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VMAR: Virtual Machine I/O Access Redirection to Optimize Instantiation
Performance and Resource Utilization

Abstract

A key enabler for standardized cloud services is the en-
capsulation of software and data into VM images. With
the rapid evolution of the cloud ecosystem, the number of
VM images is growing at high speed. These images, each
containing gigabytes or tens of gigabytes of data, cre-
ate heavy disk and network I/O workloads in cloud data
centers. Because these images contain identical or simi-
lar OS, middleware, and applications, there are plenty of
data blocks with duplicate content among the VM im-
ages. However, current deduplication techniques can-
not efficiently capitalize on this content similarity due to
their high overhead and complexity.

We propose a new simple and non-destructive dedupli-
cation layer tailored for the cloud: Virtual Machine I/O
Access Redirection (VMAR). VMAR generates a block
translation map when images are captured, and uses it to
redirect accesses for identical blocks to the same filesys-
tem address. This greatly enhances the cache hit ratio
of VM I/O requests and leads to more than 50% per-
formance gains in instantiating VM operating systems,
and over 70% gain in loading application stacks. It also
reduces the I/O resource consumption significantly. An-
other strength of VMAR is that it does not change the stor-
age layout of VM images, and thus each VM can make
an independent decision on whether to use VMAR. This
allows cloud administrators to adopt VMAR in an incre-
mental way.

1 Introduction

The economies of scale of cloud computing, which dif-
ferentiates it from transitional IT services, comes from
the capability to elastically multiplex different workloads
on a shared pool of physical computing resources. This
elasticity is driven by the standardization of workloads
into moveable and shareable components. To date, vir-
tual machine images are the de facto form of standard

templates for cloud workloads. Typically, a cloud envi-
ronment provides a set of “golden master” images con-
taining the operating system and popular middleware and
application software components. Cloud administrators
and users start with these images and create their own im-
ages by installing additional components. Through this
process, a hierarchy of deviations of VM images can be
formed. For example, in [20] Peng et al. have studied a
library of 355 VM images and constructed a hierarchical
structure of images based on OS and applications, where
the majority of images contain Linux with variation only
on minor versions (i.e., v5.X).

A typical cloud data center hosts hundreds or thou-
sands of VM images, each containing gigabytes or tens
of gigabytes of data. Transferring these images from
storage servers to hypervisor servers introduces heavy
disk and network I/O workloads. On the other hand, the
evolutionary nature of the VM “ecosystem” determines
that different VM images are likely to contain identical
chunks of data. It has been reported that a VM repository
from a production cloud environment contains around
70% redundant data chunks [12]. This has indicated rich
opportunities to deduplicate the storage and I/O of VM
images.

Multiple approaches have been developed to exploit
high degree of content redundancy. However, they have
significant shortcomings when applied to runtime virtual
machine optimization. Traditional storage deduplication
techniques [7, 8, 10, 17, 25] break down each file into
small chunks of fixed or variable sizes and merge chunks
with the same content. Identical chunks can be dis-
covered through bitwise comparison or content hashing,
whereas the latter is more popular due to its speed advan-
tage. These methods have been widely used in archival
storage systems to compress the storage space. However,
as discussed in [21], they cannot be easily used to sup-
port latency-sensitive primary data workloads due to sev-
eral drawbacks, including increased write delay, meta-
data management overhead, and broken storage layout.
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Recently, several efforts have been been proposed to sup-
port primary data deduplication [9, 15, 21] through tech-
niques like selective deduplication and background data
merging. However, these optimizations are still based
on the idea of storage compression, and only mitigate
instead of eliminating the aforementioned drawbacks.
Moreover, both traditional and primary data deduplica-
tion techniques mainly reduce the storage space with-
out saving other more expensive I/O resources, including
memory cache space and I/O bandwidth.

As an alternative, this paper proposes VMAR, a sim-
ple and non-destructive deduplication method designed
based on the characteristics of cloud environments.
VMAR is based on the idea of Virtual Machine I/O Access
Redirection. It detects identical data blocks among VM
images when they are captured and generates a block
translation map. The data hashing and comparison oper-
ations are offline and incur no runtime overhead to cloud
customers. Using the map, VMAR redirects VM read ac-
cesses to identical blocks to the same filesystem address
before they are received at the hypervisor Virtual Filesys-
tem (VFS) layer. In non-virtualized I/O workloads, VFS
is the entry point for all data requests, and no I/O dedupli-
cation can be performed before this layer. Since I/O op-
erations are merged from the upstream instead of on the
storage layer, each VM has a much higher chance to hit
the filesystem page cache, which is already “warmed up”
by its peers. The reduction of warmup phase is critical
to cloud user experience because the lifetime of VM in-
stances is typically only in the order of minutes or hours.
Moreover, VMAR keeps the storage layer intact instead
of breaking each image into chunks and rearranging the
storage layout. Each individual VM can be configured
to go through or bypass the VMAR deduplication layer.
From a system administrator’s standpoint, this allows
VMAR to be incrementally deployed to a cloud system,
greatly reducing the risk of adopting a new storage tech-
nology.

We have implemented VMAR based on the QEMU
Qcow2 driver. Our evaluation shows that in I/O-intensive
settings VMAR reduces VM boot time by over 50% and
reduces application loading time by over 70%. The per-
formance gains is even larger when the system becomes
more memory stressed.

The reminder of this article is organized as follows.
Section 2 provides a background and surveys related
work in I/O deduplication. Section 3 details the design
and implementation of VMAR. Section 4 presents the
evaluation results. Section 5 provides a survey of related
work on related topics. Finally, section 6 concludes the
paper.

2 Background

For the past decades hard disk drives have been the dom-
inant storage device for general purpose computers. As a
consequence, most virtualization technologies present to
virtual machines a virtual disk interface to emulate real
hard disks (also known as disk image or VM image). Vir-
tual disks typically appear as regular files on the hypervi-
sor host (i.e., image files). I/O requests received at virtual
disks are translated by the virtualization driver to regular
file I/O requests to the image files.

Today’s production cloud environments are facing an
explosion of VM images. Amazon Elastic Compute
Cloud (EC2) has 6521 public VM images [5] (data on
private EC2 VM images is unavailable). Therefore, it
is impossible to store all image files on every hypervi-
sor host. Typically, each cloud environment has a shared
storage system for image files, which has a unified name
space and is accessible by each hypervisor host. One
commonly used architecture is to set up the shared stor-
age system on a separate cluster from the hypervisor
hosts, and connect the storage and hypervisor clusters
via a storage area network. Another emerging scheme
is to form a distributed storage system by aggregating
the locally attached disks of hypervisor hosts [11]. In ei-
ther scenario, when a VM is to be started on a hypervisor
host, the majority of its image data is likely to be located
remotely.
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Figure 1: Different configurations of virtual disks

As there are many VM images that are in the order of
gigabytes or even bigger, it is not efficient to store and
transfer them in the uncompressed raw format. Popu-
lar meth of encoding VM images include qcow2 [2] and
Device Mapper snapshot (dm-snapshot) [1]. We will dis-
cuss VM image formats in Section 2.1. Another dimen-
sion of virtual disk configuration is how VM images are
accessed. One way is to pre-copy the entire image from
the image storage to the local file system of the target hy-
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pervisor before starting up a VM instance. Another way
is to fetch parts of a VM image from the storage system
on-demand. We will discuss different approaches for ac-
cessing VM images in Section 2.2. Figure 1 illustrates
different combinations of virtual disk configurations.

2.1 VM Image Formats

VM images can be stored in different formats. The
most straightforward option is the raw format, where
I/O requests to the virtual disk are served via a sim-
ple block-to-block address mapping. In order to support
multiple VMs running on the same base image, copy-
on-write techniques have been widely used, where a lo-
cal snapshot is created for each VM to store all mod-
ified data blocks. The underlying image files remain
unchanged until new images are captured. As shown
in Figure 1, there are different copy-on-write schemes,
including qcow2 , dm-snapshot, FVD [22], VirtualBox
VDI [4], VMware VMDK [3], and so forth. In some
schemes, such as Qcow2, a separate file is created to
store all data blocks that have been modified by the provi-
sioned VM. Some other schemes, such as dm-snapshot,
work on the device level, without going through the op-
erating system’s virtual file system (VFS) layer. VMAR
aims to utilize the VFS page cache to reduce I/O accesses
to blocks with identical content. Therefore, its imple-
mentation is based on the Qcow2 format.

2.2 Accessing VM Images

In some cloud environments, the entire virtual disk is
copied to the target hypervisor before an instance is
started. If an instance uses an image that the target hy-
pervisor does not have, it may take a long time to start up
that instance. A typical VM image file contains multiple
gigabytes, or even tens of gigabytes of data. Therefore,
this delay could be severe in a heavily loaded cloud envi-
ronment. Subsequent instances that use the same image
on that host can start up faster as the image is locally
available. If the total number of images is small, each
image can be pre-copied to all compute nodes (target hy-
pervisors). However, as the number of images increases
this pre-copy approach would not be a feasible solution.

To overcome this problem, other cloud operating en-
vironments do not require to have the entire image at
the target hypervisor. Instead, the parts of an image
are copied as needed from the shared storage system to
hypervisor hosts. This on-demand streaming approach
avoids expensive network transfers of entire image files
and accelerates VM start up time. However, VM runtime
performance can be degraded, as blocks of data may need
to be fetched from the remote storage during runtime. In
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Figure 2: Architecture of VMAR

contrast, all requests to the virtual disk are served locally
with the pre-copy approach.

The benefit of VMAR is more pronounced when used
with the on-demand policy, because a large portion of
the on-demand network I/O can be reduced through the
its access deduplication. On the other hand, the over-
head of pre-copying images cannot be easily mitigated
by VMAR because the I/O operations are not from VMs.
Therefore, in the following discussion of the VMAR de-
sign and evaluation, we have assumed that it is applied
on top of the on-demand policy.

3 Design and Implementation

Figure 2 illustrates the overall architecture of VMAR.
VMAR consists of two main components: block map
generator creates a map during image capture, and
VMAR driver redirects accesses. To support sharing, we
first identify common blocks. When the virtual disk of
a VM is captured as a new base image, we compare it
against the existing images in the repository. We gen-
erate the mete-data of the new image, including a block
map that identifies common blocks between this image
and the rest. After the block map is generated, when a
new VM based on the image is requested on a compute
node, the meta-data is forwarded to the compute node,
and a VMAR image is created. The VMAR image for-
mat is a new format that we have added into the KVM
hypervisor. It serves as a backing file for the Qcow2 im-
age. The VMAR image does not contain any real data;
it only stores the metadata for the VMAR driver, and the
driver will redirect the image accesses to different base
images. We further optimize VMAR to reduce block map
size and look up time.
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Figure 3: Illustration of clusters for three example im-
ages.

The rest of this section details each component of
VMAR. Section 3.1 discusses the details of the block map
generation. Section 3.2 describes the access redirection
mechanism and Section 3.3 presents optimization tech-
niques.

3.1 Hash-based Block Map Generation

The block map generator of VMAR uses 4 KB blocks as
the base unit. Each data block is identified by its fin-
gerprint computed from a collision resistant hash of the
content of the data block. In capturing the content sim-
ilarities among VM images, we leverage the concept of
metadata clusters proposed in [14]. Each cluster repre-
sents the sets of blocks that are common across a subset
of images. The main benefit of using clusters in VMAR
is that they greatly facilitate the search of all VM im-
ages having content overlaps with a given image. There-
fore, when an image is modified or deleted from the im-
age repository, it is easy to identify entries in the block
map that should be updated. For completeness we briefly
describe the mechanism of generating metadata clusters.
Followed by that we discuss how to generate the block
map from the clusters.

Consider a simple example of clusters for three im-
ages: Image-0, Image-1 and Image-2 in an image library
as shown in Figure 3. In this illustration, CL-001, CL-
010, CL-100 are singleton clusters, each containing the
blocks only from Image-0, 1 and 2, respectively. The
figure shows the actual cluster data blocks shared by the
images. For example, block with hash G is unique to
Image-0, while blocks with hashes C and D are shared
by all three images. In practice, we only store the clus-
ter metadata for the unique blocks shared by the im-
ages. CL-011 is the cluster with blocks from Image-0
and 1. CL-101 is the cluster with blocks from Image-

0 and Image-2; in our example, it is empty. CL-110 is
the cluster with blocks from Image-1 and Image-2. CL-
111 is the cluster with blocks from Image-1, Image-2
and Image-3. For internal redundancy within an image,
we use subscripts to denote same blocks. For example,
Image-0 contains C1, C2 and C3; this indicates that hash
C is repeated three times in the image.

When a new image is added to the library, the system
computes the SHA1 hash for each block. Each hash from
the new image is compared against the existing clusters.
We split each cluster into two: one containing blocks that
are present in the new VM image and the other contain-
ing the blocks not appearing in the new image. It is possi-
ble that a cluster is not splited. This happens when either
all hashes in a cluster are present in the image or none
of the hashes in a cluster are present in the image. If a
cluster has overlapping content with the new image, it is
updated with the block positions in the new image. The
hashes in the new images that do not belong to the any
current clusters, are put into a new singleton cluster for
the new image.

A certain hash value can appear in multiple images.
We need a consistent mapping protocol to ensure that all
requests for blocks with same hash are redirected to the
same address. For that purpose we use the unique im-
age IDs that are assigned to each image when it is added
to the library, the value of which is incremented sequen-
tially. If a block appears in multiple different images, our
block map always points it to the image with the smallest
ID. Instead of the image with the smallest ID, alternative
consistent mapping protocols can be considered as fu-
ture work. For instance, the least fragmented image [16]
or the most used image can be used as the target. These
optimizations will maximize I/O sequentiality and take
advantage of prefetching.

The method compute map in Figure 4 shows an algo-
rithm for computation of mapping for a given image. We
look through all clusters containing the image number s.
For each hash in selected cluster, we select the smallest
block number in the imagemin in the cluster. For every
source block number in image s, we return the target im-
age number t and the target block offset.

Figure 5 and Figure 6 illustrate redirecting the read re-
quest for block t to lowest numbered block within the
lowest numbered image t for example images Image-1
and Image-2, respectively. The superscript in the figures
for the hash indicates the Image number and the subscript
indicates the block number if it is repeated. For Image-
0, all blocks are retrieved from Image-0 itself because
it is the least numbered image. From the complete list
of 7 clusters, only 4 clusters contain blocks from Image-
1. The CL-111 that shared blocks with all three images
gives blocks C and D that will be redirected to least num-
bered Image-0. CL-011 that shares blocks with Image-
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let s be identifier of the source image

function compute map(s)
let count=0;
for each cluster c containing s do

let t=lowest numbered image(c);
for each hash h ∈ c do

// h[s] contain block numbers in requested image s with hash h
for each block bs ∈ h[s] do

// h[t] contain block numbers in target image t with hash h
let bt = min(h[t]);
let map[count] = { bs, t, bt };
let count = count + 1;

end for;
end for;

end for;
return map;

end function;

Figure 4: Pseudo-code of mapping computation.

h[t] s h[s]
A1

1 Image-1 A1
1

B1 Image-1 B1

C1 Image-0 C0
1

A1
2 Image-1 A1

1
D1 Image-0 D0

E1 Image-0 E0

F1 Image-0 F0

Figure 5: Image-1 map

h[t] s h[s]
A2 Image-1 A1

1
C2

1 Image-0 C0
1

D2 Image-0 D0

K2 Image-2 K2

C2
2 Image-0 C0

1
L2 Image-2 L2

C2
3 Image-0 C0

1

Figure 6: Image-2 map

0 and 1 gives blocks E and F that will be also be redi-
rected to least numbered Image-0. CL-110 has Image-1
as the least numbered image, so block A will be retrieved
from Image-1. Finally CL-010 is the singleton cluster, so
block B will also be retrieved from Image-1. Only 3 clus-
ters contain blocks from Image-2. As in Image-1, blocks
C and D are redirected to Image-0 for cluster CL-111.
Block A is redirected to the least numbered Image-1 for
CL-110. Blocks K and L belong to singleton CL-100 and
are retrieved from Image-2.

The method update map in Figure 7 is executed when
a VM image is updated. It search for all other images
having blocks pointing to this image with the cluster data
structure, and consequently update the map entries.

Finally, to illustrate the offline computational over-
head for creation of clusters and map, that is a one time
cost to prepare the image library for redirection, we have
run an experiment on a VM with 2.2 GHz cpu and 16 GB
memory. We have used an image library with 84 images
with total size of 1.5 TB. The images were a mix of Win-
dows and Linux images of varying sizes ranging between
4 GB and 100 GB (used in a production Cloud). This im-
age library resulted in creation of 453 clusters. The total
time required to create the clusters was 3.3 hours. Cre-
ation of maps required time ranging from 13 s for the
4 GB image to 4.5 minutes for the 100 GB image. The

function update block(s,block)
hash prev: previous hash value of block;
hash new: new hash value of block;
add s to update list;
let c = find cluster from hash(hash prev);
remove block in c;
if minimal image ID in c that contains block is changed:

for each image t that contains c do:
add t to update list;

end for;
let c′ = find cluster from hash(hash new);
if c′ = None:

add block into singleton of s;
else:

add block to c′;
if minimal image ID in c′ that contains block is changed:

for each image t that contains c′ do:
add t to update list;

end for;
for each image t in update list do:

compute map(t);
end for;

end function;

Figure 7: Pseudo-code of updating an image.

total time to create the mappings for all images was 1.5
hours.

3.2 I/O Deduplication through Access
Redirection

The VMAR image serves as the backing file of the
Qcow2 [2] image. When a read request R is received
by the QEMU virtual I/O driver, the copy-on-write logic
in Qcow2 first checks whether it is for base image data or
VM private/dirty data. If R is for VM private/dirty data,
Qcow2 forwards the request to a local copy-on-write file.
If R is for base image data, the Qcow2 driver forwards the
request to the backing image. In both cases, R is trans-
lated as a regular file request which is handled by the
VFS layer of the host OS. Unless the file is opened with
the O DIRECT flag, R will be checked against the host
page cache before being sent to the host hard disk drive.

The VMAR image driver implements address transla-
tion and access redirection. When a read request R is
received, VMAR does a lookup in the block map intro-
duced in Section 3.1 to find the designation addresses of
the requested blocks. If the requested blocks belong to
different base images, or are noncontinuous in the same
base image, then R is broken down into multiple smaller
“descendant” requests. The descendant requests are sent
to the corresponding base images. After all of the de-
scendant requests are finished, the VMAR driver returns
the whole buffer back to the Qcow2 driver.

The descendant requests are issued concurrently to
maximize the throughput. We leverage the asynchronous
I/O threadpool in the KVM hypervisor to issue concur-
rent requests. To serve a request R, the application’s
buffer is divided into multiple regions and a set of I/O
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Figure 8: Block map size optimization.

vectors are created. Each I/O vector, representing each
region of the buffer, fills the region with the fetched data.
A counter for the application buffer keeps track of how
may descendant requests are issued and how many of
them are finished. The last callback of the descendant
request will return the buffer back to the application.

When the descendant requests of R are sent to the host
OS VFS layer and checked against the page cache, they
will have inode numbers of the base image files. If the
corresponding blocks in the base image files have been
read into the page cache by other VMs, the new re-
quests will hit the cache as “free riders”. As discussed
in Section 3.1, if a block appears in multiple images, the
block map entry always points the image with the small-
est ID. Therefore, all requests for the same content are
always redirected to the same destination address, which
increases the chance of “free riding”.

VMAR redirects accesses to VM images, but not to
private/dirty data. The reason is twofold. First, the data
generated during runtime has a much smaller chance to
be shared than that of the data in the base images, which
contain operating systems, libraries and application bi-
naries. Second, deduplication of private/dirty data incurs
significant overhead because the content of each newly
generated block has to be hashed and compared to exist-
ing blocks during runtime.

3.3 Block Map Optimizations
We further optimize VMAR to reduce the block map size
and block-map lookup overhead.

Block map size reduction A straightforward method to
support redirection lookup is to create a block-to-block
map. Base on the offset of the requested block in the
source image, we can calculate the position of its entry
in the block map directly. Each map entry has two at-
tributes: {IDtarget , Blocktarget}. The lookup of block-to-
block map is fast. However, the map size will grow lin-
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Figure 9: CDF of the volume in the clusters with differ-
ent sizes.

early with the image size. For example, Figure 8 shows
that the map size for a 32 GB image can grow up to
64 MB before optimization.

To reduce the map size and increase the scalability, we
merge the map entries for the blocks that are continuous
in the source image, and are also mapped continuously
into the same target image. Since they are mapped con-
tinuously, we can use a single entry with four attributes
to represent all of them: {offsetsource, length, IDtarget ,
offsettarget}. Note that the length that each entry repre-
sents may be different. Thus, the lookup of the map re-
quires checking whether a given block number falls into
the range represented by an entry.

To further reduce the map size, we also eliminate map
entries for zero blocks. If a block cannot find a corre-
sponding entry in the map, it is a zero block. In this case,
the VMAR driver simply uses memset to create a zero-
filled memory buffer. This saves the time and bandwidth
overheads of a full memory copy.

Figure 8 shows that after optimization, the map size
for VMAR is reduced significantly (mostly under 5 MB).
In the VM images we have worked on, many continuous
clusters have been detected. This is because the com-
mon sharing granularity between pairs of VM images is
the files stored on their virtual disks. For example, the
ram-disk file of the kernel, application binaries and li-
braries. Figure 9 presents the cumulative percentage of
the the number of blocks represented in a single map en-
try. Map entries containing more than 64 blocks covers
around 75% of the blocks. Some “big” map entry covers
a significant portion of blocks. For example, map entries
with a size more than 2,045 blocks covers around 25%
of blocks.

Block map lookup optimization After the above op-
timization for the map size, each map entry represents
different lengths. Thus, we cannot perform a simple cal-
culation to get the position of the desired map entry. A
linear search is inefficient. Note that the block map is
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sorted according to the source block offset. So we adopt
binary search as the basic lookup strategy.

Since we still have many entries in the map, the depth
of the binary search is typically high. So we have applied
two mechanisms to further reduce the lookup time. First,
we create an index to divide a large map into equal-sized
sections. Each index entry has two pointers pointing the
first and the last entry in the map that covers the cor-
responding section. Since the sections are equal-sized,
given a block offset we can directly calculate the cor-
responding index entry. From the index entry, we can
get the range within which we should perform binary
search. This mechanism reduces search depth signifi-
cantly. Second, to avoid searching to the maximum depth
for zero blocks, we use a bloom filter to quickly identify
them. Figure 10 shows the average search depth during
the VM instantiation and application loading stage. We
can see that our optimization mechanisms reduce the av-
erage search depth from 18.5 to 0.2.

4 Evaluation

4.1 Experiment setup
We have implemented VMAR based on QEMU-KVM
0.14.0, and conducted the experiments using two phys-
ical hosts. Each host has two Intel Xeon E5649 pro-
cessors (12 MB L3 Cache, 2.53 GHz) with 12 hyper-
threading physical cores (24 logical cores in total),
64 GB memory, and gigabit network connection. The
hosts run Red Hat Enterprise Linux Server release 6.1
(Santiago) with kernel 2.6.32 and libvirt 0.8.7. One host
serves as the image repository and the other one is the
compute node on which the VMs will be created. The
compute node accesses the images in the repository us-
ing the iSCSI protocol.

To drive the experiments, we have obtained a random
subset of 40 images from the image repository of a pro-

duction enterprise cloud. The size of the images ranges
from 4 GB to over 100 GB. The VMs are instantiated us-
ing ibvirt. Each VM is configured with two CPU cores,
2 GB memory, bridged network and disk access through
virtio. 23 of the images run Red Hat Enterprise Linux
Server release 5.5 (Tikanga), and 17 of them run SUSE
Linux Enterprise Server 11.

The impact of VMAR on the VM instantiation perfor-
mance is assessed by starting VMs from the images and
measuring the time it takes before the VMs can be ac-
cessed from the network. This emulates the service re-
sponse time that a customer perceives for provisioning
new VMs in an IaaS cloud. In each image, we have
added a simple script to send a special network packet
right after the network is initialized. Most time is spent
on booting up the OS and startup services. A daemon on
the compute node waits for the packet sent by our script
and records the timing.

After VM instantiation, another time-consuming step
in cloud workload deployment is to load the applica-
tion software stack into the VM memory space. This
can take even longer in complex enterprise workloads,
where a software installation (e.g., database management
system) contains hundreds of megabytes or gigabytes of
data. Because it is hard to identify software already in-
stalled in the existing production images, we added four
additional images into the repository. On each image,
we installed IBM DB2 database software version X and
WebSphere Application Server (WAS) version Y , where
X ∈ {9.0,9.1} and Y ∈ {7.0.0.17,7.0.0.19} 1. These im-
ages run Red Hat Enterprise Linux Server release 6.0
(Santiago) and use the same VM configuration as other
images. We have measured the application software
loading time in the four images, while instantiating other
images as a background workload.

Most production clouds use either the pre-copy or the
on-demand policy. We have evaluated VMAR on top of
on-demand comparing to these baselines. VMAR on top
of pre-copy is not discussed, because the benefit of pre-
copying the images to the local disk is mostly diminished
by the high cache hit ratio resulting from VMAR. In the
experiments, we have evaluated the following three con-
figurations:

• Pre-copy: The VM images are copied to the local
disk of the compute node in advance.

• On-demand: The VM images are accessed through
iSCSI protocol. The iSCSI devices serve as the
backing device of the Qcow2 images directly, and
blocks are fetched on-demand.

1DB2+WAS is a typical software stack used in online transaction
processing (OLTP) workloads.
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• VMAR: The Qcow2 image of each VM uses a
VMAR image as the backing device. The VMAR im-
age fetches blocks on-demand through iSCSI.

In our experiments, the arrival of VM instantiation
commands follows a Poisson distribution. Different
Poisson arrival rates have been used to emulate vari-
ous levels of I/O workload. Each experiment is repeated
three times and average values are reported with the stan-
dard deviation as error bars.

4.2 Experiment results
This section shows the experiment results, including an
analysis of content similarity in the VM image repository
we use, the results for VM instantiation and application
loading, and the overhead of VMAR.

Similarity in the image repository We first analyze the
content similarity among our 40 images. In this analy-
sis, we only consider non-zero data blocks. Figure 11(a)
shows the CDF of the number of duplicated blocks in
the entire repository of 40 images. More than 60% of
the blocks are duplicated at least twice, and 10% of the
blocks are duplicated more than eight times. This ver-
ifies the intuition that duplicated blocks are common in
the VM image repositories of production clouds. A block
can be duplicated within the same image, or across dif-
ferent images. Figure 11(b) shows the CDF of of the
number of times that a block appears in different images.
More than 50% of the blocks are shared by at least two
images. Around 25% of the blocks are shared by more
than three images. Therefore, opportunities are rich for
VMAR to deduplicate accesses to identical blocks.

VM instantiation Figure 12 shows the performance
and resource consumption of VM instantiation when dif-
ferent numbers of VMs are booted. In this experiment,
a new VM is provisioned every five seconds on aver-
age. Figure 12(a) shows the average time it takes for
a VM to boot up. With both the pre-copy and the on-
demand schemes, a large number of data blocks needs
to be copied either from the hard disk or over the net-
work. In these two schemes, the boot time also increases
quickly when more VMs are booted and the disk or net-
work gets more congested. With VMAR, each VM ben-
efits from the data blocks brought into the hypervisor’s
memory page cache by other VMs that are booted earlier.
Therefore, the average boot time is significantly reduced.
Moreover, in contrast to pre-copy and on-demand, the av-
erage boot time with VMAR decreases when more VMs
are booted. This is because the accesses of VMs that are
started later are likely be served by the cache.

Figures 12(b) shows memory cache consumption and
12(c) shows I/O traffic during VM instantiation. In the
pre-copy scheme, the I/O traffic is from the local disk
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Figure 11: Image blocks similarity statistics.

since the image is copied prior to our measurement. In
case of the on-demand and VMAR schemes, the I/O traf-
fic is from the network connecting to the image repos-
itory since the image is fetched on-demand. It can be
seen that with the pre-copy and on-demand schemes, the
amount of consumed memory is roughly the same as the
incurred I/O traffic, both increasing almost linearly as the
number of VMs increases. This is because the data ac-
cesses in the VM installation phase has poor temporal
locality. Every read request of a data block is likely to go
to the disk or network and the block is eventually cached
in the memory. On the other hand, VMAR reduces the
memory usage and I/O traffic for 37∼ 61% by trimming
unnecessary disk and network accesses up in the mem-
ory cache. More importantly, the I/O resource consump-
tion grows at a much slower rate than the two baseline
schemes because the amount of “unique” content in ev-
ery incoming VM image drops quickly as the hypervisor
hosts more images. This is a critical benefit in resource
overcommitted cloud environments.

Figure 13 presents the performance and resource con-
sumption of VM instantiation under different VM arrival
rates, while the total number of instantiated VMs is fixed
at 30. Figure 13(a) shows the average boot time when
a new VM is provisioned every {10− 5− 1} seconds
on average. Since higher VM arrival rates lead to more
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severe I/O contentions, the average boot time with the
pre-copy and on-demand schemes increases quickly. In
contrast, with the help of VMAR, a lot of disk accesses
from the VMs hit the memory cache and return directly
without triggering any real device access. Therefore, in
comparison to the baselines, the average boot time with
VMAR is much lower, and increases much slower as the
arrival rate increases. Figures 13(b) and 13(c) show the
memory usage and I/O traffic. As expected, the VM ar-
rival rate does not affect the memory and I/O demands
much, which confirms that the increase in boot time is
due to the increased I/O contention, and VMAR reduces
I/O contention to improve the VM instantiation perfor-
mance.

Figure 14 presents the performance and I/O traffic of
VM instantiation with different available memory sizes.
We insert a kernel module to the host kernel which uses
vmalloc to occupy a set of non-swapable memory pages
to control the available memory size. In this experiment,
the number of VMs is set to 30 and the arrival rate is set
to 0.2. From previous experiments, which uses all 64 GB
memory, we figure out that the memory usage of the host
during runtime is around 11 GB, 4 GB of which is for
caching. Thus, we test the scenarios in which the avail-
able memory size is 9 GB and 11 GB respectively. With
pre-copy and on-demand schemes, the average boot time
of the VMs increases significantly with a higher memory
pressure because we have less memory for caching and
more requests need to go to the physical devices. In con-
trast, the memory pressure has little impact on the VM
boot time with VMAR scheme. The reason is that VMAR
requires much less memory for effectively caching disk
data for the applications.

Application loading Figures 15, 16, and 17 show the
results about application loading performance. Again, in
the experiment for Figure 15, the arrival rate of the VMs
is set to 0.2, and different numbers of booted VMs are
tested; in the experiment for Figure 16, the number of
VMs is set to 30, and different arrival rates are tested; in
the experiment for Figure 17, the VM number is set to
30 and the arrival rate is set to 0.2, and different avail-
able memory sizes are tested. As above mentioned, we
replace four of the images with our own images which
contain different versions of IBM DB2 and WAS, and
only measure the application loading time of the four im-
ages. Other images will load different applications and
serve as a background workload.

Loading an application is an I/O intensive workload.
The VMs have to read a lot of application binaries and
libraries into the memory. Although the four images we
adopted contain different versions of the application, a
lot of data can be common. Moreover, the applications
loaded by the rest of images also have a lot of common
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Figure 14: Comparison of VM boot time and I/O traffic
with different available memory sizes.

data. The disk accesses to the common data provide a
good opportunity for VMAR to share the memory cache
and reduce the I/O contention. Thus, the results demon-
strate a similar trend as that of the VM instantiation ex-
periments. With the help of VMAR, the average load
time, memory usage, and I/O traffic are much lower, and
increase much slower than the pre-copy and on-demand
schemes.

Overhead of VMAR The major overhead of VMAR
resides in the address translation and breaking a big re-
quest into a number of descendant requests. We also
conduct experiments to measure the overhead of VMAR.
Both random read and sequential read are tested. For ran-
dom read, we create a simple benchmark program that
runs inside a VM and issues dd commands to randomly
read 3,000 chunks of non-zero blocks (the size of each
chunk is 1 MB, i.e., 256 blocks). For sequential read,
we use a single dd command to read a 350 MB non-zero
chunk directly from the disk. The block size for the dd
command is set to 1 MB, and the idirect flag is used.
To eliminate the impact of other factors, the benchmarks
run twice when the VM is idle. After the first run, all the
data has been brought into the host page cache. We mea-
sure the runtime of the second run, which only copies the
data from the host memory. Figure 18 shows the runtime

9



20 30 40
0

80

160

240

Number of VMs

 

B
oo

t t
im

e 
(s

)
 Pre-copy
 On-demand
 VMAR

(a) Boot time

20 30 40
0

3

6

Number of VMs

 

M
em

or
y 

ca
ch

ed
 (G

B
)

 Pre-copy
 On-demand
 VMAR

(b) Memory cached

20 30 40
0

3

6

Number of VMs

 

I/O
 tr

af
fic

 (G
B

)

 Pre-copy
 On-demand
 VMAR

(c) I/O traffic

Figure 12: Comparison of VM boot time, memory cached and I/O traffic with different number of VMs.
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Figure 13: Comparison of VM boot time, memory cached and I/O traffic with different VM arrival rates.

normalized to using a raw image. The result shows that
the overhead of VMAR is less than 5%. The runtime for
random read is even smaller than raw image because we
issue multiple descendant requests concurrently, which
increases the throughput by leveraging multi-threading.

5 Related Work

This section surveys existing efforts on I/O resource op-
timization by leveraging data content similarities in vari-
ous workload scenarios.

Deduplicated Storage Systems Due to the explosive
generation of digital data, deduplication techniques have
been widely used in to reduce the storage capacity in
backup and archival systems. In general, storage dedu-
plication techniques break each dataset (file or object)
into smaller chunks, compare the content of each chunk,
and merge chunks with the same content. Much re-
search effort has been made to enhance the effective-
ness and efficiency of these operations [7, 8, 10, 17, 25].
For instance, Zhu et al. [25] have proposed three tech-
niques to improve the deduplication throughput, which
improve the content identification performance, dedupli-

cated storage layout, and metadata cache management
respectively. Meyer et al. [17] have provided the insight
that deduplication on the whole-file level can achieve
about 3

4 of the space savings of block-level deduplica-
tion, while significantly reducing disk fragmentations.

The storage deduplication techniques discussed above
mainly focus on optimizing the performance of data
backup workloads which are sensitive to throughput and
space. As summarized in [21], they cannot be easily
used to support latency-sensitive runtime I/O, because
of the bookkeeping overhead in the write path and in-
creased disk seeks in the read path. Nevertheless, our
work has leveraged the wisdom of many storage dedu-
plication techniques. For example, Bloom filter is com-
monly used in examining the existence of a block in
deduplicated storage repositories, which is also used by
VMAR to speedup block map lookups. Our decision of
using a fixed chunk size of 4 KB is also based on findings
of the impact of chunking schemes on the deduplication
ratio [12].

Deduplication for Primary Data Many recent pa-
pers have focused on the deduplication of primary data,
namely datasets supporting runtime I/O requests [9, 15,
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Figure 15: Comparison of application load time, memory cached and I/O traffic with different number of VMs.
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Figure 16: Comparison of application load time, memory cached and I/O traffic with different VM arrival rates.

19, 21]. They tackle the problem of I/O latency caused
by deduplication from different angles. In [9], a study
has been presented to analyze the file-level and chunk-
level deduplication approaches using the dataset of pri-
mary data collected from Windows servers. Based on
the findings, a deduplication system has been developed,
where data scanning and compression are performed of-
fline without interfering with file write operations. The
I/O deduplication technique proposed in [15] includes
several optimizations, including an additional content-
based buffer cache under the VFS page cache. Ng et. al
have proposed optimized metadata management schemes
for inline deduplication of VM images [19]. iDedup [21]
has used a minimum sequence threshold to determine
whether to deduplicate a group of blocks, and thereby
preserving the spatial locality in the disk layout.

However, most of the optimizations discussed above
still deduplicate at the storage layer by merging identical
data chunks. This saves the storage space without reduc-
ing the usage memory cache space and I/O bandwidth,
which are of higher demand in cloud environments. In
contrast, VMAR leverages the special characteristics of
I/O virtualization and trims duplicate data accesses above
the VFS layer, which leads to resource savings along the

entire I/O path. This is not possible in non-virtualized
I/O workloads, where VFS is the entry point of each re-
quest.

Memory Deduplication Many techniques have been
proposed to leverage the similarities among processes
or VMs running on a physical server and reduce their
memory usage. Disco [6] has introduced page sharing
in NUMA multiprocessors, which requires modifications
of the (guest) OS. Unlike traditional multiprocessor sys-
tems where there is only one OS (and thus no distinction
between host and guest OS), in today’s virtualized sys-
tems in the cloud, guest OS cannot be easily modified.
To support page sharing without modifying guest OS,
VMware ESX Server [23] uses content-based page shar-
ing, in which pages can be shared as long as their content
is same. To reduce the cost of identifying identical pages,
the hash value of a page’s content is used as the key to
look up the pages with the identical hash value. Many
optimizations have been proposed to reduce the mem-
ory scanning overhead and increase sharing opportuni-
ties [13, 18, 24]. For instance, Satori [18] captures short-
lived sharing opportunities by detecting similar pages at
page loading time.
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Figure 17: Comparison of application load time and I/O
traffic with different available memory sizes.

The page sharing techniques discussed above incurs
CPU and memory bandwidth overhead in scanning mem-
ory pages. VMAR saves this runtime overhead by scan-
ning and compressing VM images offline during image
capture time. Moreover, in existing page sharing tech-
niques, any requested data block needs to be copied from
the hard disk drive to the memory cache at least once to
compare with and potentially merge with other blocks.
VMAR can greatly reduce these “cold misses” when a
VM is instantiated, because many of the requested data
blocks have already been brought into the cache by its
peers.

6 Conclusion

In this paper we propose VMAR, which is a thin I/O
optimization layer that optimizes VM instantiation and
runtime performance by redirecting data accesses be-
tween pairs of VM images. By creating a content-based
block map during image capture time and always direct-
ing accesses of identical blocks to the same destination
address, VMAR enables VMs to give each other “free
rides” when bringing their image data to the memory
page cache. Compared to existing data deduplication and
memory page sharing techniques, the proposed mecha-
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Figure 18: Comparison of runtime for running ran-
dom/sequential reading benchmark.

nism is tailored for the cloud with three key advantages.
First, the content identification of data blocks is offline
and does not incur perceivable overhead to foreground
applications. Second, by redirecting accesses before the
VFS layer,VMAR deduplicates the entire I/O path and
eliminates “cold misses” in memory and disk caches. Fi-
nally, the simplicity and non-destructive nature VMAR
make it an ideal candidate for progressive/gradual de-
ployment in production systems.

On top of the main access redirection mechanism,
VMAR also includes two optimizations of the block map.
The first one is to reduce block map size by merging con-
tiguous map entries. The second one is to reduce the
number of block map lookup operations by using an in-
dex to quickly guide a request into the correct region of
the map. Experiments have demonstrated that in I/O-
intensive settings VMAR reduces VM boot time by over
50% and reduces application loading time by over 70%.
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