
RC25327 (CHI1211-001) November 5, 2012
Computer Science

IBM Research Report

Next Generation Real Time Operational Database by
Extending Informix

Sheng Huang, Xiao Yan Chen, Kai Liu, Yao Liang Chen, Chen Wang
IBM Research Division

China Research Laboratory
 Building 19, Zhouguancun Software Park

8 Dongbeiwang West Road, Haidian District
Beijing, 100193

P.R.China

Simon David
IBM Informix Software Team

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Next Generation Real Time Operational Database by
Extending Informix

Sheng Huang, Xiao Yan Chen, Kai Liu,
Yao Liang Chen, Chen Wang

IBM China Research Lab
 {huangssh@cn.ibm.com}

Simon David
IBM Informix Software Team

cosmo@uk.ibm.com

ABSTRACT
In the era of “the Internet of Things”, more and more applications
face the challenge of how to manage the massive volume of data
generated by various sensors and devices in the current data man-
agement systems. Realeal time databases handle the data with
operational technology (OT) characteristics (high volume, long
lifecycle, simple format). However, while achieving excellent
“write” performance, these systems provide limited “read” capa-
bilities. In this paper, we present a new real time operational data-
base (RODB) system. Our system addresses the “read” problem
by extending the anatomy of the Informix system architecture.
The core ideas allow complicated queries in SQL manner to deal
with various advanced “read” tasks while keeping the “write”
advantages of the existing real time databases. We demonstrate
the high efficiency of our system on both “write” and “read” ap-
plications with a variety of real case studies in the domains of
C&P, E&U and facility data management.

Keywords
Relational DB, Real Time DB

1. INTRODUCTION
As sensors are becoming ubiquitous and inexpensive, the sam-
pling data from sensors are attributed a large share of today's ar-
chive spaces in big data management. There are all kinds of data
format in sensor based applications such C&P, E&U, facility
management, transportation and healthcare. Among them, there
are huge volumes of data generated in the format of scalar data or
time series data, especially in C&P, E&U and facility manage-
ment applications. There are two typical scenarios. In the first
scenario, the number of sensors is not large, but the sensors are
with high sampling rate (10HZ). A typical oil detection applica-
tion, for example, can have a thousand of sensors collecting data
simultaneously with a sample rate at about 500HZ for each. The
other scenario, in contrast, may involve massive sensors with low
sampling rate (<1HZ). A Smart Grid system in one province may
possess 10,000,000 sensors with a 15-minute sampling interval
for each sensor. Both scenarios need to store historical data for
long lifecycle, process real time query and do analysis over his-
torical data.

Although traditional relational databases (RDB) like DB2, Oracle,
dominate the information technology (IT) data management mar-
ket for decades for their rich query capabilities, the real time da-
tabases (RTDB), like PI Server, which have excellent perform-
ance to “write” in real time, occupy the main market of opera-
tional technology (OT) data management. However, besides the
accumulated OT data, a typical OT application also relies on the
other business data stored in relational database together for deep
analysis, auditing, planning and optimization, etc. Thus, RDB
and RTDB always play together in such applications, leading to

redundant investment in data management systems and huge com-
puting overhead for data migration from RTDB to RDB for analy-
sis.

In this proposal, we present the next generation real time opera-
tional database system RODB. For “write” performance, we de-
sign a new storage component inside Informix, using data com-
pression and buffer technology to reduce the I/O and storage size
to meet real time persistence requirement. For “read” capabilities,
we extend the Informix Virtual Table Interface (VTI) to support
native SQL queries directly to the compressed data. Although the
related technologies have been studied in academia, to the best of
our knowledge, we are the first to combine two aspects to build a
database system with the follow key features:

High write throughput. Support high write throughput with up
to 1M data points/s for both high frequency sensor and massive
low frequency sensors. Balanced read/write optimization on data
store enables high query performance.

Compressed data store. After buffer/write/compression process-
ing, the data is compressed with 10~100 compression ratio.

Transparent data Store. Data are viewed as simple (id, time-
stamp, value) virtual table while the internal data store structure,
and data organization are transparent to users.

RTDB/RDB Fusion. Both relational data and operational data are
stored in a single database. Unified data access interface (SQL) is
provided to support data extraction and fusion from both opera-
tional data and relational data.

In the rest of this proposal, we will give a brief description of the
system architecture to fulfill the design goal. In the final presenta-
tion or full paper, we will give a detailed introduction about the
design of the system with comprehensive experimental analysis.

2. SYSTEM TAXONOMY
2.1 System Architecture overview

Figure 1 RODB System Architecture Overview

Figure 1 illustrates the overview of real time operational database
(RODB) System Architecture where the extended parts are high-
lighted by dashed line. A writer adapter is used to receive the data
from SCADA/Sensor environment. Then, the router/compressor
will compress the data according to error acceptance and dispatch
the data to different buffer pools based on the data characters.
The high frequency data will be packaged and written to the In-
formix data node directly in a special data store format called
WOOH. In contrast, the low frequency data will be written in
WOOL format to a temp data node and periodically rebuilt into
ROO format for persistent storage. A detailed description of the
three data formats is given in section 2.2. The data will be parti-
tioned horizontally by time to different data nodes. The partition
information will be stored as meta data in a lookup table inside
the Query Node. When a SQL query comes, the Query Node will
lookup the meta table and then extract the required data from one
or more data nodes with the help of the VTI extension.

2.2 Data Store
The main challenge for RDB to play as the historian of operation
data is the low write throughput since the RDB could typically
process only several 10K records per second. One reason is that
the relational DB has no native support for time series data. A
straightforward solution is to store each data point as a (id, time-
stamp, value) tuple, where id indentifies different data sources
(i.e. different attributes of the sensors). However, this solution
leads to redundant storage costs on both ids and timestamps.

In RODB, we proposed a novel data store structure, Write Ori-
ented Optimized (WOO) structure, to alleviate the I/O pressure.
The basic idea is to reduce the number of records and, accord-
ingly, the index size. As shown in Figure 2, there are two vari-
ances of WOO. One is WOOH structure for High frequency sen-
sors and the other is WOOL for Low frequency sensors. When a
new data point comes, the buffer pool packages the data point into
a WOOH or WOOL structure. The WOO structure will not be
inserted into the database until the ValueBlob field is fed enough
number of values (Count for WOOH and GroupSize for WOOL).
The number of records is thus reduced from the total number of
data points N to N/Count for WOOH and N/GroupSize for WOOL
case, respectively. As a result, the storage costs of timestamp are
dramatically reduced on both the data itself and the related index.

In addition, as a WOOL structure may contain data points from
different data source ids, the query performance can be consid-
erably low when extracting data from WOOL structures with a
specified data source id. To address this problem, the Read
Oriented Optimized (ROO) data structure is designed, where data
points are re-grouped by id and adjacent timestamps. In run time,
a maintenance job will be fired periodically in background to
rebuild WOOL data into ROO structure.

Figure 2 Data Store Structure

In the real implementation, quantization compression (high fre-
quency vibratory data) and linear compression (smooth data) will
be applied in data store for 10~100-fold data compression with
some acceptable error bound. Due to the space limitation, we
leave the detailed buffer/write/compression/data distribution
mechanism and the corresponding data store structure variances to
be introduced in the full presentation.

2.3 Data Query
This feature separates RODB from all the other real-time data-

bases like PI server. While traditional real time databases only
provide crude query functionality, RODB, with the power of SQL,
enables complicated analytic job to be done with small efforts.
Moreover, a pure SQL manner dramatically lowers the cost to
migrate an existing system from relational database to RODB.
To integrate our query engine seamlessly, we adopt the Virtual
Table Interface (VTI) extension as a data gateway. VTI is an ex-
tension to the Informix DataBlade API that allows users to de-
velop their own primary access methods, consisting of a group of
purpose functions. It can be used to access legacy data that is not
stored in an Informix database as if it were an Informix table.
Figure 3 shows a purpose function call flow from Informix when
a SELECT query is executed.

Figure 3 Processing a select statement scan

Before a query is passed to a virtual table (VT), Informix will
decompose it and filter all unrelated elements including projec-
tions (described in scan descriptors) and conditions (described in
qualification descriptors) that do not belong to the VT. A typical
query processing involves the following steps: am_scancost first
assesses the cost of the requested scan for the optimizer;
am_beginscan interprets the scan and qualification descriptors;
am_getnext scans the table to select and return rows that satisfy
the query; am_endscan frees the resources allocated during the
scan; am_open and am_close do the initialization and cleaning
respectively. In RODB, for each data type, a VT is generated and
exposed to users, which contains all the tuples whose values share
the data type. Then an internal view is created, correspondingly
for each VT, from the meta data to hold all data sources (indenti-
fied by id) that generate values with the specific data type (de-
noted as Type View). For example, all the events with Integer
values will be composed of a VT rodb_vt_int. Its corresponding
Type View rodb_int_view will also be created, which contains all
data sources that generates Integers. By this way, we enable users
to select data from multiple data sources using one simple SQL.
For example, the following SQL gets all Integer data from the
data sources in area ‘S1’: select * from rodb_vt_int a, sen-
sor_meta b where a.id=b.id and b.area=’S1’.
Following, we give a brief introduction on the implementation of
our query engine based on VTI. The three main purpose functions
am_scancost, am_beginscan and am_getnext are described. To

avoid confusion, we use the term “record” to denote a data row in
VTs to differentiate from a data row in physical RODB tables.
When a query is passed to a VT, the first task is to estimate query
costs in am_scancost purpose function. A set of qualification
descriptors are passed in for precise cost estimations. Each quali-
fication descriptor points to one column of the VT (i.e. id, time-
stamp or value). The costs are simply estimated as the potential
number of the rows that will be selected during the query. This
number is basically approximated by a “SELECT count(*)”
clause in combination with a WHERE clause generated from the
qualification descriptors pointing to id and timestamp. The gener-
ated SQL is performed on one or more related physical RODB
tables, receptively, with a join to the VT’s Type View to further
filter unqualified ids. The related physical tables are identified by
looking up the meta data table with a WHERE clause generated
by the qualification descriptors pointing to timestamp. Different
TLV data types lead to different count methods in physical tables.
Qualification descriptors pointing to value are ignored in this
phase since value is stored in a compressed form in the physical
tables and cannot be accessed by simple aggregations.
With the cost estimations, Informix will determine an overall
query plan. am_beginscan, am_getnext are responsible to take the
plan as told. In am_beginscan, the related physical RODB data

tables are located by the same way as described in am_scancost.
Then the query is redirected to these tables to identify all rows
with qualified id; all rows with unqualified timestamp interval are
filtered. A data row in the physical table typically contains multi-
ple records in the VT, sometimes only a part of the records in the
same row are with qualified timestamp. Such row should not be
filtered. Finally, am_getnext will extract all the physical rows one
by one, in a pipeline manner, and translate each row into the out-
put records. Filter criteria on timestamp and value are applied to
the output records to make sure no unqualified records go out.
Due to the space limitation, we will describe the detailed imple-
mentation of our query engine in the full presentation.

3. SUMMARY
In this paper, we present a new real time database to address the
problem of volume and velocity event/motion data management
in smarter planet environment by extending the Informix database
server. The system packages and compresses the data in its own
format, with the parallel writing technology, the write and read
performance can be improved 1-2 order of magnitude than rela-
tional database to cover the typical usage scenarios in C&P, E&U,
facility data management, etc. In the final presentation, we will
give a detailed description of the implementation and typical us-
age scenarios benchmark result sharing.

	1. INTRODUCTION
	2. SYSTEM TAXONOMY
	2.1 System Architecture overview
	2.2 Data Store
	2.3 Data Query

	3. SUMMARY

