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Abstract 
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Saving energy, improving energy efficiency and reducing greenhouse gas (GHG) emissions are among 

the most important initiatives in today’s world.  Occupied buildings consume a substantial amount of 

energy; mounting to about 40% of overall energy consumption in most countries.  The majority of the 

world’s population either lives or works in buildings; therefore, everybody has a responsibility and a role 

to play in reducing energy consumption, controlling GHG emissions, and mitigating climate change and 

its potential impact. We developed an analytical tool which can assist building owners, facility managers, 

operators and tenants of buildings in assessing, benchmarking, diagnosing, tracking, forecasting, 

simulating and optimizing energy consumption in building portfolios. Furthermore, for greater 

dissemination, we have made this analytic service available on demand in a flexible cloud environment.  

Cloud is an efficient and effective medium to provide building energy analytics capability to various 

functions and people in a variety of roles in buildings without investing a substantial amount of money in 

hardware, software and IT infrastructure.  We present results of the building energy analytics developed 

for New York City’s K-12 public school buildings and a commercial office building in Korea.   
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1 Introduction 
 

Energy consumption by humans causes a gradual increase in concentrations of greenhouse gas (GHG) in 

the Earth’s atmosphere, and is considered to be the main source of global warming (Silver & DeFries, 

1991).  In the United States, 40% of the nation’s total energy consumption is due to commercial and 

residential buildings (U.S. Dept of Energy, 2006), and this figure is constantly increasing.  Such buildings 

also contribute 45% of the country’s GHG emissions (EPA ESPM Greenhouse Gas Inventory 2009).  The 

majority of the world’s population either lives or works in buildings; therefore, everybody has a 

responsibility and a role to play in reducing energy consumption, controlling GHG emissions, and 

confronting climate change and its potential impacts.  End-use energy efficiency can contribute to more 

than 50% of total global energy conservation (World Energy Outlook 2009).   

 Saving energy, improving energy efficiency and reducing greenhouse gas (GHG) emissions are 

key initiatives for many cities, municipalities, building owners and operators. For example, New York 

City (NYC)'s government spends over $1 billion a year on energy for their approximately 4,000 buildings 

(e.g. public schools, prisons, court houses, administrative buildings, waste water treatment plants, etc.), 

and is committed to reducing the City government's energy consumption and CO2 emissions by 30% by 

2017 from their 2005 levels through an initiative called PlaNYC (PlaNYC 2007).  NYC plans to invest, 

each year, an amount equal to 10% of its energy expenses in energy-saving measures over the next 10 

years.  The largest segment of NYC government buildings is the 1,200 K-12 public schools serving 1.1 

million students and covering about 150 million square feet.  The New York City Department of 

Education was interested in understanding how energy efficient their buildings are, what factors 

contribute to inefficiencies, what the opportunities for improvement given budget constraints are, and 

how much they can contribute in energy savings and GHG emission reductions toward NYC’s PlaNYC 

initiative, and wanted to have the information readily available to the department, school custodians and 

even to students. 
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 In order to reduce energy consumption in buildings, however, one needs to understand patterns of 

energy usage and heat transfer as well as characteristics of building structures, operations and occupants’ 

behavior that influences energy consumption.  This understanding can be aided through development of 

scientific models which are based on physics, mathematics and statistics.  The models can then be used to 

simulate the impact of possible changes that can be made to buildings on energy consumption, energy 

costs and GHG emissions, and provide decision support for making buildings more energy efficient. The 

changes can be structural changes such as retrofits (e.g. new boiler, insulation, windows or roof), 

operational changes such as operating hours, behavioral changes such as running appliances at different 

times of the day when electricity prices are lower, and external changes such as weather factors.  The 

models can also be used for optimizing the changes that can be made to the buildings given an energy 

conservation target. Developed along this effort is the IBM Building Energy and Emissions Analytics 

(called i-BEETM) Toolset, an analytical tool that assesses, benchmarks, diagnoses, tracks, forecasts, 

simulates and optimizes energy consumption in building portfolios.  As initial efforts of this initiative, 

IBM collaborated with the City University of New York (IBM, 2011a) to develop the tool for the 

portfolio of K-12 public school buildings in New York City to identify energy saving opportunities. The 

i-BEETM tool for NYC K-12 schools was deployed on the cloud so that all the building energy analytics 

were readily accessible by building owners, facility managers, operators and tenants of the buildings 

through web browsers without the need to install any special hardware, software, data interface or 

mathematical toolbox.  Additionally, we are also developing the building energy analytics for a 

commercial office complex in Korea using near real time sensor/meter data collected in the building 

management system (BMS). 

 Cloud computing is an efficient and effective way to deliver the techniques, platform, software as 

services, and integration of multiple services into an enterprise solution.  We deploy our building analytic 

modules into the cloud platform as services, make building and energy data retrieved from the BMS, 

weather data and other collected data  available on the cloud,  provide interactive reports and 
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customizable visualization for a portfolio of  buildings on the cloud, and enable collaboration among 

building operators owners as well as occupants. 

 The rest of the paper is organized as follows.  In section 2, the data flow and analytics of the 

building energy analytics toolset are presented.  In section 3, the heat transfer model and inverse modeling 

approach for estimating heat transfer coefficients are described.  Then, section 4 shows statistical models 

that integrate multiple regression models and a time series model of building energy.  Section 5 explains 

the deployment of the tool on cloud.  Finally, conclusions are provided in section 6. 

 

2 Data flow and analytics of building energy Analytics toolset 
 

The building energy models in i-BEETM incorporate data integrated from multiple sources.  Figure 1 

describes how various data are collected and assembled into a common database and used by models and 

analytics. 

 One type of data used by models is data coming from the building management system (BMS) such 

as temperature and flow rate of supply air and return air from/to air handling units (AHU), which provide 

warm or cool air into various rooms inside buildings.  Data collected from various sensors in spaces in 

buildings such as temperature, humidity and occupancy are also used.  The sensor data can be recorded 

and collected through the BMS or individually.  Data can also come from meters and sub-meters that 

measure energy use such as electricity, natural gas, steam and chilled water for the whole building or 

parts of the building or equipment.  Other data elements include: energy bills, e.g. monthly bills for 

electricity, natural gas and steam consumption; building characteristics such as gross floor area (GFA), 

age of building, number of occupants, wall area, window area, roof area, number of floor, percentage of 

building cooled and heated, operating hours, number of computers and other equipment such as 

refrigerators, freezers etc; thermal loads and plug loads; weather data for historic and current conditions 

such as temperature, humidity, solar radiation and wind; and real-time electricity prices from the local 

utility.  Data from the Environmental Protection Agency (EPA) can also be used for calculating source 
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energy and greenhouse gas (GHG) emissions for which a building is responsible (EPA ESPM Source 

Energy, 2009).  Source energy is the amount of energy required to generate and transport the energy 

requirements of the building. Site energy is the amount of energy consumed by a building for heating, 

cooling, lighting, plug loads, and so on.   
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Figure 1: Data Flow and Analytics 

 
 The i-BEETM data described above is organized into a database in a data warehouse, which is designed 

through a data model that defines the relationship between data elements.  The data from the database is 

used in populating three fundamental base models: heat transfer inverse model, multivariate regression 

model, and time series model.  The models are described below in the following sections. These three 

base models are being calibrated periodically as new data are brought into the database, such that the 

model stays accurate even if the building energy performance degrades over time.   In addition to the 

model, basic statistical analyses including temporal and spatial analysis, and GHG emissions calculations 

are done for the buildings in the portfolio.  Using the three base models in an integrated way, various 

analytical tasks can be performed.  One task is anomaly detection for energy use for each building.  This 

capability identifies abnormal energy consumption for a building or a part of the building by comparing 
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actual energy consumption with predicted energy consumption and calculating upper and lower control 

bounds using statistical process control methods.  Another task is benchmarking, which computes energy 

performance indicators of each building for each energy type and for each type of energy load (e.g., base 

load, heating load and cooling load), and identifies under-performing buildings, which can be candidates 

for energy efficiency improvements.  A third  task is forecasting future energy consumption in the short-

term (i.e., for the next 24 hours) and longer-term (e.g., for the next few months).  A fourth task is 

simulation (what-if analysis) of changes that could be made to building structures, operations and 

occupant incentives on energy consumption and GHG emissions.  Finally, several types optimization can 

also be done as explained in the sections below.  All the analytics and reports are accessible securely to 

users through an analytics dashboard deployed on the cloud. 

 

3 Heat Transfer Modeling and Inversion 
 
In this section, we describe how thermal energy is used to provide a comfortable climate, e.g., 

temperature and humidity, inside a building using thermal physics principles.  Figure 2 shows a simplified 

view of heat transfer in a building.  Building occupants desire  comfortable temperature and humidity 

inside the building.  However, since buildings are neither perfectly insulated nor blocked from sunlight, 

warm and humid climate conditions outside a building come into the building during the summer season, 

and cold and dry air comes into the building during the winter season making the inside climate 

uncomfortable for the occupants.   In order to compensate for the influence of the outside climate, the 

heating ventilation and air conditioning (HVAC) system and plant equipment (e.g., chillers and boilers 

etc.) are operated to provide thermal energy into the building to maintain occupants’ thermal comfort.  

Typically heat transfer from outdoor conditions into the space involves heat transfer through a building 

component like external or internal walls, windows, roof, and the ground (foundation).  The heat transfer 

includes heat conduction (e.g., heat flows through wall materials), heat convection (e.g., heat flows 

through the air from interior walls into the space), solar radiation (e.g., solar energy on the exterior wall or 
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through openings such as a window onto an interior  wall or object like a piece of furniture), infiltration of 

outside air into the space through cracks around windows, doors and opened windows and doors, and 

internal heat gain from light, equipment, and occupants.  The plant and its systems produce thermal 

energy sources such as steam, hot water or chilled water, which is then transferred to the space through 

the system equipment. In the case of an all-air based system, heat exchangers convert the source energy 

into warm and cold air with a certain supply temperature, humidity and flow rate, and blow them to each 

zone of the building using AHUs and other fan systems. 

 

 

 

 

 

 

 

 

 

 

Figure 2: Schematic View of Heat Transfer in a Building 

The heat transfer can be simplified as the following set of equations: 
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Equation (1) is energy balance on the building envelope, e, which can consist of walls in different 

directions, windows, roof and ground.  At the outer and inner envelope surfaces, heat transfer is 

controlled by a convective heat transfer from ambient air and zone air, and solar radiation.  At the outer 

and inner envelope surfaces, heat transfer is controlled by a convective heat transfer from ambient air and 

zone air, and solar radiation. The boundary conditions at the outer and inner envelope surfaces are 

expressed by equation (2) and (3).   Equation (4) is energy balance inside of the building (zone).  Here,  

sysambzeOeIe TTTTTT ,,,,, ,, are temperatures of envelope, inner envelope surface, outer envelope surface, 

zone, outside air (ambient) and the HVAC system, 

ze ρρ , are densities of the building envelope and the air inside the zone, 

,,, winez AAV are volumes of zone, wall, areas of the envelope and windows,  

pep CC ,,  are specific heat of the building envelope and air, 

OIe hhk ,, are coefficients of heat conduction of the envelope and heat convection coefficients at the inner 

and outer surfaces of the building envelope, 

sysmm && ,inf are flow rates of infiltration and the system (HVAC), 

shgcOwIwsolQ λλλ ,,, ,,
& are rates of total solar radiation, solar absorption constants at the inner and outer 

walls, and the solar heat gain constant of window, 

intQ& is the internal heat gain from people, lighting and other equipment inside the building. 

 

 For heat transfer inverse modeling of buildings, often there isn’t enough sensor data or meter data 

to allow for the estimation of all the physical parameters that support the complexity of the heat transfer 

model (e.g., equations).  Therefore, the heat transfer equations above can be simplified further. 
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Heat transfer coefficients are often expressed in terms of R-values and U-values, i.e., , 

which are wall and roof heat resistances and the window heat transfer coefficient. 

winroofwall URR ,,

 In equations (1) - (4), the parameters that are not known are ,which represent 

heat conduction coefficients of the envelope, heat convection coefficients of the inner and outer building  

envelope surfaces, heat capacity of envelope and infiltration coefficient of the building envelope.  The 

parameters can be estimated by forming the problem as an inverse problem (Beck and Woodbury 1998).   

inf, ,,,, mChhk epOIe &

 Depending on the availability of data for the building, the observed data might not allow the 

estimation of all parameters, moreover, some parameters are correlated.  For the portfolio of K-12 public 

school buildings analyzed, we generated an innovative procedure to address this issue.  First, we derive a 

static heat transfer model by integrating the differential equations described above  over heating seasons 

and cooling seasons. Then, using the energy consumption data, we estimate the overall heat transfer 

coefficient and solar contribution for each building.  Lastly, a clustering method is used to separate the 

overall heat transfer into thermal resistance of the wall, roof and window for a collection of similar 

buildings.  The details of this approach are published in a separate paper (An et al. 2012). 

 We present here an early result of the heat transfer inverse model applied to a 5-story commercial 

office building located in Korea.  We calibrated the heat transfer model using the past 5 days of historical 

sensor data, and predicted the energy profile for the next 5 days using hourly resolution.  Figure 3 below 

shows  predicted and actual zone temperature profiles for a modeled zone in the building on July 2-6.  

The mean absolute percentage error (MAPE), with respect to the actual and peak energy consumption is 

8.9% and  8.2%, respectively.  The occurrence of the peak energy differs by 3.5 hours on average.  We 

are in the process of improving the calibration procedure of the heat transfer inverse model in order to 

improve the accuracy of the prediction.  The heat transfer model is planned to be used to simulate the 

impact of operational changes such as a set point change, pre-cooling and pre-heating. 
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Figure 3: Predicted and Actual Energy Consumption from Heat Transfer Model  

 

4 Statistical Models 
 
We developed statistical methods to help understand the energy usage patterns for portfolios buildings as 

well as individual buildings. The Variable Base Degree Day (VBDD) regression model (ASHRAE 2009) 

is a popular approach to analyze energy consumption, which assumes an independent error structure for 

the regression model. The assumption may not be realistic in practice, especially for our application with 

a large portfolio of buildings. A new method, which incorporates building heterogeneity and the 

dependent error structure, is thus developed.         

 We developed a multi-step statistical analysis procedure, which combines the multivariate regression 

model, the VBDD regression model and the Auto Regressive Integrated Moving Average (ARIMA) 

model (Brockwell and Davis 2006), to assess energy efficiency, predict energy consumption and detect 

anomaly of energy use.  In the first step, we build a regression model that correlates energy consumption 

with building characteristics. The energy related building characteristics are then identified through the 

stepwise variable selection technique. The results are valuable in providing building energy performance 

scores for the whole portfolio. Additionally, this method can predict the energy consumption of buildings 

of similar characteristics. In the second step, to accommodate building heterogeneity, we build VBDD 
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regression models separately for each building.  For a VBDD model, the total monthly energy usage data 

for building i , in period t is denoted , and is modeled as:  ity
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Here,  is the outdoor temperature for building i  on day  of month , itdT d t },{1, ni K∈ , , 

, and  is the balance-point temperature for building i.  and  

are the cumulative heating and cooling energy usage for month t  when the balance point temperature is 

set to be .    The VBDD model uses daily energy and temperature data to compute the monthly 

energy consumption.  With the availability of the data in finer time resolution, i.e., hourly, a variation of 

the VBDD model, Variable Base Degree Hours (VBDH), can also be developed.  The VBDH model uses 

hourly data to compute the daily energy consumption. 
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 These models are used to separate the base load energy consumption from the weather dependent 

usage. The results of this step consist of the base temperature estimates, as well as the estimated 

coefficients for HDD and CDD for all buildings. In the third step, we further analyze energy efficiency by 

energy consumption type (i.e., heating, cooling and base load) by building the multivariate regression 

models for the results from the VBDD model, from which the performance scores can be derived for base 

load, heating, and cooling.  The multivariate regression model takes the form  

 12



      ipipiii xxxy εβββ ++++ K2211=                                                            (7) 

where is the quantity of  interest, typically referred to as the response variable, and  are the iy ipi xx ,,1 K

p  predictor variables, pββ K,1  are the regression coefficients, and iε  is the error term. 

 Finally, in the last step, we model the dependent error structure through the ARIMA model.  

Recall that itε̂ , , are the estimated error terms from the VBDD models in equation (5).  The 

time series modeling is conducted for each individual building independently. Firstly, we remove the 

seasonal patterns by using a regression model, with 

mt ,....,1=

itε̂  being the response variable and the 12 monthly 

seasonal factors being the predictor variables. To avoid the colinearity issue, we set the monthly seasonal 

factor for December equal to 0. We denote the error terms from equation (5) after removing the seasonal 

patterns by itε̂ . Then,  the dynamic structure of itε̂  is modeled using the ARIMA model  to capture  time 

series data in order to better understandthe present data and accurately forecast future data points 

(Brockwell and Davis 2006). Despite its popularity in statistical literature, the ARIMA model has been 

rarely used in the context of building energy, partly because of its complex modeling schemes. 

Nevertheless, the ARIMA model provides a more flexible, possibly non-stationary structure to model 

building energy patterns, which is essential for simultaneously modeling  a large number of buildings.  

The ARIMA model takes a form 
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where  is the lag operator, L 1,
~=~

−tiitL εε ; p , r , q  are non-negative integers and are the orders of auto-

regressive, integrated, and moving average parts of the model; },1,=,{ pi Kllφ  and },1,=,{ qi Kllθ  

are the parameters associated with the auto-regressive and moving average parts of the model; and itη  are 

mutually independent standard normal random variables.  The ARIMA models are the most general class 

of models for forecasting a time series which can be stationarized by transformations such as differencing. 

In fact, the order of the integrated part r  reflects the trend of the data (e.g.,  no trend, 0=r 1=r  linear 
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trend, 2=r  quadratic trend, etc), while p  and q  control how fast the auto-correlation decays.  The 

details of the technique are described in Liu et al. (2011).   

 The ARIMA model, combined with either the VBDD or VBDH regression models, can be used to 

predict and forecast energy consumption for each individual building. In addition, the anomaly dectection 

with respect to the historical energy usage may be conducted by comparing the observed energy useage 

with the resulting upper and lower control limits for each building.  We present here sample results from 

the VBDH/ARIMA model on foreasting and anomaly detection. Figure 4 shows the predicted energy 

consumption (solid line), actual energy consumption (square dots), detected energy consumption 

anomalies  (square dots circled), and a 3-day forecast (line breaks in circle) in daily scale for an electricty 

meter for a 5 story commercial building.  The figure is for the scenario of using one month of historical 

energy consunption data (March 1st - March  31s) to calibrate the VBDH/ARIMA model, and then 

forecast energy consumption for 3 future days (April 1st, 2nd and 3rd).    On March 29th and 30th, the energy 

consumption observed by this particular meter is higher than the control bound, thus generating alerts that 

anomalies occurred.   Figure 5 shows the forecast accuracy for energy consumption recorded through all 

the meters (4 different types, i.e., electrcity meters, gas meters, total meters and thermal meters) in the 

commercial building in the scatter diagram (log scaled).  Here, the total meters are aggregated values of 

several meters for the purpose of tracking and reporting, and the thermal meters are computed energy 

consumption values based on metered data to represent the thermal energy for certain zones and 

equipment.  The forecast error in MAPE for all the meters is about 10% for the building of this study.   

 

Figure 4: Anomaly detection from the VBDD/ARIMA model 
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Figure 4: Energy Forecast and Anomaly Detection 

 

Figure 5: Scatter Plot of Measured Meter Values and Forecasted Values 

 

  In addition to the anomaly detection by control bounds, the VBDH/ARIMA model is also used 

for detecting drifting trend of energy consumption through the analysis of Cumulative Sum of 

Differences, CUSUM (Duncan, 1986), which computes the cumulative difference between predicted and 

actual energy consumption  and identifies the trend that goes out of the statistical boundary.  Let  be 

the target energy consumption for meter i  at time t , i.e., the energy consumption predicted based on the 

VBDD regression model.  Then the lower cusum  and the upper cusum  are defined as 

itŷ

−
itC +

itC
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where is an user specified value that reflects the drift level. Comparing the lower cusum and the upper 

cusum with the alert level H (typically chosen as 5), we can generate an alert for mean shift whenever the 

upper cusum or the lower cusum is outside the control range. Figure 6 shows an example of a drifting 

anomaly from CUSUM.  Although the top graph of Figure 6 indicates that all the observed energy 

consumption data are within the control bounds, the bottom graph (CUSUM) indicates that on March 28

k

th  

- 30th , there is a substantial increasing trend of actual energy consumption with respect to the model 

predicted energy consumption.  This CUSUM analysis is an effective way to detect the drifting energy 

consumption which cannot be easily detected by control bound calculation. 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Anomaly Detection by Control Bounds and CUSUM 
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The statistical technique provides an integrated analysis for building heterogeneity, the weather dependent 

patterns and the temporal dependent patterns. It has wide applicability in anomaly detection, forecasting, 

energy efficiency analysis by energy type for building portfolios.  We remark that, in contrast to the 

common practice of utilizing physics-based models to perform the Fault Detection and Diagnosis (FDD) 

in the building operation industry, the statistical modeling approach avoids the complexity of model 

calibration and provides a more flexible tool for such purpose.  However, a statistical model is appropriate 

for bigger time resolutions, e.g., monthly, weekly or daily energy consumption while the physics-based 

model is effective for computing a dynamic profile  (i.e., finer time resolution such as 1 minute, 15 

minutes and hourly) of energy consumption. 

 

5 Cloud Deployment 
 

All the data, models, analytics, visualization and other useful information for energy performance of 

buildings can be very valuable for many people including those who own and manage the buildings and 

tenants of the buildings.  However, the building energy models and analytics require substantially 

configured computing hardware and software including data interface programs, database, data 

integration and transformation, data warehouse, statistical engine, optimization engine, business 

intelligence/dashboard tool and visualization.  Also depending upon the size of the data and amount of 

analysis there is a need to scale up and scale down the install base. Typical users, especially tenants of 

buildings such as students and public school custodians cannot afford such resources individually.  As 

suggested, the cloud is a secure, flexible and scalable way of delivering such analytic services to many 

users by sharing all the resources in a cost effective and secure way among many users.  Running this 

kind of energy service on cloud for multiple clients using the shared computing resource is actually more 

energy-efficient than providing the same service to individual clients with a traditional computing 

medium without the cloud.  Depending on the number and roles of the users, an appropriate level of 

resource can be easily configured virtually on the cloud, and the level of access to resources can be 
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adjusted on demand.  Using cloud, all the building energy analytics can be readily accessible by building 

owners, facility managers, operators and tenants of buildings through web browsers without installing any 

special hardware, software, data interface and mathematical tools.   

The cloud-based deployment is based on the Software as a Service (SaaS) model for software deployment.  

The i-BEE tool is hosted as a service provided to customers across the Internet.  The decision to deploy 

the i-BEE tool on the cloud was to eliminate the need to install and run the tool on the customer’s own 

computers along with alleviating any burden to the customer with regard to software maintenance, 

ongoing operation and support.  The i-BEE cloud deployment is a hybrid of both public and private 

clouds that is designed to provide rapid access to security-rich, enterprise-class virtual server 

environments, well suited for dynamic workloads.  The i-BEE cloud offers the capabilities to control 

access and configure security.  The control access capability creates accounts, manages permissions, 

modifies user information, and more. The configure security capability manages the security of the virtual 

environment such as managing keys and passwords for the encrypted connections, and assigning 

instances to virtual private networks  and virtual local area networks.   

Even though the i-BEE tool resides on a public cloud platform where control of the cloud services 

to operate, access and secure is maintained through a separated authority, the IT infrastructure acts as a 

shared pool of computing resources i.e.; servers, networks, and storage that is rapidly provisioned for the 

benefit of a single organization. Furthermore, acting as a private cloud the ability to obtain automatic 

failover between hardware platforms is simpler than providing disaster recovery services that can be 

extended to i-BEE customers.  

 Managing data from multiple disparate sources requires security, privacy, policy, and governance.  

Policies vary by government, geography, and industry.  The right mix of technology is important for 

enforcing different policy choices.  Figure 7 below shows how the smarter building energy analytics were 

deployed on the cloud.  There are two types of data sources that provide the data that is required for the 

models and analytics.  One type of data is coming directly from the internet through web-service type of 

applications that  include weather data from the local weather stations and grid pricing data, which can 

 18



change dynamically over time based on energy demand and supply.   The other type of data is data that 

describes building configuration, energy consumption, energy load, data from meters/submeters and 

sensors for each building.  These data can come directly from a server in a building through the BMS or 

other central data depository, or manually in papers.  All these data are brought into a server on the cloud 

and are cleaned and aggregated in a data staging area, and then stored in a data warehouse.  The data in 

the data warehouse is used by various models and analytics described in the earlier sections of the paper 

including data mining, statistical model, spatial analyzer, heat transfer model, simulation and optimization, 

all of which reside on the cloud.  The data, energy performance information, analysis results and 

recommendations are communicated to users through the analytics dashboard, which can be accessed via  

a PC web browser.  or hand held device such as smart phone and tablet computer. 

 For this application of smarter building energy analytics, the data model is built such that a single 

warehouse can handle data from multiple clients.  All building and energy related data is identified to 

belong to a particular client.  Weather data can be shared across clients if multiple clients would be 

referring to the same location.  The dashboard can easily identify data specific to a particular client and 

display just that data and information.  Since some clients may not have large amounts of data, this allows 

many clients to share resources, thereby reducing individual costs.  If there are security or privacy 

concerns, the data can be separated out into a separate instance.  Scaling on the cloud is a fairly 

straightforward process.  Once the base software, models, and analytics are installed, one can make an 

image of this "empty" system.  This image can then be copied and deployed on another cloud instance, as 

long as they share the same operating system.  This will require some slight configuration changes to 

allow it to work properly (IP Address/Hostname updates on various software, licenses and path updates if 

necessary).  With this method, you can quickly get another empty instance up and running that is ready to 

accept and process additional client data once a previous resource has filled up.  We have not run into a 

situation where one particular client has a large enough set of a data that we are not able to accommodate 

them on a single piece of hardware.  Even a "large" amount of data for a particular BMS system, is quite 

small as far as being able to be processed and stored.  If a case like this were to arise a partitioned 
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database may be needed to accommodate the large data size.  The rest of the software and processing 

would still be accommodated by a single instance. 
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Figure 7: Cloud-Delivered Smarter Building Energy Analytics 

 

6 Conclusion  
 

The cloud is an efficient and effective way to deliver smarter building energy analytics to building owners, 

facility managers, operators and tenants of buildings by sizing, sharing and managing computational 
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resources.  We developed a smarter building analytics tool which provides useful information in assessing, 

benchmarking, diagnosing, tracking, forecasting, simulating and optimizing energy consumption in 

building portfolios, and identifying energy savings opportunities.   The cloud-based tool has been 

deployed on the cloud for the K-12 public school buildings in New York City. The tool is also being used 

for NYC building operator certification (BOC) training classes (Bobker et al. 2011) and has received very 

positive feedback from both the instructors and the students.  The tool is also being extended to analyze 

energy efficiency and simulate and optimize the operational alternatives of highly instrumented 

commercial buildings.  We also plan to expand the use of the tool to more public school systems in the 

U.S. and other public buildings portfolios.  Energy savings, energy efficiency and GHG emissions from 

buildings have become critical issues, and therefore there are many opportunities to be explored to make 

an impact, and cloud can facilitate the delivery of smarter building energy analytics to a wider spectrum 

of users.  Let’s build smarter buildings on cloud together. 
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