
RC25339 (WAT1212-086) December 12, 2012
Computer Science

IBM Research Report

Counting and Sampling Triangles from
a Graph Stream

A. Pavan1, Kanat Tangwongsan2, Srikanta Tirthapura1, Kun-Lung Wu2

1Iowa State University

2IBM Research Division
Thomas J. Watson Research Center

P.O. Box 208
Yorktown Heights, NY 10598

USA

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Counting and Sampling Triangles from a Graph Stream∗

A. Pavan∗ Kanat Tangwongsan† Srikanta Tirthapura∗ Kun-Lung Wu†

Iowa State University∗ and IBM Research†

Abstract

This paper presents a new space-efficient algorithm for counting and sampling triangles, and more generally,
constant-sized cliques, in a massive graph whose edges arrive as a stream. When compared with prior work, our
algorithm yields significant improvements in the space and time complexity for these fundamental problems. Our
algorithm is simple to implement and has very good practical performance on large graphs.

Keywords: graph streams, data streams, triangle counting, cliques, social networks, sampling

1 Introduction
Triangle counting has emerged as an important building block in the study of social networks [WF94, New03],
identifying thematic structures of networks [EM02], spam and fraud detection [BBCG08], link classification and
recommendation [TDM+11], and more. In these applications, streaming algorithms provide an attractive option for
real-time processing of live data; they also benefit the analysis of large disk-resident graph data, allowing computations
in one or a small number of passes over the data.

In this paper, we address the question of counting and sampling triangles, as well as complete subgraphs, in the
adjacency stream model. Specifically, we study the following closely related problems:

(1) Triangle Counting: maintain an (accurate) estimate of the number of triangles in a graph;
(2) Triangle Sampling: maintain a random triangle from the set of all triangles in a graph; and
(3) counting and sampling cliques of 4 or more vertices (K4,K5, . . .).

In the adjacency stream model [BYKS02, JG05, BFL+06], a graph G = (V,E) is presented as a stream of
edges S = 〈e1, e2, e3, . . . , e|E|〉. In this notation, ei denotes the i-th edge in the stream order, which is arbitrary and
potentially chosen by an adversary. For this graph, let n = |V |, m = |E|, T (G) denote set of all triangles, and τ(G)
denote the number of triangles (i.e., τ(G) = |T (G)|). We will assume that the input graph is simple (no parallel
edges, no self-loops, and no multiple copies of the same edge).

Our algorithms are randomized and provide the following notion of probabilistic guarantees: for parameters
ε, δ ∈ [0, 1], an (ε, δ)-approximation for a quantity X is a random variable X̂ such that |X̂ − X| ≤ εX with
probability at least 1− δ. We write s(ε, δ) as a shorthand for 1/ε2 · log(1/δ).

1.1 Our Contributions

— Neighborhood Sampling: We present neighborhood sampling, a new technique for counting and sampling cliques
from a graph stream. Neighborhood sampling is a multi-level inductive random sampling procedure, where a random
edge in the stream is first sampled, and then in subsequent steps, an edge with an endpoint in common to the sampled
edge(s) is sampled. We show that this simple technique leads to significant improvements in the space complexity of
triangle counting and related problems.

— Counting and Sampling Triangles: Using neighborhood sampling, we present a one-pass streaming algorithm
for triangle counting and triangle sampling. The space complexity of triangle counting is O(s(ε, δ)m∆/τ(G)) and
triangle sampling is O(m∆/τ(G)), where ∆ is the maximum degree of any vertex. This significantly improves upon

∗E-mail addresses: pavan@cs.iastate.edu, ktangwo@us.ibm.com, snt@iastate.edu, klwu@us.ibm.com

1

Space Complexity Time Per Element

Buriol et al. [BFL+06] O
(
s(ε, δ) mn

τ(G)

)
O
(

1 + s(ε, δ)n logm
τ(G)

)
Jowhari and Ghodsi [JG05] s2 = O

(
s(ε, δ)m∆2

τ(G)

)
Θ(s2)

This Paper (amortized with bulk processing) O
(
s(ε, δ) m∆

τ(G)

)
Θ(1)

Table 1: Performance of streaming algorithms for counting triangles in a graph. The space complexity is expressed in terms of
the number of words used, and assumes that vertex identifiers, and counters, including the number of edges and vertices, can be
stored in a constant number of words.

prior algorithms for the same problem, as shown in Table 1. We provide a sharper bound for the space complexity of
our algorithm in terms of the “tangle coefficient” of the graph, which we define in our analysis. While in this worst
case, this results in the space bound we have stated above, in typical cases, it can be smaller.

We also present a method for quickly processing edges in bulks, which leads to an amortized constant processing
time per edge. This allows the possibility of processing massive graphs quickly even on a modest machine.

— Counting and Sampling Cliques: We extend neighborhood sampling to the problem of sampling and counting
the set of all cliques of size ` in the graph, ` ≥ 4. For ` = 4, the space complexity of the counting algorithm is
O(s(ε, δ)·η/τ4(G)), and the space complexity of the sampling algorithm isO(η/τ4(G)), where η = max{m∆2,m2}
and τ4(G) is the number of 4-cliques inG. General bounds for `-cliques are presented in Section 3. To our knowledge,
this is the best space complexity for counting the number of `-cliques in a graph in the streaming model and improves
on prior work due to Kane et al. [KMSS12].

— Experiments: Our experiments with real-world large graphs show that our streaming algorithm for counting
triangles is fast and accurate in practice. For instance, the Orkut network (for a description, see Section 4) with 117
million edges and 633 million triangles can be processed in 103 seconds, with a (mean) relative error of 3.55 percent,
using 1 million instances of estimators (and hence a few MB of memory). This experiment was run on a laptop, with
an implementation that did not use parallelism. Our experiments show that in order to get good estimates, far fewer
than Θ(s(ε, δ)m∆/τ(G)) estimators may be necessary.

Prior Work: For triangle counting in adjacency streams, Bar-Yossef et al. [BYKS02] present the first algorithms
based on reductions to the problem of computing the zeroth and second frequency moments of appropriately defined
streams, derived from the edge stream of the graph. Their algorithm on the adjacency stream model takes space
s = O(s(ε,δ)ε · (mn/τ(G))3) and poly(s) time per item. They also present a lower bound showing that in general,
the worst case streaming complexity of approximating τ(G) is Ω(n2).

The space and time bounds were subsequently improved. Jowhari and Ghodsi [JG05] present a one-pass streaming
algorithm that uses space and per-edge processing time of O(s(ε, δ)m∆2/τ(G)). Our algorithm significantly
improves upon this algorithm in both space and time complexity. Note that ∆ for large graphs can be significant in
practice; for instance, the Orkut graph has a maximum degree of greater than 66,000. They also present a three pass
streaming algorithm with space and per-edge processing time of O (s(ε, δ) · (1 + T2(G)/τ(G))), where T2(G) is the
number of vertex triples in the graph with exactly two edges connecting them. Later, Buriol et al. [BFL+06] present
algorithms for counting the number of triangles with space complexity O(s(ε, δ)mn/τ(G)). If the maximum degree
∆ is small compared with n, our algorithm substantially improves upon theirs in terms of space. Another difference
is that the algorithm of [BFL+06] needs to know the set of vertices in the graph stream in advance, but ours does
not. This can be a significant advantage in practice when vertices are being dynamically added to graph, or being
discovered by the stream processor.

On counting cliques, Kane et al. [KMSS12] present estimators for the number of occurrences of an arbitrary
subgraph H in the stream. When applied to counting cliques on ` vertices in a graph, their space complexity
is O

(
s(ε, δ) ·m(`2)/τ2

` (G)
)

which is much higher than the space complexity that we obtain. We note that their

2

algorithm works in the model where edges can be inserted or deleted (turnstile model), while ours is insert-only.

Related Work: Manjunath et al. [MMPS11] present an algorithm for counting the number of cycles of length
k in a graph; their algorithm works under dynamic inserts and deletes of edges. Since a triangle is also a cycle,
this algorithm applies to counting the number of triangles in a graph, but uses space and per item processing time
Θ(s(ε, δ)m3/τ2(G)). When compared with our algorithm, their space and time bound can be much larger, especially
for graphs with a small number of triangles. Recent work on graph sketches by Ahn, Guha, and McGregor [AGM12]
also yield algorithms for counting triangles in a graph, with space complexity, whose dependence on m and n is the
same as in [BFL+06].

Buriol et al. [BFLS07] present algorithms to estimate the clustering index of a graph in the incidence stream
model, which assumes that all edges incident at a vertex arrive together, and that each edge appears twice, once
for each endpoint. We note that in the incidence streams model, counting triangles is an easier problem, and there
are streaming algorithms [BFL+06] that use space O (s(ε, δ) (1 + T2(G)/τ(G))). In this work, we focus on the
adjacency streams model which is a more realistic model for real-time analytics on an evolving graph.

Becchetti et al. [BBCG08] present algorithms for counting the number of triangles in a graph in a model where
the processor is allowed O(log n) passes through the data and O(n) memory. Their algorithm also returns for each
vertex, the number of triangles that the vertex is a part of. There is a significant body of work on counting the number
of triangles in a graph in the non-streaming setting, for example [SV11, TKMF09]. We do not attempt to survey this
literature. An experimental study of algorithms for counting and listing triangles in a graph is presented in [SW05].

Roadmap: In Section 2, we present our technique and its use in counting and sampling triangles, followed by
extensions to counting and sampling cliques in Section 3, experimental results in Section 4 and extensions to sliding
windows in Section 5.

Preliminaries: For an edge e, let V (e) denotes the two end vertices of e. We say that two edges are adjacent to
each other if they share a vertex. Given an edge ei, the neighborhood of ei, denoted by N(ei), is the set of all edges in
the stream that arrive after ei and are adjacent to ei. Let c(ei) denote the size of N(ei). For ` ≥ 4, let T`(G) denote
the set of all `-cliques of graph G, and τ`(G) the number of `-cliques. Further, for a triangle t∗ ∈ T (G), define C(t∗)
to be c(f), where f is its first edge in the stream. Our algorithms use a procedure coin(p) which returns heads with
probability p. We assume this procedure takes constant time.

2 Sampling and Counting Triangles
In this section, we present algorithms to sample and count triangles. We begin by describing neighborhood sampling,
a basic method upon which we build an algorithm for counting triangles (Section 2.2), an efficient implementation for
bulk processing (Section 2.3), and an algorithm for sampling triangles (Section 2.4).

2.1 Neighborhood Sampling Algorithm for Triangles

e1

e2

e3 e4
e11

e8 e7

e6 e5

e9

e10

Figure 1: An example graph, where
the edges arrive in order e1, e2, . . .
in the stream, forming triangles t1 =
{e1, e2, e3} and t2 = {e4, e5, e6}.

Overview. The algorithm first samples a random edge, say r1, from the edge
stream; this can be maintained using reservoir sampling. It then samples a
random edge from the set of edges in the stream that appear after r1 and are
adjacent to r1. That is, the second edge is sampled from the neighborhood of
the first edge. This sample can also be maintained using reservoir sampling
on the appropriate substream. Once such an edge, say r2, has been found, a
potential triangle t made up of the two edges r1 and r2 is implicitly defined, and
the algorithm waits for the third edge of t to appear in the stream and complete
the potential triangle.

The triangle found by this procedure, however, is not necessarily uniformly chosen from T (G). As an example, in
the graph in Figure 1, the probability that the neighborhood sampling procedure chooses triangle t1 is the probability
that e1 is chosen into r1 (which is 1

10), and then from among the edges adjacent to e1 (i.e., e2 and e3), e2 is chosen
into r2, for a total probability of 1

2 ·
1
10 = 1

20 . But the probability of choosing t2 is the probability of choosing e4 into

3

r1 (which is 1
10), and then from among those edges adjacent to e4 and arrive after e4 (i.e., {e5, e6, e7, e8, e9, e10, e11}),

e5 is chosen into r2 (which is 1
7), for a total probability of 1

7 ·
1
10 = 1

70 . This bias poses a challenge in our algorithms
but can be normalized away by keeping track of how much bias is incurred on the potential triangle.

We briefly contrast our algorithm with an algorithm for adjacency streams due to Buriol et al. [BFL+06], which
also employs random sampling. Like ours, their algorithm first samples a random edge from the stream, say r1, but
then unlike ours, it picks a random vertex that is not necessarily incident on an endpoint of r1. The edge and the vertex
together form a potential triangle, and the algorithm then waits for the triangle to be completed by the remaining two
edges. In our algorithm, instead of selecting a random third vertex, we select a vertex that is already connected to r1.
This leads to a greater chance that the triangle is completed, and hence better space bounds.

We now describe the neighborhood sampling algorithm in detail. The algorithm maintains the following state:

• Edge r1, sampled uniformly from among all edges so far. We call this the “level 1 edge”.
• Edge r2, sampled uniformly from among all edges in N(r1), i.e., those edges in the graph stream that are

adjacent to r1 and come after r1. We call this the “level 2 edge”.
• Counter c, equal to c(r1) = |N(r1)|, i.e, the number of edges that are adjacent to r1 and have appeared after r1.
• A triangle t that is potentially a sample

Presented in Algorithm 1 is the neighborhood sampling algorithm, which is used to maintain the state. Algo-
rithms 2 and 3 build on this algorithm to solve triangle counting and triangle sampling, respectively.

Algorithm 1: Algorithm NSAMP-TRIANGLE

Initialization: Set r1, r2, t to φ, and c to 0.
Upon getting edge ei, i ≥ 1 ;
begin

if coin(1/i) = “head” then
// ei is the new sampled edge at level 1.
r1 ← ei;
r2 ← φ; c← 0; t← φ;

else
if ei is adjacent to r1 then

c← c+ 1;
if coin(1/c) = “head” then

// ei is the new sampled edge at level 2.
r2 ← ei;
t← φ;

else
if ei forms a triangle with r1 and r2 then

t← {r1, r2, ei}

Lemma 2.1 Let t∗ be a triangle in the graph. The probability that t = t∗ in the state maintained by Algorithm 1 after
observing all edges (note t may be empty) is

Pr[t = t∗] =
1

m · C(t∗)

where we recall that C(t∗) = c(f) if f is the t∗’s first edge in the stream.

Proof: Let t∗ = {f1, f2, f3} be a triangle in the graph, whose edges arrived in the order f1, f2, f3 in the stream, so
C(t∗) = c(f1) by definition. Let E1 be the event that f1 is stored in r1, and E2 be the event that f2 is stored in r2. We
can easily check that the neighborhood sampling algorithm produces t∗ at the end if and only if both E1 and E2 hold.

4

Now we know from reservoir sampling that Pr[E1] = 1
m . Furthermore, we claim that Pr[E2|E1] = 1

c(f1) . This
holds because given the event E1, the edge r2 is randomly chosen from N(f1), so the probability that r2 = f2 is
exactly 1/|N(f1)|, which is 1/c(f1), since c tracks the size of N(r1). Hence, we have

Pr[t = t∗] = Pr[E1 ∩ E2] = Pr[E1] · Pr[E2 | E1] = 1
m ·

1
c(f1) = 1

m·C(t∗)

�

2.2 Counting Triangles in a Graph

The neighborhood sampling algorithm produces a triangle t with probability 1
m·C(t) . We show in Algorithm 2 how to

build an unbiased estimator from this sampling algorithm. The basic idea is to output a value which counterbiases the
probability so that in expectation, the contribution of a triangle is exactly 1. This is easy to achieve because we know
both C(t) and the number of edges m. The following lemma formally shows that Algorithm 2 gives an unbiased
estimator for the number of triangles.

Algorithm 2: COUNT-TRIANGLE

Run Algorithm 1 and let t and c be the variables it maintains.
Return c ·m if t is defined or 0 otherwise.

Lemma 2.2 Let X denote the return value of Algorithm 2 after graph G has been observed. Then E[X] = τ(G).

Proof: By Lemma 2.1, the probability that Algorithm 2 samples a particular triangle t∗ is precisely Pr[t = t∗] =
1/mC(t∗). Further, the counting algorithm returns mC(t∗) if t = t∗, and 0 if t is empty. Therefore,

E[X] =
∑

t∗∈T (G)

mC(t∗) · Pr[t = t∗] = τ(G).

�

To obtain an accurate estimate, we apply a standard technique which runs multiple copies of an unbiased estimator
in parallel and outputs the average. In the following lemma, we give a bound on the number of copies needed to
achieve an (ε, δ)-approximation. In Appendix A, we give a sharper space bound in terms of a measure we term
“tangle index,” which helps to explain why we usually need less space in practice.

Theorem 2.3 For any graph G, for parameters 0 ≤ δ, ε ≤ 1, there is a streaming algorithm that observes the
edges of G in an arbitrary order, and returns an (ε, δ)-approximation for the number of triangles in G using space
O
(

1
ε2

m∆
τ(G) log

(
1
δ

))
.

The proof follows from standard concentration bounds and Lemma 2.2; we defer it to Appendix C

2.3 A Nearly-Linear Time Algorithm for Triangle Counting

Our discussion thus far directly leads to a simple O(mr)-time implementation, where r is the number of copies of
estimators we decide to maintain, but this leaves much to be desired in terms of performance. For large graphs, we
would ideally like the algorithm to take time linear in the number of edges and the number of estimators.

The result in this section is motivated by the observation that in many real-world applications, the algorithm
receives edges in bulk (e.g., block reads from disk, HTTP PUT requests). We show that it is possible to achieve
significantly better performance through bulk processing. The basic intuition is that with bulk processing, we update
the estimators much less often. As one example, by processing in bulks of Θ(r) edges, the total running time becomes
Θ(m+ r) using O(r) space—at the expense of a constant factor more space, we are able to achieve O(m+ r) time
bound as opposed to O(mr). More precisely, we obtain the following bounds:

5

Theorem 2.4 Let w be a block size and r be the number of estimators. There is an algorithm for triangle counting
that on input a graph with m edges, runs in total time O(m(1 + r/w)) using space O(r + w).

We obtain this bound by developing a routine to process a blockB = 〈b1, . . . , b|B|〉 of edges in roughlyO(|B|+r)
time. Our goal is to advance the states of all r estimators to the point after including the blockB, simulating the effects
of playing these edges one by one faithfully. In the interest of space, we can only highlight a few key ingredients here
and give detailed descriptions in Appendix B.

The challenge in fastforwarding over the blockB lies in maintaining level-2 edges, finding the completed triangles,
and keeping track of the counters; maintaining the level-1 edges is relatively straightforward. There are two important
ingredients in our solution: The first ingredient is a data structure that maintains the degrees of about O(r) nodes;
these degrees only count the edges in B. More specifically, let R be the set of the endpoints of all level-1 edges. As
we make a pass through b1, b2, . . . , b|B|, we maintain for each v ∈ R, a counter λv which contains the number of
edges in this block so far that is incident on v. This is useful for updating the counter c and for determining which
level-2 edge to pick. As an example, for each estimator, its c value is increased by the difference between the λ values
of the endpoints when its level-1 edge is encountered and the λ values at the end of the pass. This whole computation
requires one pass and O(|B|+ |R|) = O(|B|+ r) time and space using a (hash) table which maps level-1 edges to
their corresponding estimator states and a (hash) table storing the degree values.

The second ingredient is the observation that the event “the edge that increments the λx to a certain value z”
uniquely identifies an edge in B. Given the degree information obtained previously, we can describe our random
selection of a level-2 edge in this form—and by keeping a (hash) table mapping (vertex, desired-restricted-degree) to
the corresponding estimator, a second pass through the data allows us to find level-2 replacement edges. Since the
table contains at most O(r) entries, the space and time usage for this pass is O(|B|+ r).

Finally, in the second pass, we also keep another (hash) table for queries of the form: “if an edge e is seen, we
have a complete triangle for estimator X .” This table is updated as we discover a new level-2 edge. The size of this
table is, again, at most O(r). Hence, each block can be processed in two passes in O(|B|+ r) space and time.

2.4 Sampling a Triangle

We now present an algorithm that picks a triangle of the graph stream uniformly at random. As discussed previously,
the neighborhood sampling algorithm does not necessarily return a uniform sample. To fix it, we resort to a simple
normalization procedure.

Algorithm 3: Algorithm SAMPLE-TRIANGLE: a query arrives for a random triangle
Run Algorithm 1 and let t and c be the variables it maintains.
Return the triangle t with probability c/2∆; else return “Failed”.

Lemma 2.5 If a query for a random triangle is posed after observing a graph G, each triangle in T (G) is equally
likely to be returned by Algorithm 3. Further, the probability that a triangle is returned by Algorithm 3 is τ(G)

2m∆ , where
∆ is the maximum degree of any vertex in G.

Proof: The proof is similar to the proof of Lemma 2.2. By 2.1, the probability that Algorithm 2 samples a particular
triangle t∗ is precisely Pr[t = t∗] = 1/mC(t∗). Further, note that C(t∗) ≤ 2∆.Therefore, if the triangle t∗ was
returned by Algorithm 1, the probability that t∗ is passed on as our output is 1

mC(t∗) ·
C(t∗)
2∆ = 1

2m∆ , where we note
that c = C(t∗) and the normalization factor c

2∆ ≤ 1. Finally, since the events of different triangles being returned are
all disjoint from each other, the probability that some triangle is returned by the algorithm is τ(G)

2m∆ . �

The following establishes the main theorem on triangle sampling.

6

Theorem 2.6 Assuming that τ(G) > 0, for a parameter δ, 0 < δ < 1, there is a streaming algorithm with space
complexity Θ

(
m∆ log(1/δ)

τ(G)

)
that observes graph G as an adjacency stream and returns a random triangle in G with

probability at least 1− δ.

Proof: Let α =
(

2m∆ ln(1/δ)
τ(G)

)
. The streaming algorithm runs α copies of Algorithm 3. This algorithm fails to return a

triangle only if all these α copies fail to produce a triangle; otherwise, it can return any of them. Therefore, the overall
failure probability is at most (1− β)α ≤ e−βα ≤ δ, where β = τ(G)

2m∆ is the success probability in Lemma 2.5.The
space complexity follows since the space taken by each copy of the algorithm is a constant number of words. �

A Lower Bound: It is natural to ask whether better space bounds are possible for triangle sampling and counting.
In particular, can we meet the space complexity ofO(1+T2(G)/τ(G)), which is the space-complexity of an algorithm
for triangle counting in the incidence stream model [BFL+06]? Note that T2(G) is the number of vertex triples with
exactly two edges in them. We show that this space bound is not possible in the adjacency stream model.

Lemma 2.7 There exists a graph G∗ and an order of arrival of edges, such that any randomized streaming algorithm
that can estimate the number of triangles in G∗ with a relative error of better than 1/2 must have space complexity
ω(1 + T2(G)/τ(G)).

The proof uses a reduction from the index problem from communication complexity and is deferred to Appendix C
in the interest of space. We note that the same proof technique also applies to triangle sampling.

3 Counting and Sampling Cliques
We extend the neighborhood sampling technique to counting and sampling from the set of cliques of size greater
than 3. For ease of presentation, we focus on 4-cliques. Let T4(G) denote the set of all 4-cliques in G, and τ4(G) the
number of 4-cliques in G. We partition T4(G) into two classes, Type I cliques and Type II cliques, defined based
on the order in which the edges of the clique appear in the stream. Let κ∗ be a 4-clique and let f1, f2, · · · , f6 be the
order in which the edges of κ∗ appear in the stream. We say that κ∗ is a Type I clique if f2 and f1 share a common
vertex, otherwise κ∗ is a Type II clique. Clearly, every clique in T4(G) is either a Type I clique or a Type II clique.
Let T 1

4 (G) denote the set of Type I cliques in G and T 2
4 (G) denote the set of Type II cliques; let τ1

4 (g) and τ2
4 (G)

denote the corresponding cardinalities. We present two estimators, one for τ1
4 (G) and the other for τ2

4 (G). The sum
of the two estimators will be an estimator for τ4(G). Due to space constraints all proofs of this section appear in
Appendix D.

3.1 Neighborhood Sampling for 4-Cliques

Our first algorithm, described in Algorithm 4, is concerned with sampling Type I cliques. This algorithm maintains
two sets, a sample of up to three edges, r1, r2, r3, and a potential clique, κ1. Each of the ris is also included in κ1,
which could also contain additional edges required for completing the clique.

Lemma 3.1 Consider a Type I clique κ∗ and let f1, . . . , f6 be its edges in the order they appeared in the stream.
After Algorithm 4 has processed the entire graph, the probability that κ1 equals κ∗ is 1

m·c(f1)·c(f1,f2) .

Next we describe a neighborhood sampling algorithm, Algorithm 5 that processes Type II cliques. This algorithm
is simpler that Algorithm 4, and maintains a sample consisting of two edges r1 and r2, and a potential clique κ2.

Lemma 3.2 Consider a Type II clique κ∗. After Algorithm 5 has processed the entire graph, the probability that κ2

is equal to κ∗ is 1
m2

Counting 4-cliques. We obtain following results for counting 4-cliques. Let η = max{m∆2,m2}.

7

Algorithm 4: NSAMP-Type I
Initialization: Set r1, r2, r3 to φ, κ1 to ∅, and c1, c2 to 0.
Edge ei arrives;
if coin(1/i) = “head” then

r1 = ei; c1 = 0; κ1 = {r1};
else

if ei is adjacent to r1 then
Increment c1

if coin(1/c1) = “head” then
r2 = ei; c2 = 0; κ1 = {r1, r2};

else
if ei, r1, and r2 form a triangle then

κ1 = κ1 ∪ {ei};
else

if ei is adjacent to r1 or r2 then
c2 = c2 + 1;
if coin(1/c2) = “head” then

r3 = ei; κ1 = κ1 ∪ {r3}
else

If ei is an edge connecting two end points of r1, r2 or r3, then add ei to κ1.

Algorithm 5: NSAMP-Type II
Initialization: r1 = φ, r2 = φ; κ2 = ∅.
Edge ei arrives;
If (coin(1/i) = “head”) set r1 ← ei;
If (coin(1/i) = “head”) set r2 ← ei;
if (Neither coin returned “head”) then

if ei is adjacent to both r1 and r2 then
κ2 = κ2 ∪ {ei};

else
if V (r1) ∩ V (r2) = ∅ then

κ2 = {r1, r2}; else κ2 = {r1};

8

Theorem 3.3 There is a O
(
s(ε, δ) η

τ4(G)

)
-space bounded streaming algorithm that observes a graph G and returns

a (ε, δ) approximation of the number of 4-cliques in G.

Theorem 3.4 There is a O
(
s(ε, δ) η`

τ`(G)

)
-space bounded algorithm that returns an (ε, δ) approximation of the

number of `-cliques in a stream, where η` = max∪b`/2cα=1 {mα∆`−2α}.

For instance, if `was even, and ∆ = O(
√
m), then the above algorithm for `-cliques takes spaceO

(
s(ε, δ) m

`/2

τ`(G)

)
Sampling 4-Cliques. We show the following analogous results for sampling cliques.

Theorem 3.5 Assume that τ4(G) > 0, and let η = max{m∆2,m2}. For every δ, 0 < δ < 1, there is a streaming
algorithm with space complexity O

(
η log(1/δ)
τ4(G)

)
that observes a graph G with m edges and returns a random 4-clique

in G with probability at least 1− δ.

Theorem 3.6 Assume that ` is a constant and τ`(G) > 0. There is an O
(
η`
τ`

log(1/δ)
)

-space bounded algorithm
that observes a graph G and returns an `-clique from the graph, chosen uniformly at random from the set of all
`-cliques in the graph, where η` = max∪b`/2cα=1 {mα∆`−2α}.

4 Experiments
We empirically study the proposed triangle counting algorithm. We implemented the version of the algorithm which
processes edges in batches, and also the other state-of-the-art algorithms due to [BFL+06, JG05].

4.1 Experimental Setup

Datasets and Environment. Our study uses a collection of popular social media graphs, obtained from the publicly
available data provided by the SNAP project at Stanford [Les]. We present a summary of these datasets in Table 2.
We remark that while these datasets stem from social media, our algorithm does not assume any special property
about them. Our experiments were performed on a 2.2 Ghz Intel Core i7 laptop machine with 8GB of memory, but
our experiments used no more than a few MB of RAM. The machine is running Mac OS X 10.7.5. All programs were
compiled with GNU g++ version 4.2.1 (Darwin) using the flag -O3. We measure and report wall-clock time using
gettimeofday, which has enough resolution for our experiments. Our prototype implementation uses GNU’s STL
implementation of collections, including unordered_map for hash maps; we did not attempt to optimize our code.

Our algorithm is randomized and may behave differently on different runs. Thus, for robustness, we perform
five trials and gather the following statistics: (1) the minimum, mean, and maximum deviation (relative error) values
from the true answer across the trials, (2) the median wall-clock overall runtime, and (3) the median I/O time. Mean
deviation is a well accepted measure of error, which we believe to give an accurate picture of how well the algorithm
performs. For completeness, we also report the min/max deviation values, but we note that as we perform more trials,
the minimum becomes smaller and the maximum becomes larger, so they are not robust.

Dataset n m ∆ τ m∆/τ

Amazon 334,863 925,872 1,098 667,129 1,523.85
DBLP 317,080 1,049,866 686 2,224,385 323.78
Youtube 1,134,890 2,987,624 57,508 3,056,386 56,214.20
LiveJournal 3,997,962 34,681,189 29,630 177,820,130 5,778.89
Orkut 3,072,441 117,185,083 66,626 633,319,568 12,328.02

Table 2: A summary of the datasets used in our experiments, showing for every dataset the number of nodes (n), the number of
edges (m), the maximum degree (∆), the number of triangles in the graph (τ), and the ratio m∆/τ .

9

Baseline. We implemented the state-of-the-art algorithms for adjacency streams due to Buriol et al. [BFL+06],
and Jowhari and Ghodsi [JG05]. Our implementation of Buriol et al.’s algorithm follows the description of the
optimized version in their paper, which achieves O(m + r) running time for m edges and r estimators, through
certain approximations. However, we were unable to obtain meaningful results from these algorithms on the datasets
we consider: The estimators due to Buriol et al.fail to find a triangle most of the time, resulting in low-quality
estimates, or producing no estimates at all—even when using millions of estimators (see Section 2.1 for a related
discussion); this behavior is consistent with Buriol et al.’s findings for their adjacency-stream algorithm. In the case
of Jowhari-Ghodsi’s algorithm, its O(mr) running time is too slow even on a modest dataset. Instead, we directly
compare our results with the true count and focus our study on the scalability of the approach as the graph size and
the number of estimators increase. For most datasets, the exact triangle count is provided by the source; in other cases,
we compute the exact count using an algorithm developed as part of the Problem-Based Benchmark Suite [SBF+12].

4.2 Accuracy

The first set of experiments aims to study the accuracy of our estimates on different datasets. Our theoretical results
predict that as the number of estimators r increases, so does the accuracy. We are interested in verifying this prediction,
as well as studying the dependence of the accuracy on parameters such as the number of edges m, maximum degree
∆ and the number of triangles τ .

Dataset
r = 1K r = 128K r = 1M I/O

min/mean/max dev. Time min/mean/max dev. Time min/mean/max dev. Time

Amazon 1.60 / 6.28 / 12.45 0.41 0.11 / 0.84 / 1.52 1.06 0.08 / 0.25 / 0.40 3.72 0.26
DBLP 8.04 / 18.28 / 36.53 0.45 0.08 / 0.50 / 0.97 1.08 0.07 / 0.19 / 0.42 3.90 0.28
Youtube 12.56 / 59.45 / 79.76 1.25 9.37 / 21.46 / 38.49 2.39 1.75 / 4.42 / 10.18 5.26 0.79
LiveJournal 0.24 / 11.53 / 29.76 15.00 1.41 / 2.35 / 4.02 23.10 0.19 / 0.60 / 1.45 33.40 10.00
Orkut 4.61 / 31.93 / 58.93 52.40 2.13 / 4.69 / 12.69 75.20 1.48 / 3.55 / 5.93 103.00 33.40

Table 3: The accuracy (min/mean/max deviation in percentage), median total running time (in seconds), and I/O time (in
seconds) of our bulk algorithm across five runs as the number of estimators r is varied.

Table 3 shows the median total running time, accuracy (showing min., mean, and max. relative errors in
percentage), and median I/O time of our algorithm across five runs as we vary the number of estimators r
(1024, 131072, 1047576). We show the I/O time for each dataset as it makes up of a non-negligible fraction of
the total running time. Several things are clear from this experiment. First, our algorithm is accurate with only a
modest number of estimators. In all but the Youtube dataset, the algorithm achieves less than 5% mean deviation using
only about 100 thousand estimators. Furthermore, the accuracy significantly improves as we increase the number
of estimators r to 1M. Second, a high degree graph with few triangles needs more estimators. Consistent with the
theoretical findings, Youtube and Orkut, which have the largest m∆/τ(G) values, need more estimators than others
to reach the same accuracy. Third, but perhaps most importantly, in practice, far fewer estimators than suggested by
the pessimistic theoretical bound is necessary to reach a desired accuracy. For example, on Orkut, using ε = 0.0355,
the expression s(ε, δ)m∆/τ is at least 9.78 million, but we already get this accuracy using 1 million estimators.

4.3 Performance

In the second set of experiments, we selected two graphs—Youtube and LiveJournal—to study runtime performance
and accuracy in more detail. The goal of these experiments is to understand how the number of estimators affects the
running time, as well as the accuracy.

First, we consider running time. It is clear from Figure 2 that the running time increases with the number of
estimators r, as expected. The theory predicts that the running time is O(m+ r); that is, it scales linearly with r. This
is hard to confirm visually since we do not know how much of it is due to the O(m) term; however, in both cases, we
are able to compute a value t0 such that the running times minus t0 scale roughly linearly with r.

10

 0

 10

 20

 30

 40

 50

 60

 70

1K 4K 16K 64K 256K 1M 4M 8M

T
o

ta
l
R

u
n
n

in
g
 T

im
e
 (

s
e
c
)

Number of Estimators (r)

Youtube
LiveJournal

Figure 2: Running time (in seconds) as the number of
estimators r is varied (r = 1K, 2K, . . . , 8M). The x-axis
is in log scale.

 0

 20

 40

 60

 80

 100

1K 4K 16K 64K 256K 1M 4M 8M

%
 R

e
la

ti
v
e

 E
rr

o
r

Number of Estimators (r)

Youtube
LiveJournal

Figure 3: Mean deviation (in percentage) of our es-
timates as the number of estimators r is varied (r =
1K, 2K, . . . , 8M). The x-axis is in log scale.

As for accuracy, (ε, δ)-type approximation algorithms are difficult to experiment with, in general: the observed
error could stem from the controlled error term ε or it could stem from the unlikely event that happens with probability
δ where we have no control over the error. The general trend from Figure 3 is that the mean deviation decreases as we
increase the number of estimators.

5 Extensions
Our basic algorithms for sampling and counting can be extended to the case the case of sliding windows. For
simplicity, we consider sequence-based sliding window, where the scope of relevant data is restricted to the w most
recent edges. Thus, we would like to estimate the number of triangles in the graph induced by the most recent w edges.
There are several algorithms to sample an element from a sliding window [BOZ09, BDM02, Haa, ZLY+05, GL08]
that can be adapted for use here. For simplicity, we use the algorithm from [BDM02]. Recall that the neighborhood
sampling algorithm maintains two edges r1—a randomly chosen edge, and r2—a randomly chosen edge from N(r1).
At time instance t, let 〈et−w+1, et−w+2, · · · , et−1, et〉 denote the last w edges seen. For each edge ei, we pick a
random number ρ(i) chosen uniformly between 0 and 1. We maintain a chain of samples S = {e`1 , e`2 · · · , e`k}
from the current window. The first edge e`1 is the edge such that ρ(`1) = min{ρ(t−w+ 1), · · · ρ(t)}. For 2 ≤ i ≤ k,
e`i is the edge such that ρ(`i) = min{ρ(`i−1 + 1), · · · ρ(t)}. For each e`i ∈ S, we also maintain a random adjacent
neighbor ri2 from N(e`i). Note that the second edge can be chosen using standard reservoir sampling, because, if e`i
lies in the current window, any neighbor that arrives after it will also be in the current window. Thus all of ri2s also
belong to the current window. We chose r1 to be e`1 and r2 to r1

2. When r1 falls out of window, we remove it from S,
and update r1 to e`2 and r2 to r2

2, and so on. This will ensure that r1 is always a random edge in the current window
and r2 is a random neighbor of r1 from the current window, and the rest of the analysis follows. It is easy to see
that that the expected size of the set S is Θ(logw) [BDM02]. Thus, the total expected space used by the algorithm
increases by a factor of logw.

Acknowledgments
This research was in part sponsored by the U.S. Defense Advanced Research Projects Agency (DARPA) under the Social Media
in Strategic Communication (SMISC) program, Agreement Number W911NF-12-C-0028. The views and conclusions contained
in this document are those of the author(s) and should not be interpreted as representing the official policies, either expressed or
implied, of the U.S. Defense Advanced Research Projects Agency or the U.S. Government. The U.S. Government is authorized
to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation hereon.

11

References
[AGM12] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches: sparsification, spanners, and subgraphs. In

Proc. ACM Symposium on Principles of Database Systems (PODS), pages 5–14, 2012. 3
[BBCG08] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis. Efficient semi-streaming algorithms for local triangle counting in

massive graphs. In Proc. ACM Conference on Knowledge Discovery and Data Mining (KDD), pages 16–24, 2008.
1, 3

[BDM02] Brian Babcock, Mayur Datar, and Rajeev Motwani. Sampling from a moving window over streaming data. In Proc.
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 633–634, 2002. 11

[BFL+06] Luciana S. Buriol, Gereon Frahling, Stefano Leonardi, Alberto Marchetti-Spaccamela, and Christian Sohler.
Counting triangles in data streams. In Proc. ACM Symposium on Principles of Database Systems (PODS), pages
253–262, 2006. 1, 2, 3, 4, 7, 9, 10

[BFLS07] Luciana S. Buriol, Gereon Frahling, Stefano Leonardi, and Christian Sohler. Estimating clustering indexes in data
streams. In Proc. European Symposium on Algorithms (ESA), pages 618–632, 2007. 3

[BOZ09] Vladimir Braverman, Rafail Ostrovsky, and Carlo Zaniolo. Optimal sampling from sliding windows. In PODS,
pages 147–156, 2009. 11

[BYKS02] Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar. Reductions in streaming algorithms, with an application to counting
triangles in graphs. In Proc. ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 623–632, 2002. 1, 2

[EM02] Jean-Pierre Eckmann and Elisha Moses. Curvature of co-links uncovers hidden thematic layers in the world wide
web. Proceedings of the National Academy of Sciences, 99(9):5825–5829, 2002. 1

[GL08] Rainer Gemulla and Wolfgang Lehner. Sampling time-based sliding windows in bounded space. In SIGMOD
Conference, pages 379–392, 2008. 11

[Haa] P. J. Haas. Data stream sampling: Basic techniques and results. In M. Garofalakis, J. Gehrke, and R. Rastogi,
editors, Data Stream Management: Processing High Speed Data Streams, pages 223–233. Springer. 11

[JG05] Hossein Jowhari and Mohammad Ghodsi. New streaming algorithms for counting triangles in graphs. In Proc. 11th
Annual International Conference Computing and Combinatorics (COCOON), pages 710–716, 2005. 1, 2, 9, 10

[KMSS12] Daniel M. Kane, Kurt Mehlhorn, Thomas Sauerwald, and He Sun. Counting arbitrary subgraphs in data streams. In
Proc. International Colloquium on Automata, Languages, and Programming (ICALP), pages 598–609, 2012. 2

[KN97] Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University Press, 1997. 15
[Les] Jure Leskovec. Stanford large network dataset collection. http://snap.stanford.edu/data/index.

html. Accessed Dec 5, 2012. 9
[MMPS11] Madhusudan Manjunath, Kurt Mehlhorn, Konstantinos Panagiotou, and He Sun. Approximate counting of cycles in

streams. In Proc. European Symposium on Algorithms (ESA), pages 677–688, 2011. 3
[New03] M. E. J. Newman. The structure and function of complex networks. SIAM REVIEW, 45:167–256, 2003. 1

[SBF+12] Julian Shun, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Aapo Kyrola, Harsha Vardhan Simhadri,
and Kanat Tangwongsan. Brief announcement: the problem based benchmark suite. In Proc. ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), pages 68–70, 2012. 10

[SV11] Siddharth Suri and Sergei Vassilvitskii. Counting triangles and the curse of the last reducer. In Proc. 20th
International Conference on World Wide Web (WWW), pages 607–614, 2011. 3

[SW05] Thomas Schank and Dorothea Wagner. Finding, counting and listing all triangles in large graphs, an experimental
study. In Workshop on Experimental and Efficient Algorithms (WEA), pages 606–609, 2005. 3

[TDM+11] Charalampos E. Tsourakakis, Petros Drineas, Eirinaios Michelakis, Ioannis Koutis, and Christos Faloutsos. Spectral
counting of triangles via element-wise sparsification and triangle-based link recommendation. Social Netw. Analys.
Mining, 1(2):75–81, 2011. 1

[TKMF09] Charalampos E. Tsourakakis, U. Kang, Gary L. Miller, and Christos Faloutsos. Doulion: counting triangles in
massive graphs with a coin. In Proc. ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD), pages 837–846, 2009. 3

[WF94] S. Wasserman and K. Faust. Social Network Analysis. Cambridage University Press, 1994. 1
[ZLY+05] L. Zhang, Z. Li, M. Yu, Y. Wang, and Y. Jiang. Random sampling algorithms for sliding windows over data streams.

In 11th Joint International Computer Conference,, pages 572–575, 2005. 11

12

http://snap.stanford.edu/data/index.html
http://snap.stanford.edu/data/index.html

A Appendix: Improved Space Bound For Triangle Counting
In this section, we prove a sharper bound on the space needed to obtain an accurate estimate. We will define a measure
that captures in the amount of interaction between triangles and non-triangle edges in the graph. The tangle coefficient
of a graph G, denoted by γ is given by

γ :=
1

τ(G)

∑
t′∈T (G)

C(t′).

This is equivalent to γ = 1
τ(G)

∑
e∈E c(e)s(e), where s(e) counts the number of triangles t′ ∈ T (G) such that the

first edge of t′ is e. Using the tangle coefficient, we prove the following theorem (we provide some discussions about
the tangle coefficient after that):

Theorem A.1 (Improved Triangle Counting) Let γ be the tangle coefficient of G. There is an (ε, δ)-approximation
to the triangle counting problem that requires O(1/ε2 ·mγ/τ(G) · log(1

δ)).

Proof: (Sketch) Each estimator has variance m
∑

t∈T (G)C(t) = mτ(G)γ. We will run α = 4/ε2 · γm/τ(G)
independent parallel copies of such an estimator. Let the average of these estimates be Y . By Chebyshev’s inequality,
we have

Pr
[
|Y − E[Y] | > ε · τ(G)

]
≤ 1

4
.

To boost the success probability up to 1 − δ, we will run β = 12 ln(1/δ) independent copies of Y estimators and
take the median. Note that our median estimator fails to produce an ε-approximation only if more than β/2 fails
to produce an ε-approximation. In expectation, the number of “failed” estimators is at most β/4. Therefore, by a
standard Chernoff bound, we fail with probability at most

Pr[FAILED] ≤ e−
12(β/4)

3 = δ,

proving our final estimate is an (ε, δ)-approximation using space at most αβ. �

Clearly, γ is at most 2∆, recovering the original bound we proved. We can gain more understanding of the
quantity γ by considering the following random process: Fix a stream and pick a random triangle from this graph. If e
is the first edge in the stream of this triangle, then the value of γ is the number of edges that incident on e that comes
after it. In this view, γ can be seen as a measure of how entangled the triangles in this stream are—as our intuition
suggests, if the triangles “interact” with many non-triangle triples, we will need more space to obtain an accurate
answer.

B Bulk-Processing Edges
Our algorithms take advantage of a procedure unif for generating a uniform random number from the interval [0, 1]
as well as a procedure randInt(n) for drawing a number uniformly at random from {0, . . . , n− 1}. We assume
these take constant time.

We now give detailed descriptions; the bookkeeping, though conceptually simple, turns out to be quite messy. For
a block B, computing the level-1 edge after incorporating B is straightforward. Let iB be the total number of edges
so far (including the edges in B). An edge in B will replace an existing level-1 edge with probability b/iB—and
when this happens, each edge in B has an equal probability of being a replacement edge. Thus, with one call to unif,
we can compute the level-1 edge after incoporating B, so in O(r) time, we can determine the level-1 edges for all
r estimators we maintain. This can be further optimized by noticing that in later stages, the number of estimators
that end up updating their level-1 edges are progressively smaller. In this case, our task boils down to generating a
binary vector where the probability p that a position is 1 is small. We can generate this vector by generating a few
geometric random variables representing the gap between 1’s in the vector. Since we expect only a p-th fraction of the

13

estimators to be updated, this is more efficient than going over all the estimators. Using this technique, the cost of
updating level-1 across the whole stream is at most O(r log(m/w)).

The challenge in fastforwarding over the blockB lies in maintaining level-2 edges, finding the completed triangles,
and keeping track of the counters. But these, too, can be maintained efficiently if we maintain some additional
information and perform an extra pass through the block.

We first address the problem of maintaining the count c; the information we gather here will also be useful for
updating level-2 edges. At this point, we have determined the level-1 edges for all r estimators. Let R be the set of
the endpoints of these edges. We will maintain an integer counter for each node in R, requiring O(r) space. Further,
we augment the state of each estimator est with the following fields: est.d1, est.d2.
Pass 1. We will make a pass through B. As we go through the edges b1, b2, . . . , b|B|, we keep a count λw of the edges
incident on w so far. For an estimator est with level-1 edge e = {x, y}, we record est.d1 = λx and est.d2 = λy when
seeing e in B and when we finish the pass, the count est.c is incremented by λx− est.d1 + λy − est.d2, where λx, λy
are the values at the end of the pass. So far, we require one pass and O(|B| + |R|) = O(|B| + r) time and space
using a (hash) table which maps level-1 edges to their corresponding estimator states and a (hash) table storing the
degree values.

Conveniently, the λ values are also useful for updating level-2 edges. Consider an estimator est with level-1 edge
e = {x, y}. The information we gather in the first pass provides us with clues about which edge to pick as a level-2
edge. We know that the number of edges in B incident to x that come after e is exactly α = λx − est.d1. Similarly,
the number of edges in B incident to y that come after e is exactly β = λy − est.d2. Therefore, the probability that
an edge from B will replace the current level-2 edge is exactly (α+ β)/est.c. At this point, we can number the edges
incident on x with numbers {0, 1, . . . , α− 1} and the edges incident on y with numbers {0, 1, . . . , β − 1}. Picking
a random level-2 edge boils down to flipping a coin to decide whether to replace the orignal edge and if so, pick a
random number between 0 and α+ β − 1 corresponding the replacement edge.

Our task now is simply to recognize the selected edge when we perform the second pass. This is where the second
ingredient comes in: the event “the edge that increments the λx to a certain value z” uniquely identifies an edge in B.
Given the degree information obtained previously, we can describe our random selection of a level-2 edge in this
form. Once these decisions are made, we store them a (hash) table mapping (vertex, desired-restricted-degree) to the
corresponding estimator
Pass 2. A second pass through the data allows us to recognize level-2 replacement edges as well as their corresponding
estimators that need to be updated. Since the table contains at most O(r) entries, the space and time usage for this
pass is O(|B|+ r). The second pass has another important role: we can recognize the edges that will complete the
triangles partially formed by level- 1 and 2 edges. For this, we keep a (hash) table for queries of the form: “if an edge
e is seen, we have a complete triangle for estimator X .” This table is updated as we discover a new level-2 edge, and
it is important that we perform our pass sequentially in the same order as we did in pass 1. Note that the size of this
table is, again, at most O(r). Hence, each block requires two passes, which can be completed in O(|B|+ r) space
and time.

We can be more precise about our runtime bounds. Let C1 and C2 be constants independent of r. Using the
optimized level-1 processing, the running time of our bulk-processing algorithm is at most

C1r(2 +Hm/w) + C2(1 + m
w)(w + r).

C Omitted Proof from Section 2
We first state a measure concentration bound that will be used in the proofs.

Theorem C.1 (A Chernoff Bound) Let λ > 0 andX = X1, . . . , Xn, where eachXi, i = 1, . . . , n, is independently
distributed in [0, 1]. Then,

Pr
[
X ≥ (1 + λ) E[X]

]
≤ e−

λ2

2+λ
·E[X] and Pr

[
X ≥ (1− λ) E[X]

]
≤ e−

λ2

2
·E[X].

14

Proof of Theorem 2.3: Let α = 6
ε2

m∆
τ(G) log

(
2
δ

)
. We show that the average of α independent unbiased estimators

from Algorithm 2 is an (ε, δ)-approximation. For i = 1, . . . , α, let Xi be the value returned by the i-th estimator.
Let X̄ = 1

α

∑α
i=1Xi denote the average of these estimators. Then, as a direct consequence of Lemma 2.2, we

have E[Xi] = τ(G) and E
[
X̄
]

= τ(G). Further, for e ∈ E, we have c(e) ≤ 2∆, so know Xi ≤ 2m∆. Let
Yi = Xi/(2m∆) so that Yi ∈ [0, 1]. By letting Y =

∑α
i=1 Yi, we have E[Y] = ατ(G)/(2m∆); thus, by Chernoff

bound (Theorem C.1),

Pr
[
X̄ > (1 + ε) E[X]

]
= Pr[

∑
i Yi > (1 + ε) E[Y]] ≤ e−

ε2

3
E[Y] = e−

ε2

3
α·τ(G)
2m∆ = δ/2.

Similarly, we can show that Pr[X < (1− ε) E[X]] ≤ δ/2. Hence, with probability at least 1 − δ, the average X̄
approximates the true count within 1± ε. Since each estimator only takes O(1) space, the total space is O(α). �

Proof of Lemma 2.7: We use a reduction from the index problem from communication complexity: Alice is given
a bit vector x ∈ {0, 1}n and Bob is given an index k ∈ {1, 2, . . . , n}, and wants to compute xk, the bit in the kth
position in x. It is known that in the model where Alice can send exactly one message to Bob, the communication
cost of a randomized protocol is Ω(n) bits (see Chapter 4.2 in [KN97]).

Suppose there is a streaming algorithm A that estimates the number of triangles. We can use this algorithm to
solve the index problem as follows. Given a bit vector x ∈ {0, 1}n, Alice constructs a graph G∗ on 3(n+ 1) vertices
with the vertex set {a0, a1, · · · , an} ∪ {b0, · · · , bn} ∪ {c0, · · · , cn}. Alice places three edges among a0, b0, c0 to
form a triangle. For each i ∈ {1, 2, . . . , n}, Alice places the edge (ai, bi) if and only if xi equals 1. Alice processes
this graph using A and sends the state of the algorithm to Bob, who continues the algorithm using the state sent by
Alice, and adds the two edges (bk, ck) and (ck, ak). By querying the number of triangles in this graph with relative
error of smaller that 0.5, Bob can distinguish between the following cases: (1) G∗ has two triangles, and (2) G∗ has
one triangle. In case (1), xk = 1 and in Case (2), xk = 0, and hence Bob has solved the index problem.

It follows that the memory used by the streaming algorithm at Alice must be Ω(n) bits. Note that the graph G∗

sent by Alice has no triples with two edges between them, and hence O(1 + T2(G∗)/τ(G∗)) = O(1). We note that a
similar proof applies to triangle sampling also. �

D Omitted Proofs from Section 3
Before we present proofs, we extend the notion of neighborhood to a set of edges. Let f1 and f2 be two edges of S so
that f2 arrives after f1. Let f be an edge that is adjacent to both f1 and f2. Note that such an edge may not exist. The
neighborhood of f1 and f2, denote N(f1, f2), is the following set:

N(f1, f2) = {e ∈ N(f1) | e arrives after f2} ∪N(f2)− {f}.

Let c(f1, f2) denote the cardinality of N(f1, f2).
Proof of Lemma 3.1.: Since κ∗ is a Type I clique, f1 and f2 are adjacent to each other, and they together fix 3
vertices of the clique. The edge f3 is adjacent to either one or both of f1 and f2. We consider the case when f3 is
adjacent to only one of f1 or f2, but not both. The other case can be handled similarly. Note that κ equals κ∗ when
the following events are all true: (1) E1: f1 equals r1, (2) E2: f2 equals r2, (3) E3: f3 equals r3.

Since r1 is chosen uniformly at random among all possible m edges, the probability of E1 is 1/m. Since r2 is an
edge that is chosen uniformly at random from N(r1), Pr[E2 | E1] = 1

c(f1) . Finally note that r3 is chosen uniformly at
random from N(r1, r2). Thus Pr[E3 | E1, E2] = 1

c(f1,f2) . Thus the probability that κ equals κ∗ is 1
m ·

1
c(f1) ·

1
c(f1,f2) ,

as desired.
�

Proof of Lemma 3.2: Suppose that the edges of κ∗ in the stream order were f1, f2, . . . , f6 respectively. We note that
κ2 = κ∗ if and only if at the end of observation, r1 = f1 and r2 = f2 in Algorithm 5. To see these, note that if at

15

the end of observation, r1 = f1 and r2 = f2, then κ2 = κ∗, since the edges f3, . . . , f6 will certainly be added to κ2

by the algorithm. The converse can also be easily seen to be true. The proof follows due to the face that the events
r1 = f1 and r2 = f2 are independent, and each has a probability of 1/m of being true. �

Before we present proof Theorem 3.3, we will first describe algorithms that estimate the number of Type I and
Type II cliques.

Algorithm 6: COUNT-Type I
Run Algorithm 4 and let κ1 and c1, c2 be the variables it maintains.
If κ1 is a 4-Clique, then return c1 · c2 ·m, else return 0.

The following states that Algorithm 6 returns an unbiased estimator form τ1
4 (G).

Lemma D.1 Let X denote the random variable returned by Algorithm 6 after the graph G has been observed. Then
E[X] = τ1

4 (G).

Proof: Note that Algorithm 6 returns a non-zero value only when κ1 is a Type I clique. For a Type I clique κ∗ let
f1, f2, f3, f4, f5, f6 be the edges in the order of arrival. First, we note that if κ = κ∗, it must be true that c1 = c(f1)
and c2 = c(f1, f2).

E[X] =
∑
κ∗∈S1

E[X | κ = κ∗] · Pr[κ = κ∗] =
∑

κ∗∈T 1
4 (G)

Pr[κ = κ∗] ·m · c1 · c2

=
∑

κ∗∈T 1
4 (G)

Pr[κ = κ∗] ·m · c(f1) · c(f1, f2)

=
∑

κ∗∈T 1
4 (G)

1

m
· 1

c(f1)
· 1

c(f1, f2)
·m · c(f1) · c(f1, f2)(By Lemma 3.1)

= τ1
4 (G)

�
The next algorithm estimates the number of Type II cliques.

Algorithm 7: COUNT-Type II
Run Algorithm 5 and let κ2 be the variable it maintains.
If κ2 is a 4-Clique, then return m2, else return 0.

Lemma D.2 Let X denote the random variable returned by Algorithm 7. Then E[X] = τ2
4 (G).

The proof of the above lemma is similar to the proof of Lemma D.1, we omit the proof. Now we are ready to
describe the algorithm to estimate the number of 4-cliques and prove Theorem 3.3

Proof of Theorem 3.3: Algorithm 8 is our estimator of number of 4-cliques. The correctness of the algorithm, space
and accuracy bounds follow from Lemma D.1 and Lemma D.2 and applying a Chernoff bound on the resulting
estimates.

�

By running O(Dm log(1/δ)) repetitions of Algorithm 9, we obtain Theorem 3.5, where D = max{∆2,m}.

16

Algorithm 8: COUNT-CLIQUES
Result: An (ε, δ) estimate for τ4(G)

N ← max{6m∆2,m2} log(1/δ)
τ4(G)ε2

;

X1 ← 0, X2 ← 0;
Run N independent copies of Algorithm 6 and of Algorithm 7;
Set X1 to the mean of all values returned by Algorithm 6;
Set X2 to the mean of all values returned by Algorithm 7;
Return X1 +X2.

Algorithm 9: Sample from T4(G)

Run in parallel Algorithms 4, and 5. Let κ1, c1, c2 be the state maintained by Algorithm 4 and κ2 be the state
maintained by Algorithm 5.
Query arrives for a random Clique
Uniformly at random pick b ∈ {1, 2};
If b = 1, then if κ1 is a 4-clique, return κ1 with probability c1c2

D .
If b = 2, then if κ2 is a 4-clique, return κ2 with probability m/D.
Return “Fail”

Lemma D.3 For any 4-clique in G, say κ∗, the probability that Algorithm 9 returns κ∗ is 1
2mD . The probability that

the algorithm returns a 4-clique is τ4(G)
2mD .

Proof: Suppose that κ∗ was a Type I clique, and suppose its first two edges in the stream order were f1, f2 respectively.
Algorithm 9 returns κ∗ if: (1) E1:b is chosen to be 1 by the algorithm, and (2) E2:κ∗ is chosen by κ1, and (3) E3:κ∗ is
finally returned by th algorithm in the final step, with prob. c(f1)c(f1, f2)/m∆.

We know from Lemma 3.1 that Pr[E2] = 1
mc(f1)c(f1,f2) . Thus,

Pr[E1 ∩ E2 ∩ E3] =
1

2
· 1

mc(f1)c(f1, f2)
· c(f1)c(f1, f2)

D
=

1

2mD

It is possible to similarly show that the probability of returning each Type II clique is also 1
2mD . Since the events

of returning different cliques are all disjoint, the probability that Algorithm 9 returns some 4-clique is τ4(G)
2mD . �

17

	Introduction
	Our Contributions

	Sampling and Counting Triangles
	Neighborhood Sampling Algorithm for Triangles
	Counting Triangles in a Graph
	A Nearly-Linear Time Algorithm for Triangle Counting
	Sampling a Triangle

	Counting and Sampling Cliques
	Neighborhood Sampling for 4-Cliques

	Experiments
	Experimental Setup
	Accuracy
	Performance

	Extensions
	Appendix: Improved Space Bound For Triangle Counting
	Bulk-Processing Edges
	Omitted Proof from Section 2
	Omitted Proofs from Section 3

