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ABSTRACT

This paper describes a frame-based phonotactic Language
Identification (LID) system, which was used for the LID
evaluation of the Robust Automatic Transcription of Speech
(RATS) program by the Defense Advanced Research Projects
Agency (DARPA). The proposed approach utilizes features
derived from frame-level phone log-likelihoods from a phone
recognizer. It is an attempt to capture not only phone se-
quence information but also short-term timing information
for phone N-gram events, which is lacking in conventional
phonotactic LID systems that simply count phone N-gram
events. Based on this new method, we achieved 26% relative
improvement in terms of Cy,4 for the RATS LID evaluation
data compared to phone N-gram counts modeling. We also
observed that it had a significant impact on score combina-
tion with our best acoustic system based on Mel-Frequency
Cepstral Coefficients (MFCCs).

Index Terms— DARPA RATS, language identification,
phonotactic, phone event modeling with timing information

1. INTRODUCTION

Language identification (LID) is the task of identifying which
language is spoken for a given recording. Automatic ap-
proaches to this problem have been approached from two
main directions [1, 2]. One is to utilize frame-based short-
term acoustic features such as MFCCs or Shifted Delta Cep-
stra (SDC) [3] to represent low-level language-specific in-
formation in speech. The other is to use phonotactic fea-
tures derived from one or more phone recognizers to obtain
phone N-gram events for the purpose of modeling high-level
language-dependent attributes from speech [1, 2, 4]. These
two approaches are somewhat complementary and have pro-
vided comparable results for the past Language Recognition
Evaluations (LREs) hosted by the National Institute of Stan-
dards and Technology (NIST).

This work was supported in part by Contract No. D11PC20192 DOI/
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Recently DARPA launched a program named RATS
which studies speech data transmitted through HF radio
channels. The RATS program focuses on four tasks; Speech
Activity Detection (SAD), Language Identification (LID),
Keyword Spotting (KWS), and Speaker Recognition (SR).
To evaluate systems under adverse conditions, the Linguistic
Data Consortium (LDC) collected the noisy data over eight
different channels using a variety of radio transceiver pairs
[5].

In this paper we introduce a new approach for phonotactic
LID which was a part of our primary system submitted for the
RATS LID evaluation. Unlike conventional phonotactic LID
systems utilizing phone N-gram event counts, the proposed
system exploits frame-level log-likelihoods of phone mod-
els during phone recognition and can be used to indirectly
capture timing information of phone sequences. To compen-
sate for the potential drawbacks resulting from short-term
phone event modeling, it stacks multiple frames of phone
log-likelihood ratio features to capture longer-term statistics.
In this way phone events can be represented at both frame
and segment levels. Adding this indirect timing information
to phone event modeling is shown to provide complementary
information with both phone N-gram and acoustic feature
based systems.

The remainder of this paper is structured as follows. In
Section 2, a brief description of conventional phonotactic sys-
tems considering phone N-gram events is given, which is fol-
lowed by presenting our proposed system. In Section 3, we
describe the data used for system building and testing, and
compare the performance of the two types of phonotactic sys-
tems. We also combine the output of the proposed systems
with that of our best acoustic system. In Section 4, we wrap
up the paper with a summary of our findings.

2. PHONE N-GRAM AND FRAME-BASED
MODELING

Before we explain our approach to phone event modeling with
timing information, we begin by describing a standard phono-
tactic LID system using phone /N-gram event counts.



2.1. N-gram count modeling

This method was used in [1, 2, 4] to capture high-level
language-specific information from speech regions in au-
dio data. It generally utilizes one or more phone recognizers
to convert a stream of acoustic features into a sequence of
phone tokens. For each audio recording pre-specified N-
gram phone events are counted and the counts are converted
to relative frequencies by being normalized by the total phone
event counts. The relative frequency of each phone event is
then further normalized by background statistics and these
features are concatenated to form a supervector. These (per
recording) vectors are used for SVM training and testing.

In our paper, we trained an Arabic Levantine open-loop
phone recognizer to extract 3- and 4-gram phone event counts.
The recognizer was trained in a context-dependent fashion us-
ing Perceptual Linear Prediction (PLP) features with Vocal
Tract Length Normalization (VTLN) and Feature-based Max-
imum Likelihood Linear Regression (fMLLR) on the RATS
KWS data of approximately 300 hours. We used a dictio-
nary of 50 phone tokens, and 5K context-dependent states
for the Hidden Markov Models (HMMs). To obtain the soft
counts of the 3- and 4-gram phone events, we used the SRILM
toolkit [6], which converted recognition outputs (i.e., phone
lattices) into a list of phone events with the corresponding
posterior probabilities. The i element in a phone feature su-
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[71, where d; is the ™ phone N-gram event of the combined
3- and 4-grams and P(d;|-) is the relative frequency of d;
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#(d;|") is the smoothed soft count of d;. B is the background
phone event statistics determined from our TRAIN data set
(in Section 3.1). For the 4-gram phone events, we selected
the 100K most frequent events to make the computational
processing more feasible. (There was no pruning for the 3-
gram phone events.) The supervector dimension then became
M = 225K = 503 (3-grams) + 100K (pruned 4-grams) .
We then applied Principal Component Analysis (PCA) [8]
to find a more compact representation. The PCA projection
matrix was learned from the aforementioned TRAIN data set
to transform the original feature vectors of 225K dimensions
into a compactly represented form of 600 dimensions. Using
these projected feature vectors, we trained high-order SVM
models [9]. For the SVM training, we used the LIBSVM
package [10]. As a backend unit, we ran multi-class logis-
tic regression to normalize scores after SVM classification.

where

2.2. Capturing phone event timing information

Our proposed approach for phone event modeling exploits
timing information, which is not captured in conventional
methods using phone N-gram counts detailed in Section 2.1.

2.2.1. Frame-based short-term statistics

To indirectly integrate timing information with phone event
modeling, we used per frame (10ms each) log-likelihood ra-
tios for the entire phone inventory of the dictionary (50 uni-
gram phones in our case) as an initial feature vector. Consider
M (=50 in our case) phone tokens in a dictionary for a phone
recognizer. For each frame f, we generate a feature vy" for

the m™ phone, where m = 1,2, ..., M,

M

vft =logp(dm|f) —log > p(dilf). )

i=1,i%m

The phone features are collected across phone events and
frames to create the set of feature vectors for a recording.

2.2.2. Longer-term phone event modeling

It would be difficult to capture linguistic information with the
proposed short-term statistics. In addition, 3- or 4-grams are
generally considered better than 1- or 2-grams for phonotactic
LID and their statistics cover a longer period in time. In or-
der to capture longer-term phone dynamics, we evaluate two
targeted methods.

The first method is to borrow the concept of SDCs [3],
which shifts and stacks the original feature vectors with a
specified shift (P) and a specified number of stacked frames
(K). Considering that on average there are about 10 phones
per second in speech, we set P and K such that stacked fea-
ture vectors can cover more than 200ms of context. Thus, we
selected P = 4 and K = 7; every 4% frame is stacked un-
til seven frames are stacked in total. (Note that we use the
original feature vector elements, not delta information like
SDCs, for shift-and-stacking. The original feature vectors in
our framework inherently have similar values over adjacent
frames so delta features would be of limited benefit.) Once
shift-and-stack is performed, the feature vectors have 350 di-
mensions (= 50 phones x 7 stacked frames). Because of this
high dimensionality, a simpler model limitation would need
to be imposed.

The second method to consider longer-term phone events
is to find a PCA subspace learned from a long-windowed
chunk of the frame-based phone feature vectors and to trans-
form such windowed feature vectors to a compact subspace.
The PCA transform was determined from a subset of the
TRAIN data. The subspace dimension was set to 100 and the
window size used for capturing the longer-term context was
1 second.

The resulting feature vectors with longer-term infor-
mation derived from either the first or second method is
then transformed into a fixed dimension supervector by
concatenating the normalized MAP adapted mean vectors
of a Universal Background Model (UBM) for a recording
[11, 12]. After performing supervector MAP adaptation, we
applied the same compact representation approach, SVM



training/classification, and backend score normalization as
we applied for the conventional phone event modeling with
N-gram counts described in Section 2.1.

This proposed method is related to [13] in that it considers
timing information (e.g., phone durations) in its modeling of
phone events. In [13], duration-specific side information for
each phone instance was captured by further categorizing it
as a short or long duration event. In contrast, our approach
exploits timing information and long-term phone event se-
quence information by shifting-and-stacking multiple frames.

Very recently a phonotactic system based on phoneme
posteriogram counts was introduced [14]. Here the speech
was partitioned into segments of phone-like units and for each
segment a small vector of the phone unigram probabilities
was determined. This information was collected across seg-
ment sequences and transformed to represent estimates of N-
gram probabilities. We note that while this method does ex-
ploit frame based statistics to determine the phone probabili-
ties it does not exploit phone timing information.

3. RESULTS AND DISCUSSION

3.1. Data

The target languages for the RATS LID evaluation are Arabic
Levantine, Farsi, Dari, Pushto, and Urdu. LDC distributed
the training and development data of the five target languages
and ten non-target languages totaling approximately 3,700
hours of recordings (See Table 1). We split the data into three
groups for system training, calibration and internal evalua-
tion; TRAIN, COMB, and TEST. The TRAIN data set was
used to capture background statistics and train UBMs. This
data set was also utilized to find the PCA subspaces. The
COMB data set was prepared to calibrate parameters for
backend score normalization and score combination. The
TEST data set was our internal data used to evaluate the sys-
tems. The DEV?2 data set is the actual testing data provided
by the LDC for the RATS LID evaluation. Table 1 shows the
data sets used for our system building and testing in terms of
the number of recordings and hours.

3.2. Experimental results

Table 2 shows the performance comparison of a 2-minute
duration task! for the two systems explained in Section 2.
The results are presented in terms of the official metric for
the RATS LID evaluation (miss detection rate at 10% false
alarm rate, Miss @ 10%Fa) and the NIST metric for the LREs
(Cavg)- To evaluate the systems, we used both of the TEST
and DEV2 data sets as shown. In the ‘System’ category
in the table, 128, 256, and 1,024 indicate the number of

!Training and testing examples are all 2-minute recordings.

Table 1. Statistics for the TRAIN, COMB, TEST, and DEV2
data sets for system building and testing.

No. of Recordings | Hours

TRAIN 87,774 2,926
COMB 9,733 478
TEST 14,328 324
DEV2 1,914 64

Total 113,749 3,792

Table 2. Performance comparison of a 2-minute duration task
for the two phonotactic LID systems for the TEST and DEV2
data sets. The numbers in the ‘System’ column are the num-
ber of Gaussian components in the UBMs.

TEST DEV2
System Miss Miss
Cavg Cavg
@10%Fa @10%Fa
N-grams 4.7 8.9 6.9 11.0
Shift-and-stack, 128 3.1 6.7 4.7 8.9
Shift-and-stack, 256 2.9 6.4 4.5 8.5
PCA, 1024 2.6 5.8 4.0 8.1

Gaussian components in the UBMs2. From this table, we ob-
serve that the proposed method outperforms the conventional
phone event modeling with N-gram counts. The best result
was achieved from the PCA-based compact subspace setup
for frame-based features with 1,024 Gaussians in the UBM.
This system provided a 45% relative improvement com-
pared to the conventional N-gram count approach in terms
of Miss@10%Fa for the TEST data set (4.7% — 2.6%). In
terms of C,,4 We obtained a 35% relative improvement. A
significant improvement was observed in the results for the
DEV?2 data set as well. The improvements for the DEV2 data
set are 42% and 26% (relative) in terms of Miss@ 10%Fa and
Cavg respectively.

Table 3 shows the impact of the proposed approach in
score combination with our best acoustic system based on
MFCCs. The relative improvement of 20% (2.8 — 2.3 in
Miss@10%Fa) and 10% (6.8 — 6.1 in Cy.4) from the pro-
posed phone event modeling indicates that frame-based phone
features perform well by themselves and combine well with
acoustic systems.

2The reason that we only used up to 256 Gaussian components in the
UBMs in the ‘Shift-and-stack’ method is because of the high feature dimen-
sionaltiy (= 350) and the corresponding computational resources required.
We note that for 256 mixture components the dimensionality of the resulting
MAP-adapted supervectors is comparable to the PCA method.



Table 3. DEV2 performance chart including score combina-
tion of the two phonotactic systems with our MFCC-based
acoustic system for LID. The optimal weights for each com-
bination pair were trained based on the COMB data set.

System Miss@10%Fa | Cauvg
1. N-gram 6.9 11.0
2. Proposed (PCA, 1024) 4.0 8.1
142 35 7.3
3. MFCC 2.8 6.8
1+3 2.8 6.7
2+3 2.3 6.1
1+2+3 2.3 6.0

4. CONCLUSIONS

In this paper, we proposed a new approach for phone event
modeling that aims to exploit timing information for LID.
For this, we utilized frame-level log-likelihood ratios of
phone models, which are generated from our Arabic Lev-
antine phone recognizer during the decoding process. Using
a compact representation of phone likelihood feature vectors
for SVM classification, we could achieve 45% relative im-
provement as compared to the conventional phone N-gram
count modeling. In addition, we obtained a significant im-
provement from the proposed phonotactic LID system in
score combination with our MFCC-based acoustic system.
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