
disjunctions are used. These cuts were first studied by Li and Richard [LR08] and recently Dash
and Günlük extended some of their results [DG11]. Dash, Dey and Günlük [DDG, DDG11a] study
2-branch split cuts (and call them cross cuts) and crooked cross cuts (which are derived using three
linearly dependent split disjunctions). Crooked cross cuts subsume cross cuts and are implied by
3-branch split cuts.

A different generalization of split cuts is obtained by considering multi-row relaxations of the
mixed-integer set instead of one-row relaxations. This approach was introduced by Andersen,
Louveaux, Weismantel and Wolsey [ALWW07] who study the so-called two-row continuous group
relaxation and show that the convex hull of solutions of this relaxation is given by (two-dimensional)
lattice-free cuts. This topic has received significant attention lately; see [CCZ] for a recent survey.
More generally, a k-row relaxation of a mixed-integer set is constructed by aggregating the equations
defining the linear relaxation into k equations for some small integer k.

In this paper we compare cuts obtained from different generalizations of split cuts. In particular,
we compare the strength of split, cross, crooked cross and general t-branch split cuts as well as
cuts obtained from multi-row and basic relaxations, by comparing their elementary closures. As
mentioned earlier, some results comparing the strength of these closures are already present in the
literature; we next review some of these results and highlight our contributions in this paper. We
say that a family of cuts dominates another if for every mixed-integer set, the elementary closure
of the first family of cuts for the set is contained in the elementary closure of the second family
of cuts for the same set. We say that the dominance is strict if there are examples where the
elementary closure of the first family is strictly contained in the elemetary closure of the second
family. Henceforth, we refer to the elementary closure of a family ℱ of cuts for a mixed-integer
set as its ℱ-closure. Further, we define the second ℱ-closure as the elementary closure of the
family ℱ of cuts for the mixed-integer set defined by the constraints in the ℱ-closure of the original
mixed-integer set along with its integrality restrictions.

Multi-branch split cuts. Recall that split cuts are the same as to 1-branch split cuts and cross
cuts are the same as 2-branch split cuts. Cook, Kannan and Schrijver [CKS90] presented a simple
mixed-integer set (with two integer variables and one continuous variable, see Example 2) such
that its convex hull is strictly contained in its second split closure (actually in its nth split closure
for any finite n).In stark contrast, Andersen, Louveaux, Weismantel and Wolsey [ALWW07] show
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that this convex hull can be obtained by adding a single two-dimensional lattice-free cut. Dash,
Dey and Günlük [DDG] showed that this lattice-free cut is also a cross cut and therefore for this
simple set, the cross closure is strictly contained in the split closure. This result was extended by
Li and Richard [LR08] who showed that for t > 2, t-branch split cuts strictly dominate 2-branch
split cuts. Subsequently, it was shown in [DG11] that for t > k > 0, t-branch split cuts strictly
dominate k-branch split cuts.

In addition, it is known that 3-branch split cuts dominate crooked cross cuts which, in turn,
dominate cross cuts [DDG11a, DDG]. However, these two dominance relationships were not known
to be strict prior to our work. In [DDG11a] the authors show that there are crooked cross cuts that
cannot be obtained by a single cross cut; however, this result does not rule out the possibility that
the cross closure (which contains potentially infinitely many cuts) is always equal to the crooked
cross closure.

In this paper we establish that 3-branch split cuts strictly dominate crooked cross cuts which,
in turn, strictly dominate 2-branch split cuts.

Theorem 1.1. There is a mixed-integer set such that its crooked cross closure is strictly contained
in its cross closure.

Theorem 1.2. There is a mixed-integer set such that its 3-branch closure is strictly contained in
its crooked cross closure.

Dash et al. remark (Section 4.1 of [DGV11]) that although there are cross cuts (Example 2
of [CKS90]) that cannot be obtained via rank-2 split cuts, it is not known if in fact the cross
closure strictly dominates the second split closure. This question is relevant in their computational
procedure for generating cross cuts. We also answer this question and show that cross cuts and
rank-2 split cuts are not comparable.

Theorem 1.3. For every finite integer t > 0, there is a mixed-integer set whose second split closure
is strictly contained in its t-branch split closure.

In Figure 1 we summarize the dominance relationships between these closures, with a plain
arrow from one closure to another if the first closure dominates the second closure, and a crossed
arrow from a closure to another, if the first does not dominate the second one (in the sense that for
some mixed-integer set, the first closure is not contained in the second closure). When both types
of arrows are present between a pair of closures, then one closure strictly dominates the other.
Dashed arrows indicate results known prior to this paper and solid arrows indicate results obtained
in this paper. In the figure, we denote the closure of t-branch split cuts with tBC for t = 1, 2, 3
and we use 4+BC for all t > 3. We denote the crooked cross cut closure by CCC and use SC2 to
denote the second split closure. Note that the displayed arrows can be used to infer the relationship
between any pair of the closures considered.

Cuts from relaxations. Structured relaxations of mixed-integer sets have been widely used to
generate cutting planes for the original sets. The literature on the theoretical aspects of different re-
laxations is extensive; for a small set of representative publications, see [MW99, CCZ11, ALWW07].
In this paper we focus on two relaxations: the basic and the k-row relaxations (see Section 2.2 for
formal definitions).

When the linear relaxation of the mixed-integer set is given in equality form, Dash, Dey and
Günlük [DDG] showed that every cross cut (resp. crooked cross cut) can be obtained as a cross cut
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Figure 1: Comparing multi-branch split cuts with crooked cross cuts and rank 2 split cuts

(resp. crooked cross cut) from a 3-row relaxation. However, they left as an open question whether
these cuts can also be obtained from 2-row relaxations. They also note that if crooked cross cuts
can be obtained as crooked cross cuts from 2-row relaxations, then crooked cross cuts would be
equivalent to cuts from all 2-row continuous group relaxations of the set. In this paper we answer
this question.

Theorem 1.4. There is a mixed-integer set such that its cross cut closure cannot be obtained by
all cuts from its 2-row relaxations.

Since the crooked cross closure is contained in the cross closure, the above theorem directly
implies the following.

Corollary 1.5. There is a mixed-integer set such that its crooked cross cut closure cannot be
obtained by all cuts from its 2-row relaxations.

Finally, we also show that unlike split cuts, t-branch split cuts in general cannot always be
obtained from basic relaxations.

Theorem 1.6. There is a mixed-integer set such that its cross cut closure cannot be obtained by
all cuts from its basic relaxations.

In Figure 2 we show some of the dominance relationships between these closures. We denote
the closure of cuts from k-row relaxations by kR for k = 1, 2, 3 and we use CCC to denote crooked
cross cuts, CC to denote cross cuts (2-branch split cuts) and SC to denote split cuts (1-branch split
cuts). We use BR to denote cuts from basic relaxations. The fact that 2R does not dominate 3R
follows from the fact that 2R does not dominate CC. The fact that 1R does not dominate 2R can
be proved using the example of Cook, Kannan and Schrijver [CKS90] where the integer hull has
infinite split rank. It is shown in [ALWW07] that the integer hull in this example can be obtained
from a 2-row relaxation. On the other hand, it is possible (and nontrivial) to show that all cuts
from 1-row relaxations of this example are split cuts, and thus cannot yield the integer hull. We
believe that CCC does not dominate 1R but we cannot prove this.

Organization of the paper. The outline of the paper is as follows. In the next section we
formally define the families of cuts studied in the paper and their closures. Unlike the case of the
split closure, the polyhedrality of t-branch split closures for t ≥ 2 is not known and consequently we
need tools to tackle the interaction of potentially infinitely many cuts; Section 3 presents the main
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Figure 2: Comparing cuts from multi-row and basic relaxations with multi-branch split cuts

technical tool for this purpose, dubbed the “Height Lemma”. In Sections 4, 5, and 6 we compare
the closures of multi-branch split cuts and crooked cross cuts. In the last two sections we compare
the strength of cross cuts with cuts obtained from multi-row and basic relaxations.

2 Preliminaries

In this paper we study mixed-integer sets of the following form: given rational matrices A,G, b
with dimensions r ×m, r × n and r × 1, respectively, and the mixed-integer lattice I = ℤm × ℝn,
the polyhedron P is given by

P = {(x, y) ∈ ℝm × ℝn : Ax+Gy = b, y ≥ 0}, (1)

and the associated mixed-integer set is

P I = {(x, y) ∈ ℤm × ℝn : Ax+Gy = b, y ≥ 0}. (2)

P is called the linear relaxation of P I . Clearly, different polyhedra, when intersected with I, can
yield the same mixed-integer set. Throughout this paper, however, we associate the mixed-integer
set P I with a unique linear relaxation P . This association is necessary when considering elementary
closures with respect to families of cuts as these cuts are derived using the linear relaxation of the
mixed-integer set in hand.

2.1 Split Cuts and More General Disjunctive Cuts

A split disjunction for a mixed-integer lattice ℤm × ℝn is a set of the form

D(�, ) =
{

(x, y) ∈ ℝm+n : �x ≤ 
}

∪
{

(x, y) ∈ ℝm+n : �x ≥  + 1
}

for some � ∈ ℤm,  ∈ ℤ. Define the split set associated with the disjunction D(�, ) as

S(�, ) = {(x, y) ∈ ℝm+n :  < �x <  + 1} = ℝm+n ∖D(�, ).

Split cuts. We call a linear inequality a split cut for P with respect to the disjunction D(�, )
if it is valid for P ∩ D(�, ) [CKS90]. Notice that multiple split cuts can be generated from the
same split disjunction. The split closure of P with respect to the lattice I is denoted by SC(P )
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(the lattice I will be clear from the context). SC(P ) is defined as the points in P satisfying all
split cuts for P derived from split disjunctions for I:

SC(P ) =
∩

(�,)∈ℤm+1

conv(P ∩D(�, )) =
∩

(�,)∈ℤm+1

conv(P ∖ S(�, )),

where conv(.) denotes the convex hull operator. As I is contained in D(�, ) for all (�, ) ∈ ℤm+1,
it follows that P I ⊆ SC(P ), namely split cuts do not cut off any point in the set P I . One can
iterate the closure operator and define (for an integer k) the kth split closure SCk(P ) recursively
by setting SCk(P ) = SC(SCk−1(P )) and SC1(P ) = SC(P ).

t-branch split cuts. Consider an integer t together with �i ∈ ℤm and i ∈ ℤ for i = 1, . . . , t.
The set D(�1, . . . , �t, 1, . . . , t) given by

D(�1, . . . , �t, 1, . . . , t) =

t
∩

i=1

D(�i, i) = ℝm+n ∖
t
∪

i=1

S(�i, i) (3)

is called a t-branch split disjunction for I [LR08]. The fact that I ⊆ D(�i, i) implies that P I ⊆
D(�1, . . . , �t, 1, . . . , t). A linear inequality is a t-branch split cut for P with respect to a t-branch
split disjunction D if it is valid for P ∩D. The t-branch split closure of P with respect to I, denoted
by tBC(P ), is defined as the set of points in P which satisfy all t-branch split cuts:

tBC(P ) =
∩

(�1,1),...,(�t,t)∈ℤm+1

conv(P ∩D(�1, . . . , �t, 1, . . . , t)).

Similar to the split closure, tBC(P ) depends on the mixed-integer lattice I and throughout the
paper I will be clear from the context. Notice that in the case t = 1 we have 1BC(P ) = SC(P ).
Again, also notice that P I ⊆ tBC(P ).

In [DDG], 2-branch split disjunctions are called cross disjunctions, and 2-branch split cuts are
called cross cuts. In this case, we have the equivalent definition of the cross closure as

CC(P ) =
∩

(�1,1),(�2,2)∈ℤm+1

conv(P ∖ (S(�1, 1) ∪ S(�2, 2))).

Crooked cross cuts. Given �1, �2 ∈ ℤm and 1, 2 ∈ ℤ we define the sets

Dc
1(�

1, �2, 1, 2) = {(x, y) ∈ ℝm+n : �1x ≤ 1, (�
2 − �1)x ≤ 2 − 1},

Dc
2(�

1, �2, 1, 2) = {(x, y) ∈ ℝm+n : �1x ≤ 1, (�
2 − �1)x ≥ 2 − 1 + 1},

Dc
3(�

1, �2, 1, 2) = {(x, y) ∈ ℝm+n : �1x ≥ 1 + 1, �2x ≤ 2},

Dc
4(�

1, �2, 1, 2) = {(x, y) ∈ ℝm+n : �1x ≥ 1 + 1, �2x ≥ 2 + 1}.

We call the set Dc(�1, �2, 1, 2) =
∪4

i=1D
c
i (�

1, �2, 1, 2) a crooked cross disjunction for I. A
linear inequality is a crooked cross cut for P if it is valid for P ∩ Dc for some crooked cross
disjunction Dc. The crooked cross closure of P , which we denote by CCC(P ), is again defined as
∩

(�1,1),(�2,2)∈ℤm+1 conv(P ∩Dc(�1, �2, 1, 2)). Notice that P I ⊆ CCC(P ).
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2.2 Relaxations of Mixed-integer Sets

k-row relaxation. Consider a polyhedral set P as in (1). A k-row relaxation of P is obtained
by combining the r equality constraints defining the set into k ≤ r equalities. More precisely, it
is P (M) ≜ {(x, y) ∈ ℝm × ℝn : MAx + MGy = Mb, y ≥ 0}, where M is a k × r matrix. Any
inequality valid for P I(M) = P (M) ∩ I is called a cut from a k-row relaxation.

Basic relaxation. We now consider a polyhedron defined in inequality form. Let P = {(x, y) ∈
ℝm × ℝn : Ax + Gy ≤ b} where A,G and b have r ≥ m + n rows. For a subset J ⊆ {1, . . . , r}
of row indices, we use AJ to denote the submatrix of A consisting of the rows of A corresponding
to the indices in J . We define GJ and bJ similarly. Then a basic relaxation of P is obtained by
keeping in the linear relaxation only linearly independent constraints, namely it is a set of the form
P[J ] = {(x, y) ∈ ℝm × ℝn : AJx + GJy ≤ bJ} for some J ⊆ {1, 2, . . . , r} such that the matrix

[AJ GJ ] has full-row rank. A basic relaxation of the mixed-integer set P I is obtained as follows:
P I
[J ] = P[J ] ∩ I and any inequality valid for P I

[J ] is called a cut from a basic relaxation.

2.3 Notation

We use ∥ ⋅ ∥ to denote the ℓ2 norm. Given a point x ∈ ℝn and a positive real r > 0, we use
B(x, r) = {y ∈ ℝn : ∥x− y∥ < r} to denote the ball centered at x with radius r. For a set S ⊆ ℝn

we use conv(S) to denote the convex hull of S, and aff(S) to denote the affine hull of S. Given
a set of vectors V ⊆ ℝn we use span(V ) to denote the subspace spanned by V . Given a matrix
M ∈ ℝn×m, we use rowspan(M) to denote the subspace spanned by the rows of M .

3 Height Lemma

In preparation for the proof of our results we present the main technical tool used, called Height
Lemma (this generalizes a similar result in [DG11]). Intuitively this lemma states the following:
consider a collection (of arbitrary cardinality) of full dimensional pyramids, all sharing the same
base. If we have a uniform lower bound on the height of the pyramids, plus the property that their
apexes are not arbitrarily far from each other, then the intersection of all these pyramids contains
a point outside of the common base. The motivation is that these pyramids will later represent
what is ‘left over’ of P when we employ a subset of the cuts of interest, so this result allow us to
talk about the left over of P when we add all these cuts together. In the formal statement below,
the points s1, s2, . . . , sn form the base of the pyramids and the points in Q are the apexes.

Lemma 3.1 (Height Lemma). Let (a, b) ∈ ℝn × ℝ with a ∕= 0 and let s1, s2, . . . , sn be affinely
independent points in the hyperplane {x ∈ ℝn : ax = b}. Take b′ > b and U ≥ 0 and define
Q = {x ∈ ℝn : ax ≥ b′, ∥x∥ ≤ U}. Then there exists a point x in

∩

q∈Q conv(s1, s2, . . . , sn, q)
satisfying the strict inequality ax > b.

Proof. Let H = {x ∈ ℝn : ax = b} and S = conv(s1, s2, . . . , sn). We say that a point x that
satisfies ax > b has positive height ; so our goal is to find a point in

∩

q∈Q conv(s1, s2, . . . , sn, q) with
positive height. To simplify the notation, we assume without loss of generality that ∥a∥ = 1.

Clearly S is an (n − 1)-dimensional simplex contained in H and, by comparing dimensions,
the affine hull of S equals H. Consider a point x∗ in the relative interior of S, and let r > 0 be
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such that the ball B(x∗, r) ∩H is contained in S. Let U ′ be an upper bound on the norm of the
points in S (this exists as S is bounded). We show that the point x∗ + (b′ − b) r

U+U ′a belongs to
∩

q∈Q conv(s1, s2, . . . , sn, q), which gives the desired result.
Consider q ∈ Q and let q∗ denote its orthogonal projection into H, namely q∗ = q − b′′a for

b′′ = b′− b. The idea is to show that x∗ can be written as a convex combination �q∗+(1−�)y∗ for
some point y∗ in S (see Figure 3). Then replacing q∗ by q in this expression, we get by convexity that
�q + (1− �)y∗ = x∗ + �b′′a belongs to conv(s1, s2, . . . , sn, q) and has positive height. Importantly,
our construction will guarantee that we can lower bound � independently of the choice of q.

q∗

q

a

q∗ x∗ y∗

q

x

Figure 3: The left picture shows conv(s1, s2, . . . , sn, q) and the hyperplane H = {x ∈ ℝn :
ax = b}. The right picture shows the construction of y∗ and the point x which belongs to
conv(s1, s2, . . . , sn, q) and has positive height, namely it satisfies ax > b.

To make this construction, consider the line {q∗+�(x∗− q∗) : � ∈ ℝ} passing though the points
q∗ and x∗, and notice that it lies in the hyperplane H. This line intersects the boundary of the
closed ball B̄(x∗, r)∩H in two points, so let y∗ denote such point which is farthest from q∗ (notice
that this point belongs to S); specifically, we have y∗ = q∗ + �∗(x∗ − q∗) for �∗ = 1 + r

∥x∗−q∗∥ , and

notice that ∥y∗ − q∗∥ = �∗∥x∗ − q∗∥ = r + ∥x∗ − q∗∥. Rearranging, we can write explicitly x∗ as
a convex combination of q∗ and y∗: x∗ = �q∗ + (1 − �)y∗ for � = r

∥y∗−q∗∥ ∈ [0, 1]. As mentioned

previously, we get that the point �q+(1−�)y∗ = x∗+ r
∥y∗−q∗∥b

′′a belongs to conv(s1, s2, . . . , sn, q).
Using the triangle inequality, we get that

r

∥y∗ − q∗∥
b′′ ≥

r

∥y∗∥+ ∥q∗∥
b′′ ≥

r

U + U ′
b′′.

Using convexity we conclude that the point x∗+b′′ r
U+U ′a belongs to conv(s1, s2, . . . , sn, q). Since

the point is independent of q, it belongs to
∩

q∈Q conv(s1, s2, . . . , sn, q) and the result follows.

Also note that in the proof we do not use the property that the norms of the points in Q are
bounded, we only use the fact that their projection on H has bounded norm. It is therefore possible
to generalize this result slightly to unbounded Q that has bounded projection on H.

By employing an affine transformation, this lemma also carries over to affine subspaces of ℝn.

Corollary 3.2. Let A ∈ ℝn be an affine subspace of dimension k. Fix (a, b) ∈ ℝn × ℝ such that
a ∕= 0 and let s1, s2, . . . , sk ∈ ℝn be affinely independent points in A ∩ {x ∈ ℝn : ax = b}. Take
b′ > b and U ≥ 0 and define Q = {x ∈ A : ax ≥ b′, ∥x∥ ≤ U}. Then there exists a point x in
∩

q∈Q conv(s1, s2, . . . , sn, q) satisfying the strict inequality ax > b.
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For a vector v ∈ ℝn, a n × n matrix M and a set S ⊆ ℝn, let S − v = {s − v : s ∈ S} and
MS = {Ms : s ∈ S}. To see that the corollary follows from Lemma 3.1, let M be an n× n matrix
with determinant one such that M(A−s1) = ℝk×{0}n−k. Applying this affine transformation and
subsequently removing the last k coordinates, the corollary reduces to the previous lemma applied
to objects in ℝk (points in Q are mapped to points in ℝk × {0}n−k with bounded norm).

4 Crooked cross Closure Versus Cross Closure

In this section we prove Theorem 1.1 by constructing a polyhedral set P whose cross closure
CC(P ) is strictly contained in its crooked cross closure CCC(P ). One important component of
the construction is a triangle that cannot be covered by a cross set.

Theorem 4.1 ([DDG+11b]). There exists a rational triangle T ∗ ⊆ ℝ2 satisfying the following: (i)
T ∗ does not contain integer points in its interior; (ii) T ∗ contains the points (0, 0), (1, 0), (0, 1) in
its boundary; (iii) there is � > 0 such that for any pair of split sets S1, S2 for ℤ

2, the set T ∗∖(S1∪S2)
has area at least �.

Let T ∗ be such a triangle and let x∗ be a point in the interior of T ∗, say its centroid (which has
rational coordinates). In this section we work with the polyhedron P defined as

P =
{

(x, y) ∈ ℝ2 × ℝ : (x, y) ∈ conv (T ∗ × {0}) ∪ (x∗ × {1})
}

,

and the mixed integer lattice I = ℤ2 × ℝ. The associated mixed-integer set P I = P ∩ (ℤ2 × ℝ).
We also define T� ≜ P ∩ {x ∈ ℝ3 : x3 = �} for � ≥ 0 and define T ∗

� to be the projection of T� onto
the first 2 coordinates. We next obtain the following result.

Lemma 4.2. The inequality x3 ≤ 0 is valid for CCC(P ).

Proof. Notice that T ∗
0 = T ∗ and T ∗

1 = x∗, and as the latter belongs to the interior of T ∗, we
conclude that T� is contained in the interior of T ∗ for all � > 0. As T ∗ does not contain any integer
points in its interior, T ∗

� ∩ ℤ2 = ∅ for all � > 0 and therefore conv(P ) = T ∗ × {0}. Consequently,
the inequality x3 ≤ 0 is valid for conv(P ).

To conclude the proof, we recall the fact that the convex hull of any polyhedral mixed-integer
set in ℤ2 ×ℝ is given by crooked cross cuts. In particular, conv(P I) = CCC(P ) and consequently
x3 ≤ 0 is valid for CCC(P ), concluding the proof.

We next show that the inequality x3 ≤ 0 is not valid for CC(P ); since CC(P ) always contains
CCC(P ) – which equals conv(P I) in this section – such a result would imply that CC(P ) strictly
contains CCC(P ), as desired. We start by showing that a single cross disjunction cannot imply
the cut x3 ≥ 0.

Lemma 4.3. There exists �∗ > 0 such that for any pair of split sets S1, S2 for P , the set T�∗∖(S1∪S2)
is non-empty.

Proof. Notice that area(T ∗
0 ) > area(T ∗

1 ) = 0 and area(T ∗
� ) is continuous as a function of �. Let

� > 0 be given by Theorem 4.1 and take �∗ > 0 such that area(T ∗
�∗) ≥ area(T ∗

0 )− �/2; the existence
of �∗ is guaranteed by the Intermediate Value Theorem.

Let S∗
1 denote the projection of the split set S1 onto the first 2 (integer) coordinates, and notice

that S1 = S∗
1 × ℝ and that S∗

1 is a split set for (T ∗,ℤ2). Define S∗
2 similarly. It then follows that
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T�∗ ∖(S1∪S2) is non-empty if and only if T ∗
�∗ ∖(S

∗
1 ∪S∗

2) is non-empty; we prove the latter. Theorem
4.1 guarantees that the set T ∗ ∖ (S∗

1 ∪ S∗
2) has area at least �, and so T ∗

�∗ ∖ (S
∗
1 ∪ S∗

1) has area at
least �/2. Therefore T�∗ ∖ (S1 ∪ S2) is non-empty.

Together with the previous lemma, the Height Lemma directly implies that the cut x3 ≤ 0 is
not valid for the cross closure of P ; the proof is exactly the same as in Lemma 6.4 and is omitted.

Lemma 4.4. The inequality x3 ≤ 0 is not valid for CC(P ).

Employing Lemmas 4.2 and 4.4 we obtain Theorem 1.1:

Theorem 1.1 (restated). CCC(P ) ⊊ CC(P ).

5 Crooked Cross Cuts Versus 3-branch Split Cuts

In this section we prove Theorem 1.2 by constructing an integer set P I = P ∩ I where I = ℤ3 such
that 3BC(P ) = conv(P I) = ∅ but CCC(P ) ∕= ∅. We define the polyhedron P to be the intersection
of a specific octahedron with the unit cube, i.e.,

P =

{

x ∈ [0, 1]3 :
∑

i∈I

xi −
∑

i/∈I

xi ≤ ∣I∣ −
1

2
,∀I ⊆ {1, 2, 3}

}

.

Notice that P I is the empty set.
We first claim that 3BC(P ) = ∅. To see this, consider the 3-branch split disjunction D =

D(e1, e2, e3, 0, 0, 0), where ei is the ith unit vector in ℝ3. Notice that x belongs to D iff xi /∈ (0, 1)
for all i = 1, 2, 3, and therefore x ∈ P ∩D if and only if x is a 0-1 vector. Therefore P ∩D = ∅.
Since 3BC(P ) ⊆ P ∩D, the claim follows.

Now we need to show that CCC(P ) ∕= ∅; in particular, we show that (1/2, 1/2, 1/2) belongs to
CCC(P ). For that, we need the following characterization of the crooked cross closure.

Theorem 5.1. ([DDG11a, Theorem 3.1]) For any polyhedron P̃ ⊆ ℝn × ℝl and mixed-integer
lattice I = ℤn ×ℝl,

CCC(P̃ ) =
∩

�1,�2∈ℤn

conv
(

P̃ ∩ {(x, y) : �1x ∈ ℤ, �2x ∈ ℤ}
)

.

Lemma 5.2. The point (1/2, 1/2, 1/2) belongs to CCC(P ).

Proof. Consider an arbitrary pair of vectors �1, �2 ∈ ℤ3 and define P�1,�2 = conv(P ∩ {x ∈ ℝ3 :
�1x ∈ ℤ, �2x ∈ ℤ}). Given Theorem 5.1, it suffices to show that

(1/2, 1/2, 1/2) ∈ P�1,�2 . (4)

For that, let v ∈ ℝ3 be a non-zero vector orthogonal to �1 and �2. We will prove (4) for the case
v1 ∕= 0; the proof for the cases v2 ∕= 0 or v3 ∕= 0 is identical. The idea in the analysis is that the
set {x ∈ ℝ3 : �1x ∈ ℤ, �2x ∈ ℤ} contains all lines in the direction of v that pass through an integer
point. We are interested in the lines that cross the intersection of P with the plane x1 = 1/2;
therefore, it suffices to project ℤ3 onto this plane along v and analyze the obtained set of points Λ,
and show that conv(P ∩ Λ) contains (1/2, 1/2, 1/2).
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Define the integer points w1 = (0,−⌊v22 ⌋,−⌊v32 ⌋) and w2 = (1, 1 + ⌊v22 ⌋, 1 + ⌊v32 ⌋); clearly
wj�i ∈ ℤ for i, j ∈ {1, 2}. Now consider the points u1 = w1 + v/2 and u2 = w2 − v/2, which lie in
the plane x1 = 1/2. We can use the fact that v is orthogonal to �1, �2 to deduce that uj�i ∈ ℤ for
i, j ∈ {1, 2}. Also, notice that uj2 and uj3 belong to the interval [0, 1] for j ∈ {1, 2}. Now any point
in [0, 1]3 with one component equal to 1/2 is contained in P , and therefore so are u1, u2. Therefore,
these points belong to P�1,�2 . By convexity of P�1,�2 , the point (u1 + u2)/2 = (1/2, 1/2, 1/2) also
belongs to it, which concludes the proof of the lemma.

The fact that 3BC(P ) = ∅ ∕= CCC(P ) then concludes the proof of Theorem 1.2:

Theorem 1.2 (restated). 3BC(P ) ⊊ CCC(P ).

6 t-branch Split Closure Versus Second Split Closure

In this section we prove Theorem 1.3, which states that there is a polyhedral set P whose t-branch
split closure is not contained in its second split closure. More specifically, we will work with the
integer lattice I = ℤn+1 and the distorted simplex P defined by

P =

{

x ∈ ℝn+1 :
n
∑

i=1

xi + 2xn+1 ≤ n+ 2− �, xi ≥ �, i = 1, . . . , n

}

,

where � > 0 is a small scalar defined in the proof of Lemma 6.3 below (see Figure 4).

x2

x3

x1

(�, �, 2− 3/2�)

(�, 4− 2�, 0)

(4− 2�, �, 0)

Figure 4: The set P when n = 2

We claim that the cut xn+1 ≤ 0 is valid for SC2(P ). First notice that Chvátal-Gomory cuts
[NW88] for P can be obtained by rounding the right-hand sides of the constraints above. Since
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every Chvátal-Gomory cut is also a split cut, we observe that

SC(P ) ⊆

{

x ∈ ℝn+1 :
n
∑

i=1

xi + 2xn+1 ≤ n+ 1, xi ≥ 1, i = 1, . . . , n

}

⊆

{

x ∈ ℝn+1 : xn+1 ≤
1

2

}

.

Again by using Chvátal-Gomory cuts, we get that

SC2(P ) ⊆ {x ∈ ℝn+1 : xn+1 ≤ 0},

which proves the claim. Since P ⊆ SC2(P ), we get the following.

Lemma 6.1. The inequality xn+1 ≤ 0 is valid for SC2(P ). Furthermore, it is facet defining as it
contains the following n+ 1 affinely independent points in P I :

s1 = (2, 1, . . . , 1, 0), s2 = (1, 2, . . . , 1, 0), . . . , sn = (1, 1, . . . , 2, 0), sn+1 = (1, 1, . . . , 1, 0). (5)

We next argue that the inequality xn+1 ≤ 0 is not valid for the t-branch split closure of P when
t < n. First we show that a single t-branch split cut cannot imply the cut xn+1 ≤ 0. The main tool
used is the fact that simplices cannot be covered by a small collection of split sets. More precisely,
define the simplex

Δn =

{

x ∈ ℝn :

n
∑

i=1

xi ≤ n, xi ≥ 0, i = 1, . . . , n

}

.

Theorem 6.2 ([DG11]). For every integer n > 0, there exists a constant � > 0 such that the
volume of the n-dimensional simplex Δn not covered by any collection of n− 1 split sets is at least
�.

Lemma 6.3. Let S1, . . . , St be a collection of split sets for P with t < n and let S =
∪t

i=1 Si be
their union. Then the set P ∖ S contains a point x such that xn+1 = 1.

Proof. Consider the slice of P with xn+1 = 1, namely

T ≜ P ∩ {x ∈ ℝn+1 : xn+1 = 1}

=

{

x ∈ ℝn+1 :

n
∑

i=1

xi ≤ n− �, xn+1 = 1, xi ≥ �, i = 1, . . . , n

}

.

We will show that if t < n then T ∖ S ∕= ∅, which proves the lemma. Let �i ∈ ℤn+1 and i ∈ ℤ be
such that Si = {x ∈ ℝn+1 : i < �ix < i + 1}. Notice that

T ∩ Si = T ∩

{

x ∈ ℝn+1 : i − �i
n+1 <

n
∑

i=1

�ixi < i − �i
n+1 + 1

}

and therefore, T ∩ Si = T ∩ (S∗
i × ℝ), where S∗

i is the split set S(�i, i − �i
n+1) contained in ℝn.

Let S∗ =
∪n

i=1 S
∗
i and observe that T ∩ S = T ∩ (S∗ ×ℝ). Let T ∗ denote the projection of T onto

the first n coordinates, namely

T ∗ =

{

x ∈ ℝn :

n
∑

i=1

xi ≤ n− �, xi ≥ � i = 1, . . . , n

}

,
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and notice that T ∖ S ∕= ∅ if and only if T ∗ ∖ S∗ ∕= ∅, so it suffices to prove the latter.
Now notice that T ∗ is a perturbation of the simplex Δn, depending on �. Choosing � > 0 small

enough, we get the volume of T ∗ ∖ S∗ arbitrarily close to the volume of Δn ∖ S∗, which is strictly
positive by Theorem 6.2. This implies that T ∗ ∖ S∗ is non-empty, which concludes the proof of the
lemma.

Applying the height lemma, we can make a statement about the simultaneous effect of every
possible collection of t < n split sets S1, S2, . . . , St on P .

Lemma 6.4. For t < n, the inequality xn+1 ≤ 0 is not valid for the t-branch split closure of P .

Proof. Let St denote the family of t-branch split sets for I = ℤn+1, namely sets of the form
∪t

i=1 Si

where each Si is a split set for I. To prove the lemma, we show that
∩

S∈St
conv(P ∖ S) contains a

point x with xn+1 > 0.
For each S ∈ St, let x

S be the point given by Lemma 6.3. As xS ∈ T , we have ∣∣xS ∣∣ ≤ n + 1,
we can apply the Height Lemma with parameters a = (0, 0, . . . , 0, 1), b = 0, b′ = 1, U = n+ 1, and
s1, s2, . . . , sn+1 defined in (5) to get that

∩

S∈St
conv(s1, s2, . . . , sn+1, x

S) contains a point x with

xn+1 > 0. Notice that for each S ∈ St we have conv(s1, s2, . . . , sn+1, x
S) ⊆ conv(P ∖ S) (since the

integer points s1, s2, . . . , sn+1 belong to P I ⊆ conv(P ∖ S)), which implies that
∩

S∈St
conv(P ∖ S)

contains a point x with xn+1 > 0. This concludes the proof.

Using Lemmas 6.1 and 6.4 we now prove Theorem 1.3.

Theorem 1.3 (restated). For any positive integer t < n, SC2(P ) is strictly contained in tBC(P ).

Proof. We have already showed that

SC2(P ) ⊆

{

x ∈ ℝn+1 :

n
∑

i=1

xi + 2xn+1 ≤ n+ 1, xn+1 ≤ 0, xi ≥ 1, i = 1, . . . , n

}

. (6)

Note that, the polyhedron on the right is defined by n+2 inequalities in ℝn+1 and therefore, it has at
most n+2 extreme points that are obtained by intersecting all but one of the defining hyperplanes.
It can be checked that the only fractional point that can be obtained by intersecting n+1 of these
hyperplanes is obtained by excluding the inequality xn+1 ≤ 0. The corresponding point, however
violates xn+1 ≤ 0 and therefore is not an extreme point of the polyhedron. Consequently, inequality
(6) in fact holds as equality and SC2(P ) is integral. This implies that conv (P I) = SC2(P ) and by
Lemma 6.4 we conclude that SC2(P ) is strictly contained in tBC(P ).

Further, as P is defined by n+1 linearly independent linear inequalities in n+1 variables, P is
a basic relaxation of itself, and therefore conv (P I) can be obtained by cuts from basic relaxations.
This yields the following corollary.

Corollary 6.5. For any positive integer t < n, the set of points satisfying all cuts from basic
relaxations of P is strictly contained in tBC(P ).
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7 Cross Cuts from Basic Relaxations

In this section we prove Theorem 1.6 by constructing a polyhedral set P with the property that
the intersection of all cuts from its basic relaxations does not dominate its cross closure. We will
work with the polyhedron (see Figure 5)

P =
{

(x,w) ∈ ℝ2 × ℝ : − x1 − x2 + w ≤ 0, (7)

x1 + x2 + w ≤ 2,

− x1 + x2 + w ≤ 1,

x1 − x2 + w ≤ 1
}

,

and the mixed-integer lattice I = ℤ2 × ℝ. For j = 1, 2, 3, 4, let Pj denote the relaxation of P
obtained by dropping the jth constraint in (7); also let P I

j = Pj ∩ I.

Figure 5: The left picture shows P along the x1, x2 axis, with the unit square [0, 1]2 in dashed lines
and the intersection of P with the plane t = 0 in bold. The right picture shows the basic relaxation
P1, which gives rise to the set P I

1 = P1 ∩ I.

As P ⊆ ℝ3 is defined by 4 constraints, the sets Pj for j = 1, 2, 3, 4 give all the basic relaxations
of P . Thus we want to show that

∩4
j=1 conv(P

I
j ) ∕⊆ CC(P ). For that, we show that w ≤ 0 is a

cross cut for P but it is not valid for
∩4

j=1 conv(P
I
j ).

Lemma 7.1. The inequality w ≤ 0 is a valid cross cut for P .

Proof. We will show that w ≤ 0 is a cross cut for P derived from the cross disjunctionD(e1, e2, 0, 0) =
ℝ3∖(S1∪S2) where e

i is the ith unit vector in ℝ3 and S1 is the split set {(x,w) ∈ ℝ2×ℝ : 0 < x1 < 1}
and S2 is the split set {(x,w) ∈ ℝ3 : 0 < x2 < 1}.

This statement would be false only if there exists some point (x,w) belonging to both P and
D(e1, e2, 0, 0) with w > 0. But if (x,w) belongs to P and w > 0, the inequalities in (7) immediately
imply that 0 < x1 + x2 < 2 and −1 < x1 − x2 < 1. Therefore (see Figure 6)

{

(x,w) ∈ P : w > 0
}

⊆ S1 ∪ S2 = ℝ3 ∖D(e1, e2, 0, 0),

and hence (x,w) does not belong to D(e1, e2, 0, 0). The result then follows.
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2

2x  = 0

1x  = 0 1x  = 1

x  = 1

Figure 6: The set {x ∈ ℝ2 : 0 < x1 + x2 < 2,−1 < x1 − x2 < 1} is the interior of the depicted
quadrilateral.

Next we show that this cut cannot be obtained from basic relaxations.

Lemma 7.2. The inequality w ≤ 0 is not valid for
∩4

j=1 conv(P
I
j ).

Proof. Observe that the points

p1 = (0, 0, 0), p2 = (1, 1, 0), p3 = (0, 1, 0), p4 = (1, 0, 0)

all belong to P I and therefore to conv(P I
j ) for j = 1, . . . , 4. Also, the points

q1 = (0, 0, 1), q2 = (1, 1, 1), q3 = (0, 1, 1), q4 = (1, 0, 1)

belong to, respectively, P I
1 , . . . , P

I
4 (qj violates only the jth constraint defining P ). But (pj+qj)/2 =

(1/2, 1/2, 1/2) for j = 1, . . . , 4, and therefore the point (1/2, 1/2, 1/2) belongs to
∩4

j=1 conv(P
I
j )

but violates w ≤ 0.

Theorem 1.6 follows from the previous two lemmas:

Theorem 1.6 (restated). Let Pj for j ∈ J denote the set of basic relaxations of P , then

P ∩

(

∩

j∈J

conv(P I
j )

)

∕⊆ CC(P ).

8 Cross Cuts that Cannot be Obtained from 2-row Relaxations

In this section we prove Theorem 1.4, namely we exhibit a polyhedral set such that the intersection
of all cuts from its 2-row relaxations does not dominate its cross closure. The polyhedron we work
with in this section is

P =
{

(x, y) ∈ ℝ2 × ℝ4 : x1 =
1

2
+

1

2
y1 −

1

2
y4, (8)

x2 =
1

2
+

1

2
y1 −

1

2
y3,

− y1 − y2 + y3 + y4 = 0, y ≥ 0
}

,

and the associated mixed-integer set is P I = P ∩ I where the mixed-integer lattice I = ℤ2 × ℝ4.
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Observation 8.1. The set P I contains the points pk = (xk, yk) for k = 1, . . . , 4 given by

x1 = (0, 0), y1 = (0, 2, 1, 1)

x2 = (1, 1), y2 = (2, 0, 1, 1) (9)

x3 = (0, 1), y3 = (1, 1, 0, 2)

x4 = (1, 0), y4 = (1, 1, 2, 0).

Moreover, the points p1, p2, and p3 are affinely independent.

For convenience, we define

D =

⎡

⎣

1 0 0
0 1 0
0 0 0

⎤

⎦ , A =

⎡

⎣

1/2 0 0 −1/2
1/2 0 −1/2 0
−1 −1 1 1

⎤

⎦ , b =

⎡

⎣

1/2
1/2
0

⎤

⎦

so that P = {(x, y) ∈ ℝ2 × ℝ4 : Dx−Ay = b, y ≥ 0}. We use Ai to denote the ith row of A. Note
that rank(A) = 3, and so dim(P ) ≤ 3. On the other hand, P contains the affinely independent
points p1, p2, p3 and (1/2, 1/2, 0, 0, 0, 0), and so dim(P ) = 3.

P can be obtained from the polyhedron in (7) by: (i) introducing slack variable yi to convert
the ith (i = 1, . . . , 4) inequality to an equation, e.g., −x1 − x2 + w + y1 = 0; (ii) Replacing w
in the second to the fourth equations by x1 + x2 − y1 (obtained from the first equation) and,
(iii) subtracting the third and fourth equations from the second equation, and then dividing the
third and fourth equations by 2. It follows from the above operations that there is a one-to-
one correspondence between the solutions of (7) and (8). For any solution (x1, x2, w) of (7), one
gets a solution (x1, x2, y1, . . . , y4) of (8) by keeping x1, x2 unchanged and letting y1, . . . , y4 stand
for the slacks of the inequalities in (8). Conversely, for any solution (x1, x2, y1, . . . , y4) of (8),
(x1, x2, x1 + x2 − y1) or (x1, x2, 1− (y1 + ⋅ ⋅ ⋅ + y4)/4) is a solution of (7). The latter claim follows
from the fact that adding up the four constraints in (7) (after introducing the slack variables) yields
4w + y1 + y2 + y3 + y4 = 4.

Any 2-row relaxation of P is of the form

P (M) =
{

(x, y) ∈ ℝ2 × ℝ4 : Mx−MAy = Mb, y ≥ 0
}

for a 2× 3 matrix M . To prove Theorem 1.4, we will show that

P ∩
(

∩

M∈ℝ2×3

conv(P I(M))
)

∕⊆ CC(P ).

Before starting, we observe that it is sufficient to consider matrices M that have full row rank.

Lemma 8.2. For any M ∈ ℝ2×3, there is a rank 2 matrix M ′ ∈ ℝ2×3 such that conv(P I(M ′)) ⊆
conv(P I(M)).

Proof. Clearly there exists a rank 2 matrix M ′ ∈ ℝ2×3 such that rowspan(M ′) ⊇ rowspan(M). It is
easy to verify that such M ′ satisfies P (M ′) ⊆ P (M), and hence conv(P I(M ′)) ⊆ conv(P I(M)).

We start by showing that the inequality cy ≥ 4, where c = (1, 1, 1, 1), is a cross cut for P .
Notice that the inequality cy ≥ 4 translates to the inequality w ≤ 0 for the polyhedron (7).
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Lemma 8.3. The inequality cy ≥ 4 is a cross cut for P .

Proof. We will show that cy ≥ 4 is a cross cut for P derived from the cross disjunctionD(e1, e2, 0, 0) =
ℝ6 ∖ (S1 ∪ S2), where ei is the ith unit vector in ℝ6, S1 = {(x, y) ∈ ℝ2 × ℝ4 : 0 < x1 < 1} and
S2 = {(x, y) ∈ ℝ2 × ℝ4 : 0 < x2 < 1}.

This statement would be false only if there exists some point (x̄, ȳ) belonging to both P and
D(e1, e2, 0, 0) with cȳ < 4. But if (x̄, ȳ) belongs to P and cȳ < 4, then (x̄, w̄) with w̄ = 1− cy/4 is
a solution of (7) with w̄ > 0. As in the proof of Lemma 7.1, we then infer that 0 < x̄1 + x̄2 < 2
and −1 < x̄1 − x̄2 < 1, hence (x̄, ȳ) ∈ S1 ∪ S2 = ℝ6 ∖D(e1, e2, 0, 0) and thus (x̄, ȳ) does not belong
to D(e1, e2, 0, 0). The result then follows.

We will next show that there exists a point (x̄, ȳ) ∈ P ∩
(
∩

M∈ℝ2×3 conv(P I(M))
)

such that
cȳ < 4, and hence the cross cut cy ≥ 4 is not valid for this set. To this end, we will show that for
any M ∈ ℝ2×3 we can construct a point (x(M), y(M)) ∈ P ∩ conv(P I(M)) such that cy(M) ≤ 3.
We will then apply the Height Lemma using these points and a common base formed by points
p1, p2 and p3 presented in Observation 8.1. The following lemma, whose proof is deferred to Section
8.1, shows the existence of the points mentioned above.

Lemma 8.4. Consider a matrix M ∈ ℝ2×3 of rank 2. Then, there is a point (x, y) with the
following properties: (i) (x, y) ∈ P ∩ conv(P I(M)); (ii) cy ≤ 3; (iii) ∥(x, y)∥ ≤ 6.

Using Lemma 8.4 we next prove Theorem 1.4:

Theorem 1.4 (restated). The crooked cross cut closure of P cannot be obtained by all cuts from
its 2-row relaxations. More precisely,

P ∩
(

∩

M∈ℝ2×3

conv
(

P I(M)
)

)

∕⊆ CC(P ).

Proof. Consider a matrix M ∈ ℝ2×3. Using Lemma 8.4 (and Lemma 8.2 if necessary), find a
point (x(M), y(M)) in P ∩ conv(P I(M)) such that cy(M) ≤ 3 and ∥(x(M), y(M))∥ ≤ 6. Also, for
i = 1, 2, 3, the affinely independent points pi in Observation 8.1 belong to P ∩ conv(P I(M)) and
satisfy cyi = 4. Then applying Corollary 3.2 (with A = aff(P ), a = (0, 0,−c), b = −4 and b′ = −3),
we conclude that the set

Q =
∩

M∈ℝ2×3

conv
(

p1, p2, p3, (x(M), y(M))
)

contains a point (x∗, y∗) satisfying cy∗ < 4. Note that it is possible to apply Corollary 3.2 because
the dimension of aff(P ) is 3.

Since P ∩ (
∩

M∈ℝ2×3 conv(P I(M))) contains Q, it also contains (x∗, y∗). This shows that the
cut cy ≥ 4 is not valid for this set; together with Lemma 8.3, this concludes the proof of Theorem
1.4.

8.1 Proof of Lemma 8.4

Let M ∈ ℝ2×3 be a rank 2 matrix. Since rank(A) = 3, this implies that rank(MA) = 2. We will
construct the points (x(M), y(M)) satisfying the properties of the lemma in three steps. In the
first step, we will construct points in aff(P ), which violate cy ≥ 4, but do not belong to P I(M);
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informally, these points almost belong to P ∩ P I(M), except that they do not satisfy the required
non-negativity condition. In the second step, we create two directions d1 and d2 in order to ‘correct’
the points constructed in the first step. In the final step, we use these directions to correct the
points created in the first step, obtaining the desired point (x(M), y(M)) in P ∩ P I(M) but still
violating cy ≥ 4.

Step 1. Consider the points (xi, yi) ∈ P I for i = 1, . . . , 4 from Observation 8.1, and recall that
they all satisfy cyi = 4. Since they belong to P I , we have Dxi−Ayi = b for i = 1, . . . , 4. Moreover,
since Ac = 0, we have Dxi−A(yi−c/2) = b for all i, which then impliesMDxi−MA(yi−c/2) = Mb
for all i. In other words, the points (xi, ȳi) = (xi, yi − c/2) (i = 1, . . . , 4) satisfy the equations
defining both P and P I(M) but violate one non-negativity inequality each, as

ȳ1 = (0, 2, 1, 1) − c/2 = (−1, 3, 1, 1) /2

ȳ2 = (2, 0, 1, 1) − c/2 = (3,−1, 1, 1) /2 (10)

ȳ3 = (1, 1, 0, 2) − c/2 = (1, 1,−1, 3) /2

ȳ4 = (1, 1, 2, 0) − c/2 = (1, 1, 3,−1) /2.

Note that each point above has exactly one negative coefficient which equals −1/2, and the remain-
ing coefficients are strictly positive and at least 1/2. These four points also violate the inequality
cy ≥ 4, as c ⋅ c = 4 and therefore, (xi, yi − c/2) satisfies c(yi − c/2) = 2.

Step 2. We now define the ‘correcting’ directions d1, d2 ∈ ℝ4. To do so, recall that rowspan(A)
has dimension 3 and by assumption rowspan(MA) is a 2-dimensional subspace of rowspan(A). If
A3 ∕∈ rowspan(MA), let i∗ = 3, and if A3 ∈ rowspan(MA), let i∗ ∈ {1, 2} be the index such that
Ai∗ does not belong to rowspan(MA). Notice that the rows of MA together with Ai∗ span exactly
rowspan(A).

Now define d1, d2 ∈ ℝ4 to be solutions of the following two systems of four equations each (the
coefficient � is specified later):

⎡

⎣

MA
Ai∗

c

⎤

⎦ d1 =

⎡

⎣

0
1
�

⎤

⎦ and

⎡

⎣

MA
Ai∗

c

⎤

⎦ d2 =

⎡

⎣

0
−1
�

⎤

⎦ . (11)

As the rows of MA together with Ai∗ span exactly rowspan(A) and the vector c is orthogonal to
the rows of A and hence to rowspan(A), the matrix in the left-hand side of equations in (11) (which
is the same) is invertible. Therefore, these systems have unique nonzero solutions.

We will show that for some �, there are scalars �1, �2 > 0 such that �1d1 and �2d2 are nonzero
vectors satisfying the following properties:

1. MA(�1d1) = MA(�2d2) = 0.

2. There exists an � ∈ (0, 1) such that A(��1d1 + (1− �)�2d2) = 0.

3. maxi �
1d1i = 1/2 = maxi ∣�

1d1i ∣ and maxi �
2d2i = 1/2 = maxi ∣�

2d2i ∣.

4. c�1d1 ≤ 1 and c�2d2 ≤ 1.
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The motivation for these properties is the following: (i) the first and second properties will
ensure that the ‘corrected’ vectors (xi, ȳi + (�d1 + (1 − �)d2)) still satisfy all the constraints of P
and P I(M), except for the non-negativity conditions; (ii) we will use the third property to argue
that there is an index i such that the corresponding corrected vector satisfies the non-negativity
conditions, and hence belongs to P ∩P I(M); (iii) the fourth property will ensure that the corrected
vector does not satisfy the inequality cy ≥ 4.

Note that Properties 1 and 2 hold for all � independent of the choice of �. Property 1 follows
directly from the first two equations in both systems in (11). For Property 2, since Ai∗d

1 = 1 and
Ai∗d

2 = −1, we have that Ai∗(d
1 + d2) = 0. Therefore, d1 + d2 is orthogonal to the rows of MA

and to Ai∗ , and hence to the rows of A (as rows of MA and Ai∗ span rowspan(A)).
In order to obtain Properties 3 and 4 we need to rescale the vectors d1 and d2, but notice

that this operation preserves Properties 1 and 2. We consider two cases depending on whether A3

belongs to rowspan(MA) or not, and set the coefficient � appropriately.

Case 1: A3 ∈ rowspan(MA). Set � = 0. In this case, the last constraint in both systems in
(11) (which are identical) guarantee that �1d1 and �2d2 satisfy Property 4 for all �1, �2.

We now consider Property 3 for a rescaling of d1; the proof for d2 is identical. Since A3 belongs
to rowspan(MA), the first two constraints in the first system in (11) guarantee that A3d

1 = 0, and
therefore d11 + d12 = d13 + d14. The last constraint implies that d11 + d12 + d13 + d14 = 0. In addition,
d1 ∕= 0 as Ai∗d

1 ∕= 0. Therefore, d11 + d12 = d13 + d14 = 0 and hence maxi d
1
i = maxi ∣d

1
i ∣, so we can

multiply d1 by an appropriate positive scalar �1 so that maxi �
1d1i = 1/2. The vector �1d1 then

satisfies Properties 1,2,3, and 4.

Case 2: A3 /∈ rowspan(MA). Set � = 1. In this case i∗ = 3, namely both systems in
(11) contain a constraint of the form A3d = ±1 (instead of the implied constraint A3d = 0 in
the previous case). Adding the third and fourth constraints in the first system in (11), we get
d13 + d14 = 1. Subtracting the third constraint from the fourth constraint, we get d11 + d12 = 0.
Therefore maxi d

1
i = maxi ∣d

1
i ∣ ≥ 1/2. We can then rescale d1 by �1 ∈ (0, 1] so that �1d1 satisfies

Property 3. Further, �1d1 satisfies Property 4, since cd1 ≤ 1. Therefore, �1d1 satisfies Properties
1,2,3 and 4.

As for d2, adding and subtracting constraints as in the case of d1, we see that d23 + d24 = 0 and
d21 + d22 = 1. Once again we can scale d2 so that it satisfies all properties.

Step 3. Consider the vectors �1d1 and �2d2 from the previous step. Let i = argmaxk d
1
k and j =

argmaxk d
2
k. As �

1d1 is nonzero, and because of Property 3, we have �1d1i = 1/2 and ȳi+�1d1 ≥ 0.
Property 1 implies that MDx−MA(ȳi+�1d1) = MDx−MAȳi = Mb, and therefore (xi, ȳi+�1d1)
belongs to P I(M) (but not to P , since we can still have Dxi−A(ȳi+ �1d1) ∕= b). Also, Property 4
implies that c(ȳi+�1d1) ≤ 3, and hence the point does not satisfy the inequality cy ≥ 4. Similarly,
Properties 1 and 3 imply that (xj , ȳj + �2d2) ∈ P I(M), and c(ȳj + �2d2) ≤ 3.

Finally, by Property 2 there is an � ∈ (0, 1) such that the point

(x(M), y(M)) ≜ �(xi, ȳi + �1d1) + (1− �)(xj , ȳj + �2d2)

satisfies Dx(M) − Ay(M) = Dxi − Aȳi = b. Therefore, this point (x(M), y(M)) belongs to P ∩
conv(P I(M)). In addition, we clearly have cy(M) ≤ 3, and it is easy to verify that ∥(x(M), y(M))∥ ≤
6. This concludes the proof of Lemma 8.4.
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