
RC25350 (WAT1301-080) January 29, 2013
Computer Science

IBM Research Report

Untether: Middleware Components to Support
Intermittently Connected Web-Applications

Avraham Leff, James T. Rayfield, Ravi Konuru
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 208

Yorktown Heights, NY 10598
USA

Raj Balasubramanian
IBM Software Group

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Untether: Middleware Components to Support Intermittently Connected
Web-Applications

Avraham Leff, James T. Rayfield, Ravi Konuru
IBM

T.J. Watson Research Center
Yorktown Heights, NY, USA

{avraham, jtray, rkonuru}@us.ibm.com

Raj Balasubramanian
IBM

raj balasubramanian@us.ibm.com

Abstract—We examine the lifecycle requirements of inter-
mittently connected web-applications (ICWAs) and investigate
whether such applications can be developed as an “always
connected” web-application combined with middleware that
address ICWA requirements. We show that this is difficult
to do because ICWAs require application-specific logic that
is not easily combined with a middleware API. We therefore
propose the use of “middleware components” in the areas
of data-provisioning and change-set propagation. Combined
with application-specific logic, these components make it easier
to develop an ICWA by reducing the amount of required
developer code. We show how our prototype UNTETHER system
implements these components and reduces the burden on the
application developer.

Keywords-mobile application; intermittently connected app-
lication; middleware

I. INTRODUCTION

We define an intermittently-connected web-application
(ICWA) as a web-application that reads and modifies non-
trivial amounts of data and remains functional even when
the application is not connected to the server. Although
the technological underpinnings for ICWA construction have
existed since the 1990s, recent standards work has finally
made the construction of ICWAs feasible. HTML 5 contains
several features, most notably the Cache Manifest and “Of-
fline Application Caching APIs” [1], that allow developers
to specify which parts of an application should be cached for
offline use. The W3C IndexedDB draft standard [2] defines
a NoSQL database with query APIs that can locate records
either by key or by an index. Developers can now build an
ICWA, knowing that it can be deployed directly into major
browsers without the need for additional plugins.

An ICWA can be viewed as an extreme case of a “web 2.0”
application in the way it implements page transformations
in response to user-interactions with the GUI. Rather than
requesting that the server build the next page, the client itself
builds the next page using cached data and business logic [3],
[4]. Similarly, REST techniques [5] are used to provision
data onto the device and to copy device-resident data to the
server. However, because an ICWA cannot rely on being able

to connect to the server, it differs from a connected web 2.0
application (CWA) in the following important ways:

• provisioning: an ICWA’s data-set is not guaranteed to
be resident on the device when needed. Typically, when
a CWA needs to populate a grid with, for example, a
list of “work items”, it issues a query to the server.
Because the server can transactionally query the master
database, the application receives a correct – and com-
plete – result set. In contrast, builders of an ICWA must
calculate, in advance, the data-set required by the app-
lication and provision the device before it disconnects
from the server. Depending on an application’s com-
plexity and how long the device remains disconnected,
this can be an error-prone process. (Typically, the data-
set that can potentially be accessed by an application
is too large to be copied in its entirety to the a device.)

• change-set propagation: data are created, modified, and
deleted as an application executes. Typically, a CWA
propagates its change-sets by issuing a web-request to
the server that controls the shared master database [6].
Because the server has an up-to-date view of the
database, it can transactionally commit the change-set
in a way that guarantees that the changes are “valid”
and do not violate the application’s semantics. Account
balances, for example, will not go below pre-specified
limits; workers will not be assigned the same work-
order. In contrast, an ICWA’s change-sets are created
while the device database becomes increasingly stale
since the disconnected device is not aware of changes
made by concurrent users to the master database. The
database-locking mechanisms used that are typically
used by a CWA [7] are not feasible for a ICWA because
these locks must then be held throughout the dis-
connection period, causing unacceptable performance.
Moreover, most application data-sets are so dynamic
that it is difficult to even predict what data needs to be
locked before the device disconnects from the server.

In this paper, we investigate the implications of these
ICWA-specific issues on the challenge of building middle-

ware to support the ICWA life-cycle. Section II discusses
the provisioning and change-set propagation issues in more
detail. In contrast to approaches in which the middleware
provides no persistence and only acts as a pass-through
for change-set propagation and provisioning [8], we have
constructed middleware that supports these activities. How-
ever, we also suggest that traditional middleware approaches
that cleanly separate applications from middleware may
not be feasible; and show that it is instead possible to
provide useful “middleware components” that simplify ICWA
development. In Section III, we present UNTETHER, our
prototype implementation of these middleware components
in the context of a sample ICWA. We summarize our findings
in Section IV

II. ICWA MIDDLEWARE

Ideally, the role of middleware is to enable applications
to be coded as an “application-specific” portion that is com-
bined with separable – application-independent – middle-
ware portions. Application-developers supply the business
logic and invoke middleware APIs such as JDBC R© [9]
or JNDI [10] as needed. Middleware providers focus on
refining the APIs and on providing a robust implementation.
In this Section we examine the difficulties inherent in the
construction of “ICWA middleware”, defined as “middleware
that can be combined with an CWA to construct an ICWA”.
We’ll ground this discussion in the context of a quickly-
sketched sample ICWA.

Consider a PURCHASE ORDER ICWA that agents use to
create orders even when disconnected from the server. A
PURCHASE ORDER consists of N “line items”, each of which
contains catalog information such as product descriptions
and price, along with agent-specified information such as
quantity. A PURCHASE ORDER is also associated with
workflow-state (e.g., “pending”); the client receiving the line
items; and the department to which the PURCHASE ORDER
will be budgeted. Assuming that the entire catalog will not fit
on the device, ICWA developers have to decide which subsets
of which product categories will be provisioned. The ICWA
can then be written to search the device database for products
to display in the GUI, and to store the created PURCHASE
ORDER on the device. Finally, when the device can connect
to the server, the ICWA must propagate the change-set: in
this case, a decremented department budget and the new
PURCHASE ORDER. This can be done through service APIs:
e.g., a CREATE PO command, followed by a sequence of
SET LINE ITEM commands, followed by a CHANGE STATE
command to put the PURCHASE ORDER in the “pending”
state. Service APIs enable the application to change master-
database state, to drive server-side workflow, and similar ac-
tions. After change-set propagation is completed, the server
must update the device database to make it consistent with
(a subset) of the current master database. This process must
incorporate any concurrent activity (e.g., another PURCHASE

ORDER created by a different agent that modified the same
department’s budget) that occurred while the device was
disconnected.

This generic and abbreviated description of ICWA de-
velopment is shown in the left-portion of Figure 1. The
core application – the CWA version of an application –
consists of three function blocks: a client-resident portion
(device database, GUI, and business logic); a server-resident
portion (service APIs and implementation); and a master-
database (usually on a separate architectural tier) used by
the implementation of the service APIs. An ICWA includes,
in addition, the function blocks whose role we explain in
Sections II-A and II-B. Middleware plays a very important
role in the CWA function blocks: e.g., servlet APIs to manage
client-server HTTP interactions; JDBC APIs for the server’s
interactions with the master database; and jQuery to access
and modify the browser’s DOM. Such middleware can be
used in both CWA and ICWA development. We now consider
whether ICWA-middleware can play a similar role in the
ICWA-specific function blocks show in Figure 1 that handle
provisioning and change-set propagation. By decoupling
the middleware that enforces reliability and optimization
from the service API that enforces business logic during
updates/writes to the database, the architecture can scale
to support the reconnection of many clients to the server,
issuing replication requests, and synchronization their work
via the service API.

A. Provisioning

Provisioning a given ICWA means storing data required by
the application in the device’s database. This data-set can be
obvious: for example, developers may “know” that an ICWA
requires “all information about customers assigned to a given
agent”. Even when developers can’t initially specify the
required data-set, an iterative approach may work: e.g., when
beta testers report that the ICWA didn’t behave correctly, this
may point to a need to expand or refine the provisioning.
Provisioning is more difficult when an ICWA performs sub-
optimally because it doesn’t have the correct data-set –
but doesn’t completely break in an obvious manner. For
example, developers may provision a device with catalog
information for a PURCHASE ORDER ICWA, but omit data
for certain popular items. The ICWA search function will
successfully display catalog information, and it may be hard
to detect that the device was under-provisioned. Even trivial
provisioning tasks can suffer from subtle bugs. Consider
the case where the device is provisioned with information
about customers assigned to a given agent. The back-end
database schema allows queries of the form SELECT * FROM
CUSTOMERS WHERE AGENT = “JOHNSMITH”. However,
the business uses workflow rules that allow one agent
to substitute for another when the latter is absent. This
workflow is achieved by (temporarily) granting “janedoe”
database privileges (perhaps at the business logic level) to

Client
Data, logic, view

Reliable Message
Queuing

and Replay

Optimized
Replication

and Client-DB
Roll-Forward

Service API and
Implementation

Subscription API
and

Implementation

Database

Server

ClientClient
Data, logic, view

Message
Queuing

and Replay

Replication
and Client-DB
Roll-Forward

Service API and
Implementation

Subscription API
and

Implementation

Database

Before After refactoring
Untether layer

Database

Middleware

Figure 1. Using UNTETHER To Simplify Develelopment of ICWAs

“johnsmith” data. In the case of a CWA, this approach works
seamlessly when “johnsmith” is on vacation. When a request
from on of “johnsmith’s” customers is fielded to “janedoe”,
the CWA executing on “janedoe’s” device issues a dynamic
query to the server which sends back the data she needs. In
the case of an ICWA, if developers are unaware of how the
workflow interacts with the database schema, and naively
provision “janedoe’s” device based only on the database
query, the provisioning will fail.

The provisioning task relates to the “subscription” and
“replication” function blocks in the left-portion of Figure 1.
Subscription defines what data are required by a given ICWA;
replication copies this data to the device and ensures that
the device-database reflects the desired state relative to the
master-database and the subscription data-sets. From the
perspective of writing middleware, the key point is that
whatever its difficulty, provisioning is application-specific. It
may require relatively little knowledge of the application or a
lot, but the task cannot be factored out of the application and
delegated to generic middleware. In other words, we assume
that the data-set to be provisioned for a given ICWA is
specified through a subscription API so that we know which

data are relevant to the application and which are not. Our
UNTETHER prototype therefore leaves the “subscription”
function block unchanged in the right-portion of Figure 1.
Instead, the UNTETHER prototype focuses on providing an
optimized replication module that is used in conjunction
with application-specific provisioning. Optimized replication
addresses the fact that while the disconnected device has
modified its version of the database, concurrent activity
(may have) also modified the master database. Usually, the
performance of the naive approach that erases the client
database and then does a fresh provisioning from the master
database is unacceptable. The problem is how to efficiently
determine what data in the master database have been
modified since a given device last replicated.

Broadly speaking, timestamp and log-based approaches
can be used to solve this problem. In the timestamp ap-
proach, every datum (or object) instantiated by a service
API is associated with a timestamp. The service APIs are
augmented with a GET ALL X SINCE TIME API to which
the client supplies the time that replication was last per-
formed. Because all data are associated with a timestamp,
the server can efficiently implement this API to return all

relevant data to the client. (Deleted data is also marked with
a timestamp.) In the log approach, the implementation of
the service APIs create a log of modified data, and this log
drives the creation of a set of “{primary key, timestamp}”
records in a new “shadow” database that is separate from
the master database. Using the shadow database, the server
can efficiently implement the client query to return all data
modified since a given time.

Although conceptually similar, the log approach has
certain practical advantages over the timestamp approach
in the usual case where existing database schema do not
already associate a timestamp field with each record. In
that case, the log approach is superior because it decouples
the infrastructure needed to support an ICWA from existing
infrastructure. There is no need to augment existing schema
with a timestamp, nor is there a need to modify the existing
UPDATE APIs. As discussed in Section III, databases such
as DB2 R© and ORACLE R© already expose a modification
log, making it much easier to automate a log-based im-
plementation. In addition, the shadow database serves as a
cache that reduces the load on the master database since
it assumes responsibility for the GET ALL X SINCE TIME
queries required by an ICWA.

B. Change-Set Propagation

Two approaches are typically used to propagate the work
done by a disconnected device [11]. Here we term them
data-based and message-based propagation.

• Data-based: All data that were modified on the dis-
connected client are transmitted to the server which,
in turn, transactionally commits this state “as is” to
the master database. Because the corresponding master-
database records cannot typically be locked through the
disconnection period, some form of optimistic concur-
rency control (OCC) [7] is used when committing the
records. In the example used in Section II, the client-
side database records that were created during PUR-
CHASE ORDER creation are transmitted to the server.
These might be represented as a set of line-items,
each augmented by a quantity column, as well as a
PURCHASE ORDER workflow “state” column denoting
that the new PURCHASE ORDER must be approved. In
addition, the department record whose budget column
has been decremented, is transmitted to the server.

• Message-based: Instead of transmitting the “raw”
database records that have been created, modified, or
deleted by the ICWA, the client transmits a sequence
of messages that correspond to invocations of the
service APIs that are defined for the application. In
our example, as the user creates a PURCHASE ORDER,
a CREATE PO message, followed by SET LINE ITEM
messages, followed by a CHANGE STATE message are
created and stored in the device database. When the

device connects to the server, these messages are “re-
played”, driving the service APIs that create a PUR-
CHASE ORDER, sets its workflow state, and debit the
department budget. The ICWA uses the same (typically,
lock-based) concurrency control mechanisms that are
used by CWA invocations of the service API.

At first glance, the data-based approach to change-set
propagation is attractive because its implementation can
easily be refactored into middleware. At least for appli-
cations whose data are stored in relational databases, the
algorithm to represent row and column state as JSON (for
example) is straightforward, and is independent of a spe-
cific application. Similarly, the process of transforming this
state into corresponding JDBC commands that are invoked
by the server against the master database is application-
independent. However, the data-based approach suffers from
several disadvantages that preclude its use in a broad set of
application types.

First, note that the data-based approach relies on OCC
to provide transactional consistency as the server copies
the device’s database records to the master-database. That
is, the process of committing the device’s records must be
aborted if the middleware detects that someone has modified
a given record in the period between replication and change-
set propagation. OCC will have no problem with the new
PURCHASE ORDER records created by the ICWA, but (even
in our very simple example), will abort PURCHASE ORDER
creation if some other agent has concurrently decremented
the same department budget that is involved with this
device’s PURCHASE ORDER. The middleware will detect that
concurrent work has modified the same database record,
and will therefore abort the second transaction. Critically,
although it is easy to add business logic to commit the
transaction so long as the department budget can pay for
both PURCHASE ORDER creations, that is precisely the sort
of application-specific logic that is difficult to capture in
generic middleware. The message-based approach will have
fewer false conflicts than the data-based approach because
implementations of the service API contain exactly this
sort of application-specific business logic. As long as data
operations are commutative, the exact values of the data
modified by an application should be irrelevant to a service
API.

Second, the data-based approach is more fragile than the
message-based approach because it imposes no structure on
the set of records that are transmitted to the server. For
example, if the user created N PURCHASE ORDERs, no
demarcation exists between the records associated with one
PURCHASE ORDER and the records of another PURCHASE
ORDER. The records are transmitted to the server en masse,
and if any errors occur, the server will have no alterna-
tive to aborting all of the work done on that device. In
contrast, because the message-based approach is based on
an application-specific service API, it is relatively easy to

determine which portions of work can be propagated to the
back-end database independently of errors detected in other
portions of work.

Third, the data-based approach cannot verify read depen-
dencies. Whereas the previous values of changed-data can
be verified for consistency at the time the updates are written
(OCC), it is not possible to check for the values of read-only
data being unchanged at commit time.

Finally, the most important advantage of the message-
based approach is that enterprises typically do not permit
even a CWA to directly access the back-end database in
the manner required by the message-based approach [12].
Enterprise applications are characterized by the fact that
business logic is responsible for enforcing system security
and integrity. Therefore, those portions of the business logic
must be validated by the enterprise before they are allowed
to read and write the master versions of application data.
Although disconnected operation implies that ICWAs must
include substantial amounts of business logic on the client,
enterprises typically will not allow client-side execution to
substitute for repeated execution of this business logic on
the server. Because business logic is responsible for main-
taining an application’s consistency, integrity, and security
constraints, client-side code will not be sufficiently trusted
to directly update master-database state. Instead, clients
invoke stored procedures [13] which can be thought of as
black-boxes of business logic. This has advantages similar
to the SOA approach [14] in which enterprises achieve
service flexibility by decoupling service API from direct
manipulation of the database. Thus, assuming that a service
API already exists for a given application, with the message-
based approach, ICWA developers use exactly the same
(already refined and debugged) API already in use by the
enterprise’s CWA developers.

III. UNTETHER PROTOTYPE

We have built UNTETHER, a prototype end-to-end infras-
tructure supporting ICWAs through a life-cycle of initial
deployment followed by repeated replication, application
execution, and change-set propagation events. As shown
in Figure 2, UNTETHER consists of four tiers. The master
version of an application’s data resides in the back-end
database (UNTETHER uses DB2). No client-side application
is permitted direct access to the back-end database. Instead,
client application access is mediated by the back-end server
(UNTETHER uses Java

TM
servlets running on the Jetty web-

server v7.44) using an application-specific service API.
Data are propagated from the back-end database to the

mid-tier shadow database (UNTETHER uses MongoDB R©,
a NoSQL database [15]) in a process described in Sec-
tion III-A. ICWA clients provision data onto their devices
through web-requests to the mid-tier server (UNTETHER uses
Node.js

TM
[16]). ICWA clients also do change-set propagation

through web-requests to the mid-tier server in a process
described in Section III-B.

Provisioned data are stored in the device database
(UNTETHER uses IndexedDB [2]). Once provisioning is
completed, the PURCHASE ORDER application (written with
HTML, CSS, and JavaScript

TM
) can execute without further

interaction with the server. Specifically, new PURCHASE
ORDERs can be created by querying the Users, and Catalog
object-stores, and storing the new instances in the Purchase-
Order object-store. Previously created PURCHASE ORDERs
can be retrieved from the PurchaseOrder object-store, ap-
proved or rejected, and the modified instance updated in the
PurchaseOrder object-store.

The UNTETHER middleware enables ICWAs to be trans-
formed from the set of function blocks depicted in the left
portion of Figure 1 to the set of function blocks in the right
portion of the Figure. The core of the application (both on
the client and the server) are unchanged. However, by using
UNTETHER:

1) Developers can rely on efficient propagation of the
data required by the device from the back-end database
to the shadow database. Although developers must
still specify what data are required for a given ICWA,
UNTETHER ensures that the most recent data are
available and that the device database is moved from
its initial state to the current (subset of the) master
database.

2) Developers can now queue application-specific com-
mands persistently on the device, and replay them
reliably when connected to the server. This allows
change-sets to be propagated using using the message-
based approach.

We now give more detail about how UNTETHER provides
this function.

A. UNTETHER Provisioning

As mentioned earlier, we implemented the mid-tier service
using Node.js and MongoDB, and the back-end in Java
servlets, with the database in DB2. At application start time,
the mid-tier server sends a request to the back-end server
requesting the initial contents of the database. The back-end
server serializes the DB2 tables into JSON, and the mid-term
server reads the data and initializes MongoDB.

At this time, the DB2 CAPTURE facility is started [17].
CAPTURE reads the database log, scanning for data written
to or deleted from specified tables, and writes the changes to
the corresponding “change data” (CD) table. The CD tables
generally have the same columns as the original tables, and
have additional columns specifying the commit sequence
number of the change in the log, and an “operation” column
which is either I (for inserted data records), U (for updated
data records), or D (for deleted data records). They may
optionally have the “before image” of the data, although we
do not use this feature in UNTETHER.

Database

(indexedDB)

Message
Queue

Applicatio
n

Application

Untether API

Shadow

Database

(MongoDB)

Provisioning
Database

(DB2)

JavaScript

(Node.js)

Reliable transport

Back-end Server

Replicator

CD

Tables

CAPTURE

Utility

Update

API

CD
table

reader

Application

Business

Logic

(Java

servlets)

Transactional
Sync

Replay

{"command": "create_po", ...}
{"command": "set_line_item", ...}
{"command": "change_state", ...}

Mid-tier ServerClient

Change-set

Propogation

Figure 2. UNTETHER Implementation Block Diagram

For DB2 replication to be enabled, an APPLY program
is also required. However, a servlet takes the place of
the APPLY program here. The client periodically sends a
request to the mid-tier server for any changes that have
been made to the database. Then, the mid-tier server sends
a request to the back-end server for any changes that have
been made to DB2. At that time, the back-end server reads
the IBMSNAP UOW table to find any transactions that have
committed to the CD tables. Then, the CD table contents
are serialized to JSON and sent to the mid-tier server. Fi-
nally, the IBMSNAP PRUNE SET is updated with the current
synchpoint, as the APPLY program would have.

On the mid-tier server, each row has a timestamp property
that indicates the last time the row was modified. Note the
deleted rows are preserved with a “deleted” marker and a
timestamp. When the client requests an update from the mid-
tier server, the mid-tier server looks at the last time that the
client was updated. Any rows which have changed or have
been deleted since the last update are serialized to JSON and

sent to the client.

B. UNTETHER Change-Set Propagation

Providing a persistent message queue on the device is
not sufficient to implement the message-based approach for
change-set propagation. Developers require, in addition, that
these messages be removed from the queue and replayed
on the server as an atomic operation. (We assume that a
single message can be replayed on the server as a single
transaction; i.e., UNTETHER does not deal with scenarios that
require a two-phase commit [7] on the server.) UNTETHER
is developing this transactional behavior using the approach
of HTTPR [18] (for reliable delivery of HTTP packets) and
WS-ReliableMessaging [19] (for reliable delivery of SOAP
messages). These protocols ensure that all messages are
delivered to their destination in their original form exactly
one time.

As we develop applications on the UNTETHER infrastruc-
ture, we have found that the most obvious disadvantage of
the message-based approach is its effect on the programming

model. A given piece of CWA business logic is coded
exactly once: e.g., saving a PURCHASE ORDER either drives
a service API or directly changes database state, but does not
do both. With an ICWA using the message-based approach,
we must code the same logic in two different forms. We
save messages that will drive subsequent invocations of
the service API to propagate the saved PURCHASE ORDER
off the device. But, since the device must function while
disconnected, this implies that the saved PURCHASE ORDER
must also be saved in the device database in “raw data”
form: e.g., to display the set of PURCHASE ORDERs that are
pending approval at a given moment. While we have consid-
ered code-generation approaches to automate this dual code
requirement, at this point, the application-specific nature of
this code makes this difficult. Nevertheless, UNTETHER uses
the message-based approach for the reasons discussed in
Section II-B.

C. Enhancing Provisioning With Error Detection

UNTETHER also incorporates a mechanism to address
a key issue for ICWA provisioning: namely, the difficulty
in predicting the required data-set for a given application
and given user (see Section II-A). If we define “correct
provisioning” as ensuring that the result-set provided to a
disconnected ICWA’s query is identical to the result-set of a
connected application’s query, we can detect an incorrectly
provisioned application with the following algorithm.

1) To implement a given ICWA query q, construct a query
qs (that queries the server’s database) and a query qc
(that queries the device database).

2) At runtime, the ICWA executes qc and uses the result-
set of that query. However, the ICWA also stores
the result-set returned by qc (minimally, the set of
primary-key values) as well as qs (and its associated
runtime parameters) for subsequent execution in a
manner similar to the message-based approach for
change-set propagation (Section II-B).

3) When the device connects to the server, the set of
stored qs queries are executed, and the result-sets
compared to that returned to the original qc execution.
Differences between the result-sets implies an error in
the original provisioning.

Care must be taken in step 3 to avoid incorrectly detecting
an error in any of the following cases:

• If a datum was created on the device after the provi-
sioning event, it is not an error if the result-set for qc
contains that datum. Similarly, if a datum was deleted
on the device after the provisioning event, it is not an
error if the result-set for qc does not contain that datum.

• If a datum was created in the master database by
another client after the provisioning event, it is not
an error if the result-set for qs contains that datum.
Similarly, if a datum was deleted in the master database

by another client after the provisioning event, it is not
an error if the result-set for qs does not contain that
datum.

As with change-set propagation, UNTETHER does not
generate the dual-query for the developer because (unless the
device and master databases use the same API and schema)
application-specific logic is required to code the different
versions of the query. However, UNTETHER supplies the
middleware to store the set of qs invocations on the de-
vice together with the result-sets of the corresponding qc
execution.

IV. CONCLUSION

Web-browser support for recent HTML standards allow
developers to assume low-level support for intermittently-
connected web-application, without the need for additional
plugins. Middleware support for transforming a connected
version of the application to an ICWA is complicated by
the need to incorporate application-specific logic throughout
an ICWA’s deployment. Our UNTETHER prototype instead
focuses on providing middleware components for two prob-
lems: how to efficiently provision data onto the device, and
how to propagate work performed on the device to the
server. UNTETHER also incorporates a mechanism to detect
logic and workflow errors in an application’s provisioning
algorithm. We are currently investigating whether analysis
of a CWA’s data-usage patterns can be incorporated into
provisioning of the ICWA version of the application.

REFERENCES

[1] “Offline web applications,” http://www.w3.org/TR/
offline-webapps/, 2008.

[2] “Indexed database api,” http://www.w3.org/TR/IndexedDB/,
2012.

[3] J. Gehtland, D. Almaer, and B. Galbraith, Pragmatic Ajax: A
Web 2.0 Primer. Pragmatic Bookshelf, 2006.

[4] T. O’Reilly, “What is web 2.0,” http://www.oreilly.com/go/
web2, September 2005.

[5] Wikipedia, “Representational state transfer,”
http://en.wikipedia.org/w/index.php?title=Representational
State Transfer&oldid=109299419, 2007.

[6] M. Franklin, M. Carey, and M. Livny, “Transactional client-
server cache consistency: alternatives and performance,” ACM
Transactions on Database Systems (TODS), vol. 22, no. 3, pp.
315–363, 1997.

[7] J. Gray and A. Reuter, Transaction Processing: Concepts and
Techniques. San Francisco, CA, USA: Morgan Kaufmann,
1993.

[8] “Worklight jsonstore sync,” http://pic.dhe.ibm.com/
infocenter/wrklight/v5r0m5/topic/com.ibm.worklight.help.
doc/devref/c overviewofdatasynchronization.html, IBM,
2013.

[9] “Java Database Connectivity (JDBC),” http://docs.oracle.com/
javase/tutorial/jdbc/, Oracle, 2012.

[10] “Java Naming and Directory Interface,” http://docs.oracle.
com/javase/jndi/tutorial/, Oracle, 2012.

[11] A. Leff and J. T. Rayfield, “Programming model alternatives
for disconnected business applications,” IEEE Internet Com-
puting, vol. 10, no. 3, pp. 50–57, May/June 2006.

[12] ——, “Issues and approaches for web 2.0 client access to
enterprise data,” Advances in Computers, vol. 76, pp. 225–
255, 2009.

[13] G. Harrison and S. Feuerstein, MySQL Stored Procedure
Programming. Sebastopol, CA, USA: O’Reilly, 2006.

[14] T. Erl, Service-Oriented Architecture (SOA): Concepts, Tech-
nology, and Design. Prentice Hall, 2005.

[15] K. Chodorow and M. Dirolf, MongoDB: The Definitive Guide.
O’Reilly, 2010, iSBN:978-1-4493-8156-1.

[16] T. Hughes-Croucher and M. Wilson, Node: Up and Running.
O’Reilly, 2012, iSBN:978-1-4493-9858-3.

[17] “Sql replication,” http://pic.dhe.ibm.com/infocenter/db2luw/
v9r7/index.jsp?topic=%2Fcom.ibm.swg.im.iis.db.repl.sqlrepl.
doc%2Ftopics%2Fiiyrscncsqlreplovu.html.

[18] “Httpr specification,” http://www.ibm.com/developerworks/
webservices/library/ws-httprspec/, 2002.

[19] “Web services reliable messaging protocol,” http://docs.
oasis-open.org/ws-rx/wsrm/200702, 2005.

