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Abstract—Given the dynamic nature of the Cloud, resulting
from mapping virtual to physical resources, changes in the
usage pattern of resources, and migration of virtual resources,
in addition to the dynamic nature of the applications them-
selves, the bottleneck resource in a given application changes
over time. Whether the bottleneck resource is a hardware
or software resource, physical or virtual, the performance
of the application deteriorates accordingly, leading to longer
response times and saturated throughput. Today, a typical
design of a workload manager for an application manages
to a target performance measure, e.g. response time, and/or
a system related performance measure, e.g. CPU utilization.
We claim that, due to the dynamics of the Cloud and the
unavailability of credible resource performance measures, an
application workload manager needs to perform its objective
in the absence of such target values. Moreover, the application
workload manager should be able to function with a model-
free controller, thus avoiding the complexity of dynamically
changing its model as the cloud environment, especially the bot-
tleneck resource, where the application is hosted and managed
changes. In this paper we focus on an application workload
manager which uses admission control as a means for load
management. We present a design for such a self-optimizing
workload manager that is both target-less and model-free. Our
approach is to devise black-box bottleneck analytic techniques,
combined with a simple binary controller. We demonstrate the
validity of our workload manager in an experimental setup,
using the RUBiS web application benchmark.

Keywords-cloud computing; workload management; black-
box modeling; bottleneck analysis;

I. INTRODUCTION

Cloud computing introduced PaaS (Platform as a Service)
as a new enhanced model for delivering computing and
storage as services to end-recipients. In the PaaS model,
cloud providers offer a computing platform which typi-
cally includes operating systems, programming language
execution environments, database and web servers [1]. A
multitude of complex applications are hosted by PaaS and,
consequently, a subset of resources may get saturated as
the load on the system increases, thus causing performance
deterioration to applications due to congestion and hence
limiting their throughput. The particular resources which get
saturated depend on the nature of the applications and their
workload. Such resources may be hardware components,
such as computing and communication units, or software
components, such as server thread pool size, database con-

nections and locks. Further, the saturated resources may
change over time depending on the dynamics of the ap-
plications, workload types, and the platform configuration.
The bottleneck dynamics and migration pattern among the
database, application, and clustering middleware tiers are
well studied [2], [3], [4].

There are numerous efforts that have addressed the chal-
lenges of managing the (cloud) application performance.
Most of them focus on managing the bottleneck resource
whose type is known or static. Mostly, such work is built on
an extremely detailed understanding of the system. Namely,
each machine in the system is instrumented with monitors
that collect the known type of bottleneck metrics. For
example, [5] introduces a way to provision resources for N-
tier web applications in the Cloud with the assumption that
non-CPU resources are adequately provisioned. Work in [6],
[7], [8], [9] assume that either the CPU or the memory is the
bottleneck. However, the challenge of bottleneck dynamics,
especially in the Cloud, breaks this basic assumption.

Other performance management solutions, such as Azure-
Watch [10], are built up base on dynamically determine the
saturated resources. However, the problem of dynamically
determining the saturated resources, and consequently taking
corrective actions, such as system reconfiguration and/or ad-
mission control, is a complex one. There are several known
solutions to such a problem. One approach is to instrument
the system with monitors which keep track of the utilization
of the various resources and/or other performance metrics
(e.g., end to end response time). If the utilization of a given
resource approaches a predefined saturation threshold, the
associated resource monitor sends a notification through a
monitoring infrastructure, identifying the saturated resource
and its level of saturation. Accordingly, the management
system takes corrective actions based on logic derived from
predetermined rules or analytical models [11], [10]. The
drawback of this technique is that monitoring agents have
to be deployed in the computing system, along with a need
for a scalable monitoring infrastructure. This amounts to
development cost, run-time performance degradation, and
support of various run-time environments. Moreover, it is
skill intensive to define the critical threshold for various
kinds of resources. In a Cloud environment, this problem
becomes even more challenging since the management com-



ponent of a deployed application may only have access
to utilization of virtual resources, without knowledge of
actual congestion on physical resources. Further, specifying
targets on user perceived performance measures, such as
response time, is challenging since, on one hand, it is quite
a task for an administrator to come up with absolute target
values, especially if there is a multitude of different types of
requests, and, on the other hand, the physical environment
of the application may keep changing by the cloud provider
management system, making it difficult to specify reasonable
values for such measures.

Another approach is the development of a model of the
computing system, which may be analytical, operational, or
simulation, in order to identify potential saturated resources
by monitoring the various resources in the model. Such
a model would have to be continually calibrated given
system measurements, such as throughput and response
times. Model calibration involves the estimation of param-
eters in the model through inference/filtering of measured
quantities. In [12], a black-box bottleneck analysis mecha-
nism is demonstrated. However, a baseline test is required,
which may not be practical. Further, it is not applicable for
applications with large variation in service time. Moreover,
approaches of this kind suffer from difficulty in dynamically
calibrating the model so as to mimic the actual computing
system [13].

Meanwhile, workload management has been successfully
dealt with in communication system using the TCP protocol
in limiting congestion due to bandwidth sharing. Given the
amount of available bandwidth and the set of competing
users, even thought none of them is known, TCP rapidly, and
dynamically, stabilizes its rate into a steady, efficient and fair
operating point [14], [15], [16], [17]. Among the available
TCP bottleneck detection approaches, an end-to-end, delay-
based bottleneck detection, which leverages queueing delay
as the congestion measure, has been proposed [18], [19].
This is a preventive approach since delay corresponds to
partially filled buffers [20]. When applying such techniques
to PaaS systems, one may use measures such as end-to-end
average response time, which is the time between sending
an http request and receiving its corresponding response.

Inspired by the flow management conducted by TCP,
we proposed a workload management solution for cloud
applications. We depart from having to (1) specify target,
or threshold, values for performance metrics, and (2) build
a model of the system which ought to dynamically change
as the application environment changes in the Cloud. In
particular, we focus on a workload management solution
which uses admission control as a means for load manage-
ment, and design a self-optimizing workload manager that
is both target-less and model-free. Our solution consists of
two components: (1) a bottleneck analyzer which captures
resource saturation at runtime, and (2) a binary controller
which regulates the load admission rate to the application.

The paper makes two major contributions. First, we present
evidences suggesting that the knee of the response time
curve is the best operating point for platforms that host web
applications. Second, in order to evaluate the performance
of the proposed workload manager, we conduct a set of
rigorous experiments in the presence of heterogeneous and
dynamic environments where flows join and depart asyn-
chronously. The experiments are conducted in a commer-
cially available PaaS, using the RUBiS (Rice University Bid-
ding System) [21] e-commerce web application benchmark.
The preliminary experimental results illustrate throughput,
fairness, stability, and responsiveness of our solution.

The remainder of the paper is organized as follows. In
Section II, we provide background of the platform infras-
tructure, as well as the admission control which we apply
during runtime. The relationship between throughput and
response time is explored in Section III and our solution
in analyzing resource saturation is proposed. Section IV
presents the binary controller design and is evaluated in
Section V. Section VI concludes the paper and discusses
future work.

II. BACKGROUND

A. System Overview

A typical offering in enterprise-level cloud environments
is virtual application [22], which is a collection of applica-
tion components, behavioral policies, and their links. The
virtual application being offered could be of various kinds.
As shown in Figure 1, virtual application 1 is a multi-
tier enterprise application (e.g., a typical RUBiS benchmark
application, or a business intelligence application cluster
which consumes data stored in a Relational Database Man-
agement System (RDMS)). It is composed of application
server, database server and the database JDBC connectivity.
Virtual application n is a single-tier application which is
composed of the application server tier. There is a elastic
load balancing service (ELB) [23], which is in charge of
dispatching client requests to each of the virtual applications,
placed at the entry point of the cloud platform.

Admission Control (AC) is one of the potential actions of
the runtime management system in attempting to maintain a
good performance for virtual applications. It is accomplished
by throttling the workload at the entry of the cloud platform.
The target is to make sure that the admitted requests will
not saturate any potential bottleneck resource. Admission
control may be applied in cases where the saturated resource
is unknown due to bottleneck dynamics, or the saturated
resource has reached its provisioned threshold limit, or
the saturated resource is not scalable, for example, a low
configuration of thread pool size.

The AC, which is consumable through service manage-
ment API, is provided by ELB. Control is managed at the
granularity of a virtual application. As depicted in Figure 1,
after reception by the proxy, requests are classified into one



Figure 1. Platform architecture.

of many different flows. We define a flow as the set of
requests which belong to the same virtual application and
the same service class. The AC is implemented as a rate
limiter. It notes the flow of both requests and responses, and
allows at most R admitted requests per second. This is done
at the session, rather than at the request level. In other words,
new sessions may be rejected until the specified R req/sec
is achieved. If a session is rejected, its session-initiating
request is rejected with a 503 response code. There exists
one load balancer per each virtual application. Admitted
requests are balanced using a weighted round-robin scheme
over the back-end servers. The focus of our work is on the
dynamic setting of R, in order not to overload or underutilize
the available resources for the virtual application.

Each AC possesses its own individual black-box workload
manager, which is in charge of setting R through the service
management API. Figure 1 illustrates the system architecture
for the black-box workload manager. Such an architecture
is easy to scale since the controllers work independently of
each other. In contrast to some feedback controller designs,
this controller operates without any predefined target. In
practice, such a target would be hard to set due to bottleneck
dynamics. The fed-back measures from the system under
control are: ”Throughput”, which is the rate of successful
requests, and ”Response Time”, which is the time between
sending a request and receiving a response. These two
metrics are typically obtained through the Monitoring APIs,
which are provided either by ELB or the monitoring service.
Based on the response time and the throughput variations,
the state detection module makes a binary congestion de-
cision. According to the congestion decision, the binary

controller adjusts the admission rate by setting R. We provide
the details of the state detection module and the binary
controller in Section III and Section IV, respectively. We
use a fixed control cycle of 120 seconds. It is worthwhile to
do further investigation on how the state detection together
with the controller behavior are affected by the length of the
control cycle. This is a topic for future research.

B. Experimental Setup

A multi-tier virtual application, that is composed of en-
terprise application and database, is considered. Our testbed
utilizes an IBM commercially available PaaS, which pro-
vides two Virtual Machines (VM) for ELB, one VM for the
application server node, with one application server instance
being deployed. We use MySQL as the database server,
which is deployed in the 3rd VM. Note that the number of
the middleware instances and VMs won’t impact the design
of the flow controller. The solution being investigated is
applicable for virtual application that is hosted by server
cluster.

RUBiS [21], which is an auction site prototype modeled
after eBay.com, is employed as the application benchmark.
The core functionality of an auction site such as selling,
browsing, and bidding are implemented. The types of the
next request generated by the virtual clients are defined
by a state transition matrix that specifies the probability
to go from one interaction to another. In our experiment,
the default transition table which includes the workloads
with read/write interaction mixes is used. Each session is
closed loop. That is, a request is generated after receiving the
response from the previous request. But the session creation
is open loop. The new sessions are created independently of
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Figure 2. Throughput and response time: reach the bottleneck by slowly
ramping up the offered load.

the system’s ability to handle them. Load that is offered to
the system is adjusted through adjusting the creation pattern
for the new session.

III. BLACK BOX BOTTLENECK ANALYSIS

In this section, we present the design of the state detection
module. Two black box techniques are considered. Both
of them can analyze bottlenecks without having monitors
deployed in the system. The latter is the one adopted by
the workload manager. From the external measurements
provided through the monitoring APIs, the first approach
attempts to build a pre-defined model of the system, typically
a queueing model, by dynamically estimating the parameters
of the model. The second approach, which is model-free,
works directly with the measurements and derives opera-
tional quantities relating the various measures.

A. Bottleneck identification of the experimental system by
WAIT

In order to assess the goodness of the techniques to be
presented, we first offline identify the bottleneck in the
application using a white-box based root cause analysis tool
named WAIT [25]. We slowly ramp up the load until a
resource bottleneck is reached. WAIT is enabled on the WAS
node, with a three-minute sampling interval. Enterprise-
class multi-tier applications often suffer from performance
problems that manifest as idle time, which is indicated by a
lack of forward motion [25]. WAIT is good at revealing the
root cause of performance issue by detecting the root cause
of idle time in a Java tier.

In Figure 2 we present Throughput and Response time
measurements of workload type for which the offered load
is ramped up in a step function fashion. They are measured
with a 5-second sampling interval. When the load is light,
there is no congestion and hence the response time is just
the service time needed to process the request. As the
load increases, congestion starts to occur and the response
time begins to increase. During this phase the knee of this
relationship occurs. Finally, in an overload situation, the
bottleneck resource limits the throughput of the system and
the response time keeps increasing due to a queue buildup
for the bottleneck resource.

The WAIT report for WAS is depicted in Figure 3(a).
The Waiting Threads timeline shows a sudden and sustained
surge of Lock Contention started at 9:39:41, which is the
time when the system started to saturate and the bottleneck
queue started to build up. The throughput is around 30
req/sec at this time. The lock contention becomes more
and more significant after 9:52:23. While at this point,
the throughput reached about 40 req/sec. The Stack Viewer
in Figure 3(b) suggests that lock contention comes from
lacking of WAS to database connections, which may be
caused by a misconfigration of the connection pool or
the bottleneck issue coming from the database tier. The
measurement from WAIT indicates that the best operating
point for the experimental systems is between 30 req/sec and
40 req/sec.

B. Model-based technique: Black-box modeling

Building a queueing model of the system is a quite
natural approach to addressing resource bottleneck. After all,
modeling resource congestion through a queue and server
combination is rather straightforward. The server with the
highest utilization corresponds to the most likely bottleneck
resource. However, this approaches requires knowledge of
the resources in the system, their capacities and usage, their
allocation and scheduling, as well as the flow of work within
the system. A queuing model reflecting the dynamics of
the system may consist of a large set of interconnected
severs and queues, forming a queueing network. Depending
on the complexity of the model, it is solved analytically,
numerically, or by simulation. The challenge, after devel-
oping such a queueing network model, is to determine the
parameters of the model, namely the service times of the
servers. A large number of research work dealt exactly with
the issue of model parameter estimation. In this paper we
focused on a simple queueing model which consists of a
single server, representing the bottleneck resource, and a
delay, representing the collection of all other resources in
the system [13]. The model has been used in a control
loop to manage enterprise systems [26]. As such it is an
open system, and it has only two parameters to estimate.
However, many computing systems exhibit a closed system
behavior, where a finite number of users alternate between
submitting work, through requests, and waiting for results,
through responses. This closed model is also known as a
central server model or machine repairmen model. For such
closed models, two more parameters are needed: the number
of users, also known as population size, and the time to
generate a request, known as think time. Hence, a closed
model has four parameters to estimate. Given external mea-
surements of throughput and response time, the parameter
estimation process typically involves a tracking filter which
minimizes the discrepancy between model-based measures
and actual measurements, and appropriately adjusting the
values of the parameters [13].



(a) Waiting threads.

(b) Stack viewer for lock contention.

Figure 3. Root cause analysis: WAIT report for WAS.

0

600

1200

1800

2400

3000

3600

4200

4800

8:52:48.48 9:07:12.12 9:21:36.36 9:36:00.00 9:50:24.24 10:04:48.48 10:19:12.12 10:33:36.36 10:48:00.00
Time

R
e
s
p
o
n
s
e
 t
im
e
 (
m
s
)

0

0.2

0.4

0.6

0.8

1

1.2

B
o
tt
le
n
e
c
k
 u
ti
li
z
a
ti
o
n

Response time Estimated utilization

Figure 4. Model based: Estimate the bottleneck utilization.

We used the measurements of the above experiment to
dynamically build the simple queueing model described
above and estimate its parameters. The model is then used
to obtain measures such as server utilization. The higher
the server utilization the more likely a bottleneck condition
occurred. The Throughput and Response time in Figure 2
are chosen as the input for the model, in order to well train
the model with data that contain the most information. The
results of the model building and estimation is illustrated
in Figure 4. A slowly increase of the bottleneck resource
utilization is expected due to the slowly ramp up of the
offerload. However, the estimated utilization of the server,
which corresponds to the bottleneck resource, initially in-
creases to about 20% then decreases to less than 10%, but
then eventually, and suddenly, reaches 100%. This indicates
a failure in the parameter estimation process. The reason for
this misbehavior is that the scales of the service time of the
bottleneck resource (server) and all other resources (delay)
are order of magnitudes apart. Further, there is a degree of
freedom between the choice of values for the population size
and think time as noted in [13]. Therefore, we concluded that
this approach is not robust enough, as employed, to tackle
generally unknown and unpredictable system enviromemts.

C. Model-free technique: Black-box operational

In lieu of building a model for the system under con-
sideration, this approach builds on simple operational rela-

tionships among the external measurements of the black-box
system. Further discussion on model-based and model-free
approaches may be found in [20]. We filter the measure-
ments in Figure 2 by averaging the samples with a sliding
window of size 24 and lag 24. That is an interval of 120
seconds, which is just the control cycle, being introduced
to each filtering output. The results are named Average
throughput and Average response time respectively. Dividing
the first by the second leads to a well-known measure called
Power [27]. (In general, one of the two measures may be
raised to a power.) Maximizing the value of Power, as an
objective, leads to an operating point where throughput is
high while the response time is small. For the experiment
described above we plot the value of Power in Figure 5.
Above it and along the same timeline we show the number
of waiting threads. By comparing the progress of the two
measures, one notes that Power reaches its limit at the point
that roughly corresponds to the knee of the response time
- throughput curve, then gradually decreases as the number
of waiting threads increases. At that point the bottleneck
situation intensifies since the thread queue starts to build
up. This suggests that identifying the best operating point of
the system can be done through detecting the point where
Power is maximum.

When the offered load keeps increasing, only if a decrease
in Power is detected, can we claim that the system starts to
saturate. In order to detect a decrease in Power, we define
the ratio of Power as

ratio
k

=
powerk

maxPowerk
, (1)

where powerk is the Power during cycle k and
maxPowerk is the maximum of Power up to and including
cycle k. Once ratio

k
becomes lower than a predefined

RatioThreshold, which is 1 theoretically, we consider
the system to be not well utilized, either because of un-
der utilization or over utilization. Another metric named
bestRespT imek, defined as the average response time



Figure 5. The knee of response time curve matches the system bottleneck.

Algorithm 1 Congestion detection per each control cycle

Inputs
averageRespT ime:Average response time between the
sampling interval,
averageThroughput:Average throughput between the
sampling interval.
Algorithm
1 : power = averageRespT ime/averageThroughput
2 : if power > maxPower then
3 : maxPower = power
4 : bestRespT ime = averageRespT ime
5 : end if
6 : ratio = power/maxPower
7 : oFactor = 0
8 : if ratio < RatioThreshold &
9 : averageRespT ime > bestRespT ime then
10: oFactor = 1
11: end if

(averageRespT imek) when maxPowerk is achieved, is
introduced. bestRespT imek could be considered as the best
expected average response time for that specific application.
It could also be considered as a criterion to distinguish
between underload and overload, given ratio

k
is below

RatioThreshold.
Following the above discussion, we introduce a heuristic

algorithm, outlined in Algorithm 1, which determines the
state of the system under control, periodically. The result
is binary, with either oFactork = 0 as underload, or
oFactork = 1 indicating that some of the resources are
saturated.

A RatioThreshold of 0.9 is chosen in case of false
positive detection in order to accommodate for the noise
of measurements. We note from Figure 5 that the knee of
the response time - throughput curve, should be detected at
around 9:48:43 – 9 minutes after the first lock contention
which is detected by WAIT and 4 minutes before the
lock contention became significant. Thus, the Black-box
operational approach seems effective in detecting/predicting
the potential resource saturation without detailed knowledge
of the resource bottleneck. In the next section we describe
our control law which reacts to the congestion feedback. It is
an optimal controller, in the sense that it attempts to estimate

the value of Power and manages to keep the system at the
maximum of Power.

IV. CONTROLLER DESIGN

In this section, we present the design of our binary feed-
back controller for black-box workload management. We
choose the additive increase/multiplicative-decrease (AIMD)
algorithm [19], [28], which is a feedback control algorithm
best known for its use in TCP Congestion Avoidance, as
our binary controller due to its simplicity and robustness.
This section focuses on applying the binary feedback con-
trol methodology in dealing with bottleneck dynamics in
middleware. In this regard, we elaborate on our experience
in evaluating the controller, which is especially important
in managing the workload, both in this and the following
sections.

The AIMD algorithm operates according to the following
control law

rk =





rk−1 + iFactor if oFactor == 0,

rk−1/dFactor if oFactor == 1,

(2)

where rk is the current admission rate during cycle k and
rk−1 is the sending rate for the previous control cycle.
AIMD has two phases: the increment phase which increase
the admission rate additively through the increase factor
iFactor and the decrement phase which decrease the ad-
mission rate multiplicatively through the decrease factor
dFactor.

Usually, fairness and convergence are two major criteria
for measuring a controller’s performance. fairness is always
used to determine whether users or application are receiving
a fair share of system resources. In this paper, we assume
that there is no service differentiation among flows that share
the same platform. So fairness, in our case, means that flows
that share the same resource bottleneck should converge to
the same admission rate. convergence is a combination of
responsiveness, which is the speed with which the goal state
from any starting state is reached, and smoothness, which is
the magnitude of the oscillations around the optimal state.



Given the binary nature of the feedback, the controller does
not generally converge to a single steady state [19]. However,
we would expect a controller with good convergence should
have small responsiveness and less oscillation.

The choice of iFactor and dFactor, must be set to
take the desired control performance into consideration.
An experimental research is done to reveal how fairness
and convergence are effected by the choice of iFactor
and dFactor. We conducted a simple numerical simulation
where we simulated three flows that share the same (band-
width) bottleneck. Each flow has its own individual AIMD
controller that reacts to the indication of congestion. The
maximum bandwidth is assumed to be 50 req/sec. That is
to say, given that the sum of the three flow rates is larger
than the maximum bandwidth, each flow will be marked as
congested and their AIMD controller will start multiplicative
decreasing the request rate. Otherwise, the rate will be
increased additively. Based on this simulation experiment,
four tests are performed with different configurations for the
increase factor, decrease factor, and the initial admission
rate. The configuration for the tests are outlined by Table I.
Figure 6 plots the flow rates for all three flows in all tests.
Test 1 is done with three flows using the same increase
factor and decrease factor, but with different initial request
rates and times when flows start to join the system. Accord-
ing to Figure 6(a), each flow finally converged to around 17
req/sec. Moreover, an equal share of the bandwidth is found
since all the flows finally synchronized. Test 1 reveals that
the convergence and the fairness of AIMD are oblivious to
the initial rate and the starting time. Test 2 describes another
three flows that are different from either the increase factor
or the decrease factor. As shown in Figure 6(b), even though
convergence is reached for each flow, all the flows ended
up with an unfair share of the bandwidth. The comparison
between Test 1 and Test 2 reveals that in order to gain a fair
share, all the flows need to share the same increase factor
and decrease factor. Test 3 and Test 4 are tests with either
a larger increase factor or a larger decrease factor, when
compared to Test 1. Heavier oscillation but faster speed
to reaching steady state are observed in Figure 6(c) and
Figure 6(d). The comparison between Test 1, Test 3 and Test
4 indicates the trend in convergence. Given the simulation
results, we decided to choose 2 and 1.1 as the increase factor
and decrease factor, respectively, and move on to the real
system verifications.

V. RESULTS

In this section we present results from three real-world
experiments that explore the major objectives of the black-
box workload management: capturing the best operation
point without the detail knowledge of bottleneck, given the
workload dynamics. A sine wave arrival workload type,
which is created by varying the number of concurrent users
in the load driver, is employed. As illustrated in Figure 7, the
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Figure 7. Sine wave arrival: Throughput and response time without control.

workload keeps varying over time. The response time graph
in Figure 7 demonstrates that the system keeps oscillating
between underload and overload. Requests that are generated
by the same load driver are classified into the same flow.
The first scenario is a single flow experiment. The system
resources are consumed by one flow without any competition
or background consumption by others. The second scenario
has two in-phase flows that compete for the same system
resources. Each flow is regulated by its individual workload
manager without any awareness of the other. In the middle
of the experiment, one of the flows leaves the system.
This experiment is designed to evaluate the fairness and
the adaptability of the controller. The third scenario is
quite challenging. Two out-of-phase flows are generated to
compete for the same system resources. The robustness of
the controller is further evaluated under different workload
types. As revealed by the WAIT report in Section III, the best
operating point for our experimental system is between 30
req/sec and 40 req/sec. The performance of the controllers
are evaluated by whether the best operating point is well
tracked with little throughput and response time oscillation.

A. Scenario 1: Single Flow

In this scenario, the system resources are consumed by a
single flow, with one black-box workload manager operating
during the whole run. The ”Admission rate” in Figure 8
shows the max admission rate regulated by the controller.
It only applies to the session-initiating request. Throughput
and response time are shown respectively. Even though the
controller has little knowledge about the bottleneck, the
throughput is able to quickly converge at around 32 req/sec
during every ramp up and down cycle, except when the
request arrival rate is too low to reach the max admission
rate. Very little oscillation exists in the throughput as well as
the response time curve, except the time when the workload
started to ramp up. Considering the binary nature of the
bottleneck indicator (oFactor) and the dynamics of both
the workload rate and the workload type, the size of the
oscillation is considered to be small.

B. Scenario 2: Two In-Phase Flows

In this scenario, we introduce two in-phase flows that
compete for the same system resource. Two RUBiS load
drivers are employed to generate the workload type of
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Figure 6. The impact of the iFactor and the dFactor on controller behavior

Table I
AIMD PARAMETERS.

Test Test 1 Test 2
Flow Flow 1 Flow 2 Flow 3 Flow 1 Flow 2 Flow 3
Increase Factor 2 2 2 2 4 2
Decrease Factor 1.1 1.1 1.1 1.1 1.1 2
Init Rate(req/sec) 10 14 5 10 14 5
Test Test 3 Test 4

Flow Flow 1 Flow 2 Flow 3 Flow 1 Flow 2 Flow 3
Increase Factor 6 6 6 2 2 2
Decrease Factor 1.1 1.1 1.1 2 2 2
Init Rate(req/sec) 10 14 5 10 14 5
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Figure 8. Single flow: Throughput and response time under control.

sine wave arrivals. The two sine waves are in-phase, i.e.
they synchronously ramp up and down. By comparing with
Scenario 1, the speed to overload the system is much
faster. Another challenge for Scenario 2 is that each flow is
regulated by its individual workload manager, without any
awareness of the other. The congestion indication is carried
out by the response time, which is shared by the two flows.

As there is no service differentiation between the two
flows, it is expected that the system resources be equally
divided among them. Jain’s fairness index is used to deter-
mine whether the two flows are receiving a fair share of

system resources. It is given by

f(x1 , x2, ..., xn) =
(
∑n

i=1 x
i
)2

n
∑n

i=1 x
2
i

(3)

where n is the number of flows and xi is the throughput for
the ith flow. The value of f(x1 , x2, ..., xn) ranges from 1

n ,
which is the worst case, to 1, which is the best case. It is
maximized when all flows share the same throughput [27].

The max admission rate regulated by each of the controller
and the throughput for each flow are plotted in Figure 9(a),
respectively. Moreover, only the response time for flow 2
is shown in Figure 9(a). Flow 1 share the same response
time with flow 2, since both flows have similar request types
and share the same system resources. Flow 1 and Flow 2
synchronously ramp up and down from the beginning of the
experiment. At this time, the sum of the admission rates
oscillates between 27 req/sec and 36 req/sec during the
steady state for each ramp up and down cycle, which is
actually a good convergence given the bottleneck dynamics
that are being introduced by the other controller. Eighty
minutes after the test started, flow 1 leaves the system. The
state detector for flow 2 is able to detect the change of
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Figure 9. Two flow in phase

the bottleneck and consequently takes action by ramping up
the admission rate to reach another higher operating point.
During the last two ramp up and down cycles, flow 2 finally
converges to around 32 req/sec with little oscillation.

Fairness is calculated by equation 3 and is plotted in
Figure 9(b) together with the throughput for each flow. At
the time when both flows coexist, fairness fell below 1 at
times. However, that is just the time when the arrival rate
started to ramp up. After that, a quick converge to 1 is
observed which indicates a good fair share of the bottleneck
resources.

C. Scenario 3: Two Out-of-Phase Flows

In this scenario, two flows opposite in phase, which is
the most complex and dynamic workload, are introduced.
Similar to Scenario 2, each flow has its individual, au-
tonomous workload manager. The variability of this mixed
workload imposes big challenges for detecting the system
bottleneck, together with shaping the workload. As shown
in Figure 10(a), every ramp up of either flow easily breaks
the steady state of the controller. This leads to a transient
spike in both throughput and response time. However, both
of the controllers are able to regulate the max admission rate
at around 20 req/sec, with the sum of the max admission rate
at around 40 req/sec. Although the sum of the max admission
rate finally converged to the point which is a little bit higher
than the best system operating point, it is encouraging to
see a good steady state being maintained by each controller.
Moreover, the fairness plotted by Figure 10(b) indicates that
a fairness of 1 is maintained except at times when one of
the flows could not drive enough workload to compete for
the resources.
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Figure 10. Two flow opposite phase

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have implemented and validated a self-
optimizing, delay-based, black-box workload management
solution for cloud applications. Specifically, the workload
manager is both target-less and model-free, hence it does
not need much configuration nor continual model adjustment
to match Cloud dynamics. A black-box bottleneck analysis
mechanism that is built on simple operational relationships
among the external measurements of the black-box system,
is introduced to identify an optimal point where the system
should operate. The output of the bottleneck analysis drives
the controller behavior in order to react to the highly
dynamic workload in a Cloud environment. The black-box
workload management solution built up on a commercially
available PaaS. It is evaluated under a variety of workloads
with time-varying throughput and background bottleneck
consumption. Our experimental results show that the black-
box workload manager reacts to various workload changes,
selecting optimal or close to optimal session-initiating re-
quest rate limits. Moreover, a fairness share of the bottleneck
between two individual manager is also demonstrated. Such
solution is easy to scale since multiple controllers work
independently of each other.

We believe that this is the first time that the flow manage-
ment in TCP is employed in cloud application performance
management. Further work is needed to verify the robust-
ness of the controller given the bottleneck shifting among
tiers. Further, the error or exception response is another
kind of feedback that indicates congestion. Considering the
abnormal response is a good enhancement for the black-box
bottleneck analysis. Considering the service differentiation,
the utility function needs to be involved in designing the
increase factor and the decrease factor. Finally, we do



foresee a promising combination between the black-box
based bottleneck analysis and the white-box based analysis.
The black-box based approach is considered as a health
detector which is in charge of selecting the application with
potential performance bottleneck. The white-box based root
cause analysis tool could be used to find the root case with
the least performance overhead. The amount of data to be
analyzed is dramatically decreased this way.
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