
RC25334 (WAT1210-081) October 25, 2012
Computer Science

IBM Research Report

X10 for Productivity and Performance at Scale
A Submission to the 2012 HPC Class II Challange

Olivier Tardieu, David Grove, Bard Bloom, David Cunningham, 
Benjamin Herta, Prabhanjan Kambadur, Vijay A. Saraswat, 

Avraham Shinnar, Mikio Takeuchi*, Mandana Vaziri
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

*Tokyo Research Lab.

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich



X10 for Productivity and Performance at Scale
A Submission to the 2012 HPC Class II Challenge

Olivier Tardieu, David Grove, Bard Bloom, David Cunningham, Benjamin Herta,
Prabhanjan Kambadur, Vijay A. Saraswat, Avraham Shinnar, Mikio Takeuchi, Mandana Vaziri

IBM

October 23, 2012

We implement all four HPC Class I benchmarks in X10:
Global HPL, Global RandomAccess, EP Stream (Triad), and
Global FFT. We also implement the Unbalanced Tree Search
benchmark (UTS). We show performance results for these
benchmarks running on an IBM Power 775 Supercomputer uti-
lizing up to 47,040 Power7 cores. We believe that our UTS im-
plementation demonstrates that X10 can deliver unprecedented
productivity and performance at scale for unbalanced workloads.

The X10 tool chain and the benchmark codes are publicly
available at http://x10-lang.org.

1 Overview

X10 is a high-performance, high productivity programming lan-
guage developed in the IBM “Productive, Easy-to-use, Reli-
able Computing System” project (PERCS [12]), supported by
the DARPA High Productivity Computer Systems initiative
(HPCS [3]). X10 is a class-based, strongly typed, explicitly
concurrent, garbage-collected, multi-place object-oriented pro-
gramming language [8, 7].

Since our last submission to the HPC Class II Challenge in
2009, we have made significant progress towards the develop-
ment of X10 as a language and programming environment that
simultaneously supports high performance and high productiv-
ity. With the X10 2.2 release in June 2011, we reached a level
of language and implementation maturity that made it practi-
cal to begin building large-scale X10 applications. Since then,
our work has been driven by the experiences gained by both
the core X10 team at IBM and the external X10 community in
building out a wide range of X10 frameworks and applications
including a Global Load Balancing Framework [9], a framework
for defining parallel portfolio-based SAT solvers [1], a Global
Matrix Library [13], a Hadoop API-compatible Main Memory
Map Reduce engine [10], the ANUChem suite of computational
chemistry algorithms [5], the ScaleGraph distributed graph al-
gorithm library [2] and the XAXIS large scale agent simulation
framework [11]. Driven by this application-based focus, we have
made significant refinements in the X10 language, the tool chain
implementing it, and the underlying core class libraries and run-
time system.

To bring modern development tooling to the X10 programmer,
we have also invested in the development of X10DT, an Eclipse-
based X10 Integrated Development Environment, and a source-
level debugger for X10. X10DT provides X10 programmers the
expected set of core IDE functionality for X10 application devel-

opment in conjunction with the capability to manage the remote
build and execution of X10 programs being developed on their
laptop on multiple HPC systems. The IBM Parallel Debugger
for X10 Programming integrates with X10DT and extends the
production IBM Parallel Debugger with support for source-level
debugging of X10 programs on selected platforms.

In this submission, we focus on the progress we have made on
enabling X10 applications to run at very large scale. We there-
fore only present experimental results for five kernels, compiled
using only one of the two X10 compiler backends, and running
on a single large Power 775 system. However, X10 continues to
be available and actively developed on a wide variety of plat-
forms that span from laptops, to clusters, to supercomputers;
Linux, AIX, Windows, and MacOS; x86 and Power.

1.1 Why UTS?

The workload in any of the four HPC Class II Challenge bench-
marks can be partitioned statically across a distributed system
effectively. For this submission, we wanted to consider an im-
portant class of problems for which such a static partitioning is
not typically feasible: state-space search problems, such as the
Unbalanced Tree Search benchmark.

The overall task of a state-space search problem is to calculate
some metric over the set of all good configurations – e.g. the
number of such configurations, the “best” configuration etc.

State-space search problems typically satisfy a few properties:

• Each configuration can be compactly represented.

• Usually, some non-trivial amount of computation is nec-
essary to determine the next configurations from a good
configuration.

• The number of configurations generated from a good con-
figuration may be very difficult to predict statically.

The challenge at hand, therefore, is to parallelize the com-
putation across a potentially very large number of hosts while
achieving high parallel efficiency. The computation is typically
initiated at a single host with the root configuration. A good
solution must look to quickly divide up the work across all avail-
able hosts. It must ensure that once a host runs out of work it
is able to quickly find work, if in fact work exists at any host in
the system. That is, a good solution must solve a global load-
balancing problem.

While we could have chosen other graph traversal kernels for
this submission, in our experience, widely used kernels such as

1



SSCA2, while irregular, are much more balanced than UTS. In
practice, SSCA2 can still be implemented with reasonable effi-
ciency even on large scale systems by means of static partitioning
– we have – provided the input data is randomly shuffled prior
to distribution.

Outline The next two sections briefly review the core concepts
of the X10 programming model and describe the key innovations
and extensions necessary to allow them to perform at scale. Af-
ter describing the hardware and software configuration in Sec-
tion 4, we discuss the implementation and performance results
for each kernel in turn: Global HPL, Global RandomAccess,
Global FFT, EP Stream, and UTS. Section 10 concludes by
summarizing the lines of code for each benchmark and key rel-
ative and absolute performance metrics.

2 Programming Model

We begin by briefly reviewing the core Asynchronous Partitioned
Global Address Space (APGAS) programming model [6] that is
at the heart of the X10 language design.

To support concurrency and distribution, X10 introduces a
few key constructs. Asynchrony is fundamental to the language:
if S is a statement then async S is a statement which runs S as a
separate, concurrent activity. A place is a collection of data and
worker threads operating on the data, typically realized as an
operating system process. A single X10 computation typically
runs over a large collection of places. The notion of places is rei-
fied in the language: if S is a statement, then at(p) S is a state-
ment that shifts to place p to execute S. Concurrency control
is provided by the statement when (c) S which (when started
in a state in which c is true) can in a single uninterrupted step
execute S. An optimized unconditional form of when, atomic S,
is also provided. Finally, the last (and most important) control
construct of X10 is finish S: it executes S and waits for all ac-
tivities spawned during the execution of S to terminate before
continuing.

Other X10 constructs such as asynchronous memory trans-
fers and dynamic barriers (clocks) can be viewed as particular
patterns of use of these constructs.

The simplicity of these fundamental concurrency and distri-
bution constructs is borne out by the fact that formal semantics
have been developed [8, 4].

The power of X10’s core APGAS constructs lies in that – for
the most part – they can be nested freely. Combinations of these
constructs provide for MPI-like message passing, SPMD compu-
tation, active messaging style computation, bulk synchronous
parallel computation, overlap between computation and com-
munication, global view programming etc.

3 Idioms for Performance at Scale

In this section, we briefly discuss the key innovations and ex-
tensions that are needed to successfully scale the APGAS pro-
gramming model to very large systems.

3.1 Scaling Finish

In general, implementing finish requires a distributed termina-
tion protocol that can handle arbitrary patterns of distributed

task creation and termination. The X10 language places no re-
strictions on the ability of the programmer to combine and nest
at and async statements within a finish. The X10 runtime dy-
namically optimizes finish by optimistically assuming that it is
local (within a single place) and then dynamically switching to
a more expensive distributed algorithm the first time an activ-
ity controlled by the finish executes an at. Furthermore, the
runtime automatically optimizes distributed finishes by applying
message coalescing and compression to reduce the number and
size of the control messages used by the termination protocol.

In addition to these general dynamic optimizations, the run-
time provides implementations of distributed finish that are
specialized to commonly occurring patterns of distributed con-
currency that admit more efficient implementations. In our cur-
rent system, opportunities to apply these specialized implemen-
tations are guided by programmer supplied annotations. For
example,

@Pragma(Pragma.FINISH_ASYNC) finish at (p) async s;

Thanks to this information the runtime system will implement
the distributed termination detection more efficiently.

Currently, the runtime system supports five finish pragmas:

FINISH ASYNC A finish for a unique async possibly remote.

FINISH LOCAL A finish with no remote activity.

FINISH SPMD A finish with no nested remote activities in re-
mote activities. The remote activities must wrap nested
remote activities if any in nested finish blocks.

FINISH HERE A finish which does not monitor activity start-
ing or finishing in remote places. Useful for instance in a
ping pong scenario where a remote activity is first created
whose last action is to fork back an activity at the place of
origin. The runtime will simply match the creation of the
“ping” activity with the termination of the “pong” activ-
ity, ignoring both the termination of “ping” and creation of
“pong” at the remote place.

FINISH DENSE A scalable finish implementation for large
place counts using indirect routes for control messages so
as to reduce network contention at the expense of latency.

We have prototyped a fully automatic compiler analysis that
is capable of detecting some of the situations where these pat-
terns are applicable. However, it is not currently included in
the distributed version of X10. As future work, we intend to
further extend and “harden” this analysis to the point where it
can be robustly applied as part of the X10 compiler’s standard
optimization package.

3.2 Optimizing Communication and Collective
Operations

Enabling RDMA and Asynchronous Copy RDMA (Remote Di-
rect Memory Access) hardware, such as InfiniBand, enables
the transfer of segments of memory from one machine to an-
other without the involvement of the CPU or operating sys-
tem. This technology significantly reduces latency of data trans-
fers, and frees the CPU to do other work while the transfer is
taking place. To use RDMA hardware, the application needs
to register the memory segments eligible for transfer with the
network hardware, and issue transfer requests as background

2



tasks with a completion handler to signal when the transfer is
complete. In X10, the main mechanism to do this is via the
Array.asyncCopy() method, which performs these operations
for you, if RDMA hardware is available. From the perspective
of the programming model, an asyncCopy is treated exactly as
if it were an async; just like async its termination is tracked by
its dynamically enclosing finish.

Customized Memory Allocation The RDMA data transfers
take place from a memory segment of one system to a segment
at a (usually) remote system. When a data transfer is initiated,
the caller needs to know the address of the memory segments
both locally and remotely. The local pointer is easy, but the
remote pointer must be determined. In a simple program, this
usually involves some form of pre-RDMA messaging to get the
remote pointer to the initiator of the RDMA call. There are
many improvements that can be made on this. Within X10, we
use a congruent memory allocator, which allocates and registers
a memory buffer at the same address in every place (via mmap()

or shmget()). This eliminates the need for the remote-pointer
transfer, any form of remote pointer lookup table, or the need
to calculate remote addresses at runtime.

Teams and other hardware optimizations X10 teams offer
capabilities similar to HPC collectives, such as Barrier, All-
Reduce, Broadcast, All-To-All, etc. Some networks support
these well-known communication patterns in hardware, and
some simple calculations on the data is supported as well. When
the X10 runtime is configured for these systems, the X10 team
operations will map directly to the hardware implementations
available, offering performance that can not be matched with
simple point-to-point messaging.

4 Hardware and Software Platform

We gathered performance results for our submission on a
Power7-based Power 775 supercomputer. The smallest build-
ing block of the machine is called an octant. An octant is com-
posed of a quad-chip module containing four eight-core 3.84 Ghz
Power7 processors, one optical connect controller chip (code-
named Torrent), and 128 GB of memory. A single octant has a
peak performance of 982 GFLOPS; a peak memory bandwidth
of 512 GB/s; and a peak bi-directional interconnect bandwidth
of 192 GB/s. Each octant forms a single SMP node running
an operating system image. The next logical building block of
the system is a supernode (32 octants, 1024 cores). A supern-
ode is built from 4 drawers, each drawer contains 8 octants.
The full machine we used for our measurements contains 48
supernodes, with 1470 octants (47,040 cores) available for com-
putation.1 This gives the system a theoretical peak of 1443
TFLOPS.

Each of the octants runs RedHat Enterprise Linux 6.1 and
uses the IBM Parallel Active Messaging Interface (PAMI) for
network communication.

We compiled the benchmark programs using Native X102 ver-
sion 2.2.3 and compiled the resulting C++ files with xlC version
11 with the -qinline -qhot -O3 -q64 -qarch=auto -qtune=auto
compiler options. For the FFT and HPL kernels we used native

166 octants are used either as service nodes or are reserved capacity to
support the “fail-in-place” capabilities of the system.

2Native X10 compiles X10 to C++.

implementations of key numerical routines from FFTE and IBM
ESSL respectively.

We executed all the programs in a mode in which each X10
place contained a single worker thread on which the X10 run-
time scheduler dispatched the activities for that place. Moreover
each core in the system supported exactly one X10 place. To
minimize OS level scheduling, the worker thread in each place
was bound to a specific core.

5 Global HPL

The Global HPL benchmark measures the floating point rate of
execution for solving a linear system of equations. Performance
is measured in Gflops.

5.1 Implementation

Our SPMD-style implementation of the benchmark mimics the
main attributes of the reference HPL implementation. It fea-
tures a two-dimensional block-cyclic data distribution, a right-
looking variant of the LU factorization with row partial pivoting,
and a recursive panel factorization. It lacks however various re-
finements of the reference implementation such as configurable
look ahead, configurable recursion depth, and uses default PAMI
collectives.

For the local, sequential computations, our implementation
makes use of IBM’s ESSL library. It provides a BLAS-like API
as a C-style header file and library. ESSL functions are im-
ported in X10 as static methods by means of @NativeCPPExtern
method annotations on native method declarations. The X10
compiler implements the mapping from X10 array to C-style
arrays (wrapping/unwrapping).

@NativeCPPExtern native static def blockTriSolve(

me:Rail[Double], diag:Rail[Double], B:Int):void;

For network communications, our implementation uses a col-
lection of idioms: teams for barrier, row and column broadcast,
or pivot search, array asynchronous copies for row fetch or swap.
Per-column and per-row teams are obtained through the split

method of the Team class.

colRole = here.id % px;

rowRole = here.id / px;

col = Team.WORLD.split(here.id, rowRole, colRole);

row = Team.WORLD.split(here.id, colRole, rowRole);

On Power 775, team operations are backed by hardware-
accelerated collective communication primitives and array asyn-
chronous copies by RDMAs. But the same X10 code would
run on a distinct system irrespective of the availability of such
hardware-accelerated mechanisms.

Our implementation also takes advantage of finish pragmas
for instance to make sure the compiler and runtime recognize
that a row swap is a simple ping-pong pattern.

5.2 Performance

Places are mapped to hosts in groups of 32. We use about
70% of the memory of each host and a block size of 360. We
run with up to 32,768 places in power-of-two increments. With
32,768 places, we measure an aggregated performance of about
589 Tflops, that is, about 60% of the theoretical peak of 1024

3



Figure 1: X10 Performance for Global HPL

hosts, which amounts to about 70% of the effective ESSL peek
performance (DGEMM).

The per-place performance at scale is 17.98 Gflops/core. The
single place performance is 22.38 Gflops. In other words, the
code achieves an efficiency of 80% at scale.

Figure 1 plots both the aggregated and per-place performance.
We can see that the efficiency drop primarily occurs when scaling
from 1 to 1,024 cores. Above 1,024 cores, the efficiency curve
flattens. The seesaw is an artifact of the switch from a n ∗ n to
a 2n ∗ n block cyclic distribution for resp. even and odd powers
of two.

6 Global RandomAccess

The Global RandomAccess benchmark is designed to measure
the system ability to update random memory locations in a table
distributed across the system, by performing XOR operations at
the chosen locations with random values. Because the memory is
spread across all the places, any update to a random location is
likely to be an update to memory located at a remote place, not
the local place. Performance is measured by how many GUPS
(Giga Updates Per Second) the system can sustain.

6.1 Implementation

Our implementation takes advantage of congruent memory allo-
cation, allocating the per-place table fragment at the same vir-
tual address in each place. The memory updates are issued using
the following statement where place id, index, and update are
randomly generated.

imc.getCongruentSibling(Place(place_id))

.remoteXor(index, update);

First the getCongruentSibling method return a handle for the
local table at the destination place. In contrast with typical re-
mote references in X10 (e.g., GlobalRef[T] or RemoteArray[T]),
this handle is not abstract—it does not need to be translated

into an address at the destination—but provides the virtual ad-
dress of the remote table. The remoteXor method issues the
update. On Power 775, it makes use of the remote update ca-
pability of the Torrent chip, to perform the XOR operations
directly in the network and memory subsystems of the remote
host. The remote CPU is not involved. The remoteXor method
is not Power-775-specific however, the same code would run fine
on commodity hardware (for instance using our TCP/IP trans-
port implementation). In the latter, the update will be handled
by the remote CPU.

The timed portion of the code measures the cost of issuing
the updates. It does not include the time it takes to complete
the remote updates. The hardware is designed to maximize
GUPS and does not provide means to track the completion of
individual updates. The difference would be negligible anyway
as the number of “in flight” updates is many order of magnitude
less than the number of issued updates.

6.2 Performance

Places are mapped to hosts in groups of 32. The per-place table
size is fixed at 2 GB for a total of 64 GB per host, that is, half
of the available memory. The table must be backed with huge
pages to avoid costly TLB misses (when the Torrent processes
the updates). We run with up to 32,768 cores. At scale, we
measure 843 GUPS.

Figure 2 plots two performance curves. The bisection band-
width on Power 775 depends on the placement of hosts w.r.t.
supernodes. For the “sparse hostfile” curve, we distribute the
hosts across the entire system so as to maximize bisection band-
width. In essence, we use many supernodes, but not all octants
in each supernode. In this configuration, the bottleneck is al-
ways the per-host bandwidth so the scaling is linear. The 843
GUPS we measure at scale in actually slightly better than 1,024
times the 0.8 GUPS measured for a single host.

For completeness, we also plot a “dense hostfile” curve with
fully populated supernodes. Here, the bisection bandwidth is
the bottleneck, scaling is therefore super linear.

Overall, the performance of the X10 code matches the perfor-
mance of the UPC code for the same benchmark, as well as the
performance of a direct C+PAMI implementation of the bench-
mark.

7 Global FFT

Global FFT performs a Discrete Fourier Transform on a one-
dimensional array of double-precision complex values. The
source and destination arrays are evenly distributed across the
system. It stresses the floating point units, network, and mem-
ory subsystems. Performance is measured in Gflops.

7.1 Implementation

Our implementation follows from the reference implementation.
It alternates non-overlapping phases of computation and com-
munication on the array viewed as a 2D matrix: global trans-
pose, per-row FFTs, global transpose, multiplication with twid-
dle factors, per-row FFTs, and global transpose. For the per-row
FFT—a single-place, sequential computation—we simply defer
to the reference C code. The global transposition is implemented
with local data shuffling followed by an all-to-all collective fol-
lowed by another round of local data shuffling.

4



Figure 2: X10 Performance for RandomAccess

To maximize the performance of the All-To-All collective, we
use the congruent memory allocator to ensure that all per-place
array fragments (either source or destination) are allocated at
the same virtual address and registered for RDMA operations.

Depending on the system, an All-To-All collective may benefit
from an initial warmup operation, to initialize any data struc-
tures or other components of the network before the main cal-
culation. So we include a warmup in our program as well.

7.2 Performance

We run with up to 32,768 places in power-of-two increments.
For even powers of two, each place uses 2 GB of memory, for
odd powers of two only 1 GB is used, hence either half or a
quarter of the memory of the host.

Because this code is very dependent on bisection bandwidth
and bisection bandwidth on Power 775 depends on the place-
ment of hosts w.r.t. supernodes, we plot two sets of performance
curves in Figure 3. The “sparse hostfile” set of curves shows per-
formance results if the places are spread across supernodes to
maximize bandwidth. The “dense hostfile” curves confirm that
the performance drops significantly for medium size problems if
the places are packed in a small number of supernodes. In each
case, we show the total floating point rate of execution as well
as the per-place rate.

With one place, we measure 0.99 Gflops. At scale the rate
reduces to 0.92 Gflops with a sparse hostfile and 0.82 Gflops
with a dense hostfile. In between, the per-place rate fluctuates
between 0.26 Gflops and 1.34 Gflops depending on the number
and placement of the hosts.

8 EP Stream

The EP Stream (Triad) benchmark is designed to measure sus-
tainable local memory bandwidth. It performs a scaled vector
sum with two source and one destination vectors. Performance
is measured in GB/s.

Figure 3: X10 Performance for Global FFT

8.1 Implementation

The implementation of this benchmark in X10 follows a straight-
forward SPMD style of programming. The main activity
launches an activity at every place using a broadcast method
of X10’s standard library (more efficient than a sequential for
loop over all places). These activities then allocate and initial-
ize the local arrays, perform the computation, and verify the
results. The backing storage for the arrays is allocated using
huge pages to enable efficient usage of TLB entries.

The critical loop is written:

for(var i:Int=0; i<localSize; i++) a(i)=b(i)+beta*c(i);

It is followed with a global barrier.

Team.WORLD.barrier(here.id);

The execution time, including the barrier time, is measured at
place 0.

8.2 Performance

We run with from 1 place to 32,768 places in power-of-two in-
crements and also at scale with 47,040 places. Below 32 places
we map all places to a single host. Above 32 places, we map 32
places per host. We use 1.5 GB of memory per place, that is,
48GB per host. Figure 4 shows the aggregated memory band-
width achieved by the system (in GB/s) as well as the per-place
memory bandwidth (GB/s/host).

The per-place memory bandwidth decreases as the number
of places per host increases. It drops from about 12.6 GB/s
with one place to about 7.2 GB/s with 32 places due to the
QCM architecture. Hence, the per-place memory bandwidth
plot is first a vertical line. Our single-host measurements match
the performance of the reference OpenMP EP Stream (Triad)
implementation.

With 32 places and above, the per-place memory bandwidth
is essentially constant, hence the horizontal line. The total sys-
tem bandwidth at 47,040 places (1470 hosts) is about 335 TB/s,

5



Figure 4: X10 Performance for EP Stream

which represents 98% of 1470 times the single-host bandwidth.
We attribute the 2%-loss to jitter and synchronization over-
heads.3

9 UTS

The Unbalanced Tree Search benchmark measures the rate of
traversal of a tree generated on the fly using a splittable ran-
dom number generator. For this submission, we used a fixed
geometric law for the random number generator with branching
factor b0 = 4, seed r = 19, and tree depth d varying from 14
with 1 place to 22 at scale with 47,040 places.

The nodes in a geometric tree have a branching factor
that follows a geometric distribution with an expected
value that is specified by the parameter b0 > 1. The
parameter d specifies its maximum depth cut-off, be-
yond which the tree is not allowed to grow ... The
expected size of these trees is (b0)d, but since the ge-
ometric distribution has a long tail, some nodes will
have significantly more than b0 children, yielding un-
balanced trees.

The depth cut-off makes it possible to caliber the trees and
shoot for a target execution time. To be fair, the distance from
the root to a particular node is never used in our benchmark
implementation to predict the size of a subtree. In other words,
all nodes are treated equally, irrespective of the current depth.

9.1 Design

The material in this section is excerpted from [9].
One common way to load balance is to use work-stealing. For

shared memory system this technique has been pioneered in
the Cilk system. Each worker maintains a double ended queue
(deque) of tasks. When a worker encounters a new task, it

3Each host runs a full Linux image.

pushes its continuation onto the bottom of the deque, and de-
scends into the task. On completion of the task, it checks to see
if its deque has any work, if so it pops a task (from the bottom)
and continues with the work. Else (its deque is empty) it looks
for work on other workers’ deques. It randomly determines a
victim worker, checks if its queue is non-empty, and if so, pops
a task from the top of the dequeue (the end other than the one
being operated on by the owner of the dequeue). If the queue is
empty, it guesses again and continues until it finds work. Work-
stealing systems are optimized for the case in which the number
of steals is much smaller than the total amount of work. This
is called the “work first” principle – the work of performing a
steal is incurred by the thief (which has no work), and not the
victim (which is busy performing its work).

Distributed work-stealing must deal with some additional
complications. First, the cost of stealing is usually significantly
higher than in the shared memory case. For many systems, the
target CPU must be involved in processing a steal attempt. Ad-
ditionally, one must solve the distributed termination detection
problem. The system must detect when all workers have finished
their work, and there is no more work. At this point all workers
should be shut down, and the computation should terminate.

X10 already offers a mechanism for distributed termination
detection – finish. Thus, in principle it should be possible to
spawn an activity at each place, and let each look for work.
To trigger finish based termination detection however, these
workers must eventually terminate. But when? One simple idea
is that a worker should terminate after k steal attempts have
failed. However this leaves open the possibility that a worker
may terminate too early – just because it happened to be un-
lucky in its first k guesses. If there is work somewhere else in
the network then this work can no longer be shared with these
terminated workers, thereby affecting parallel efficiency. (In an
extreme case this could lead to sequentializing significant por-
tion of the work.)

Therefore there must be a way by which a new activity can be
launched at a place whose worker has already terminated. This
leads to the idea of a lifeline graph. For each place p we pre-
determine a set of other places, called buddies. Once the worker
at p has performed k successive (unsuccessful) steals, it examines
its buddies in turn. At each buddy it determines whether there
is some work, and if so, steals a portion. However, if there is
no work, it records at the buddy that p is waiting for work. If
p cannot find any work after it has examined all its buddies, it
dies – the place p now becomes quiescent.

But if P went to a buddy B, and B did not have any work,
then it must itself be out looking for work – hence it is possible
that it will soon acquire work. In this case we require that B
distribute a portion of the work to those workers that attempted
to buddy steal from it but failed. Work must be spawned on
its own async – using the at (p) async S idiom. If P had no
activity left, it now will have a fresh activity. Thus, unlike pure
work-stealing based systems, a system with lifeline graphs will
see its nodes moving from a state of processing work (the active
state), to a state in which they are stealing to a state in which
they are dead, to a state (optionally) in which they are woken up
again with more work (and are hence back in the active state).

Note that when there is no work in the system, all places will
be dead, there will be no active async in the system and hence
the top-level finish can terminate.

The only question left is to determine the assignment of bud-
dies to a place. We are looking for a directed graph that is fully

6



Program X10 Native (C/C++)

G-HPL 588 120
G-RandomAccess 143 0
G-FFT 213 1117
EP Stream (Triad) 60 0
UTS 493 637

Table 1: Lines of Code (non-blank, non-comment)

connected (so work can flow from any vertex to any other vertex)
and that has a low diameter (so latency for work distribution is
low) and has a low degree (so the number of buddies potentially
sendng work to a dead vertex is low). z-dimensional hyper-cubes
satisfy these properties and have been implemented.

9.2 Implementation

Our implementation follows from [9] using random steals fol-
lowed by lifeline steals and hyper-cubes for the lifeline graphs.

We improve the scalability beyond [9] by further reducing the
overhead of termination detection. First, our implementation
takes advantage of the FINISH DENSE pragma which minimizes
network contention. Second, we annotate the asyncs associated
with attempted steals with @Uncounted. It dispenses the run-
time from explicitly keeping track of the completion of these
asyncs. This is fine since a thief always waits for the response
from the victim (positive or not). Therefore, the only counted
asyncs in our implementation are those distributing work (i) ini-
tially, or (ii) later along a lifeline.

We also adopt a more compact representation of the “active”
nodes in a place, by directly representing intervals of siblings
as intervals (lower, upper bounds) instead of using an expanded
list.

Finally to counteract the bias introduced by the depth cut off,
a thief steals fragments of every active interval of a place. There
are few of them since we traverse the tree deep first.

9.3 Performance

The performance achieved by the X10 implementation of the
UTS benchmark on the PERCS prototype is shown in Figure 5
for a number of places varying from one to 32,768 in power-of-
two increments and then at scale with 47,040 places. It shows
the total total number of nodes processed per second as well as
the per-place processing rate.

The depth of the tree progressively increases from 14 with one
place to 22 with 47,040 places so as to permit runs within 1 to
5 minutes.

The per-place processing rate varies from 10.9 million nodes
per second for a single place to 10.75 million nodes per second
at scale. The efficiency never drops below 98%.

At scale with 47,040 places, we traverse a tree of
69,312,400,211,958 nodes in 137s, that is about 505 bil-
lion nodes/s. As part of this traversal, we compute
17,328,102,175,815 SHA1 hashes (for the random number gen-
erator).

10 Summary

Table 1 reports the lines of X10 and native code for each of the
five programs. For X10, the table reports the number of non-

Figure 5: X10 Performance for UTS

Program Places Perf. at scale Efficiency

G-HPL 32,768 589 Tflops 80%
G-RandomAccess 32,768 843 Gups 100%
G-FFT 32,768 30 Tflops 93%
EP Stream (Triad) 47,040 335 TB/s 98%
UTS 47,040 505 B edges/s 98%

Table 2: Performance

blank, non-comment lines. For the native code the table reports
lines as counted by David A. Wheeler’s ’SLOCCount’ utility.

In all three programs that use native code, the role of the
native code is to provide computationally intensive sequential
kernels. In the case of HPL, the native code wraps the IBM
ESSL libraries which provide DGEMM, etc. For FFT, the native
code consists of kernels taken from the FFTE package. For UTS,
the native code implements the SHA1 hash function.

In Table 2, we summarize our performance results for the five
kernels. As explained in Section 4, we run with single-threaded
places, binding each place to a specific core of the system. Each
host provides 32 cores. There are 1,470 hosts available for a
maximum of 47,040 cores.

For G-HPL and UTS the efficiency at scale is computed as:

performance at scale

number of places ∗ single-place performance

The remaining three kernels are much more sensitive to mem-
ory bandwidth, which on Power 775 decreases as the number
of places on a host increases. So we report the efficiency com-
puted as:

performance at scale

number of hosts ∗ single-host performance

Our X10 implementations of G-HPL, EP Stream (Triad),
and G-RandomAccess implementations deliver between 75% and
85% of the performance of IBM’s HPC Class I Challenge imple-
mentations of these benchmarks. In other words, we achieve at

7



least 3/4 of the system’s potential for these benchmarks. Our G-
FFT implementation is more primitive and delivers only about
half of the best number obtained on the system.

To the best of our knowledge, no other UTS implementation is
capable of such scaling on this hardware or any other. While our
algorithmic insights may now be transposed to other program-
ming languages or back-ported to the reference implementation,
we believe that the X10 language and tools gave us the ability
to experiment with the UTS code like no other programming
model would, ultimately enabling us to discover the keys to per-
formance at scale.

Acknowledgments

This material is based upon work supported by the De-
fense Advanced Research Projects Agency under its Agreement
No. HR0011-07-9-0002.

Our work on X10 has been greatly enriched by collaboration
and thoughtful feedback on the language and its implementa-
tion from innumerable collaborators both within IBM and in
the external X10 research and open source communities. Thank
You!

We would also like to thank all our colleagues on the PERCS
project who made the collection of the performance results for
this submission possible. We would especially like to thank
Kevin Gildea, Vickie Robinson, Pat Esquivel, Pat Clarke,
George Almasi, and Ram Rajamony.

References

[1] B. Bloom, B. Herta, D. Grove, A. Sabharwal, H. Samu-
lowitz, and V. Saraswat. Scalable Plug & Play Parallel
SAT Solver using X10. Submitted to SAT 2012, 2012.

[2] M. Dayarathna, C. Houngkaew, and T. Suzumura. Intro-
ducing scalegraph: an x10 library for billion scale graph
analytics. In Proceedings of the 2012 ACM SIGPLAN X10
Workshop, X10 ’12, pages 6:1–6:9, New York, NY, USA,
2012. ACM.

[3] J. Dongarra, R. Graybill, W. Harrod, R. Lucas, E. Lusk,
P. Luszczek, J. Mcmahon, A. Snavely, J. Vetter, K. Yelick,
S. Alam, R. Campbell, L. Carrington, T.-Y. Chen,
O. Khalili, J. Meredith, and M. Tikir. DARPA’s HPCS
program: History, models, tools, languages. In M. V.
Zelkowitz, editor, Advances in COMPUTERS High Perfor-
mance Computing, volume 72 of Advances in Computers,
pages 1 – 100. Elsevier, 2008.

[4] J. K. Lee and J. Palsberg. Featherweight x10: a core calcu-
lus for async-finish parallelism. In Proceedings of the 15th
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’10, pages 25–36, New York,
NY, USA, 2010. ACM.

[5] J. Milthorpe, V. Ganesh, A. P. Rendell, and D. Grove. X10
as a parallel language for scientific computation: practice
and experience. In Proceedings of the 25th IEEE Inter-
national Parallel and Distributed Processing Symposium,
IPDPS ’11. IEEE Computer Society, May 2011.

[6] V. Saraswat, G. Almasi, G. Bikshandi, C. Cascaval,
D. Cunningham, D. Grove, S. Kodali, I. Peshansky, and

O. Tardieu. The asynchronous partitioned global address
space model. In AMP’10: Proceedings of The First Work-
shop on Advances in Message Passing, June 2010.

[7] V. Saraswat, B. Bloom, I. Peshansky, O. Tardieu, and
D. Grove. The X10 reference manual, v2.2. June 2011.

[8] V. Saraswat and R. Jagadeesan. Concurrent clustered pro-
gramming. In Concur’05, pages 353–367, 2005.

[9] V. A. Saraswat, P. Kambadur, S. Kodali, D. Grove, and
S. Krishnamoorthy. Lifeline-based global load balancing. In
Proceedings of the 16th ACM symposium on Principles and
practice of parallel programming, PPoPP ’11, pages 201–
212, New York, NY, USA, 2011. ACM.

[10] A. Shinnar, D. Cunningham, B. Herta, and V. Saraswat.
M3R: Increased performance for in-memory Hadoop jobs.
In Proceedings of VLDB Conference, VLDB ’12, 2012.

[11] T. Suzumura, S. Kato, T. Imamichi, M. Takeuchi,
H. Kanezashi, T. Ide, and T. Onodera. X10-based massive
parallel large-scale traffic flow simulation. In Proceedings of
the 2012 ACM SIGPLAN X10 Workshop, X10 ’12, pages
3:1–3:4, New York, NY, USA, 2012. ACM.

[12] Wikipedia. PERCS. http://en.wikipedia.org/w/index.

php?title=PERCS, 2011.

[13] X10 Global Matrix Library. https://x10.svn.

sourceforge.net/svnroot/x10/trunk/x10.gml, Oct.
2011.

8


