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Abstract

Unified Parallel C (UPC) has been proposed as a parallel programming language for
improving user productivity. Recently IBM released a prototype UPC compiler for the
PERCS (Power 775 [35]) architecture. In this paper we analyze the performance of the
compiler and the platform using various UPC applications. The Power 775 is one of
IBM’s latest generation of supercomputers. It has a hierarchical organization consisting of
simultaneous multithreading (SMT) within a core, multiple cores per processor,multiple
processors per node (SMP), and multiple SMPs per cluster. A low latency/high bandwidth
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network with specialized accelerators is used to interconnect the SMP nodes (also called
octants).

In this paper we discuss how XL UPC takes advantage of the hardware features avail-
able on this machine to provide scalable performance when using up to 32k cores. We
analyze several benchmarks discussing the performance, describe limitations of some of
the features of the language and computation paterns and discuss software and runtime
solutions designed to address these limitations.

1 Introduction

The IBM XL Unified Parallel C compiler is an implementation of the Unified Parallel C lan-
guage, Version 1.2, supporting IBM Power Systems (POWER7) servers running Linux. The
XL Unified Parallel C compiler builds on the strength of the IBMXL compiler family and con-
tains a run-time system designed to provide scalability on large clusters of Power Systems, and
exploit the capabilities of the IBM Parallel Active Message Interface (PAMI) communication
library.

In this paper we describe the main optimizations employed byXL UPC to provide scal-
able parallel application performance on the P775 supercomputer architecture. We discuss
optimizations we performed in the compiler (High-Level Optimizer), the runtime, and user
applications, and evaluate the performance of various benchmarks that benefit from all these
optimizations. The experiments we consider cover multiplepatterns that users may already
employ in their applications and for most of them we show expected performance using the
language and how to avoid some common pitfalls related to thePGAS programming model.
The data gathered in the experiments included in this paper will help XL UPC users better
reason about the performance of their own individual applications.

The rest of the paper is organized as follows. In Section 2 we give an overview of the P775
architecture including some of the key network and processor parameters such as bandwidth
and FLOPS. Section 3 contains an overview of the XL UPC compiler and the main UPC
specific high level optimizations. Section 4 describe the XLUPC runtime system and novel
optimizations we employed to better exploit the P775 architecture. Starting with Section 5
we evaluate the performance of various benchmarks and applications and describe scalability
challenges and possible solutions.

2 IBM Power 775 Overview

The P775 [35] system employs a hierarchical design allowinghighly scalable deployments of
up to 512K processor cores. The basic compute node of the P775consists of four Power7
(P7) [38] CPUs and a HUB chip, all managed by a single OS instance. The HUB provides the
network connectivity between the four P7 CPUs participatingin the cache coherence protocol.
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Additionally the HUB acts as a switch supporting communication with other HUBs in the sys-
tem. There is no additional communication hardware presentin the system (no switches). Each
P7 CPU has 8 cores and each core can run four hardware threads (SMT), leading to compute
nodes (octants) of 32 cores, 128 threads, and up to 512GB memory. The peak performance of
a compute node is 0.98 Tflops/sec.

A large P775 system is organized, at a higher level, indrawersconsisting of 8 octants (256
cores) connected in an all-to-all fashion for a total of 7.86Tflops/s.

The links between any two nodes of a drawer are referred to asLlocal links with a peak
bandwidth of 24 Gbytes/s in each direction. Asupernodeconsists of four drawers (1024 cores,
31.4flops/s). Within a supernode each pair of octants is connected with anLremote link with
5 Gbytes/s in each direction. A full P775 system may contain up to 512 super nodes (524288
cores) with a peak performance of 16 Pflops/s. Between each pair of supernodes multiple opti-
cal D-links are used, each D-link having a peak performance of 10 Gbytes/s in each direction.
The whole machine thus has a partial all-to-all topology where any two compute nodes are
at most three hops away. Additional hardware description and key parameters are included
elsewhere [23, 38, 4, 35].

3 IBM XL UPC compiler

The major components of the XL UPC compiler are depicted in Figure 1. These include
the front end, high-level optimizer and low-level optimizer, and the PGAS runtime, which
leverages the IBM Parallel Active Message Library (PAMI [2]).

The compiler front end tokenizes and parses UPC source code,performs syntactic and se-
mantic analysis, and diagnoses violations of the Unified Parallel C (v 1.2) language rules. It
then generates an intermediate language representation (IR) of the UPC program, augmented
with UPC specific artifacts such as the layout of shared arrays, and the affinity expression of a
upc forall loop, for example. The augmented intermediate representation (W-Code + UPC
artifacts) is consumed by the high-level optimizer, or TPO (Toronto Portable Optimizer). The
high-level optimizer component has been extended to perform UPC specific optimizations; it
also performs a subset of the traditional control-flow, data-flow and loop optimizations de-
signed for the C language on UPC source code.

The high-level optimizer interfaces with the PGAS runtime through an internal API that is
used to translate operations on shared objects such as dereferencing (reading/writing) a pointer
to a shared object (such as a shared array for example) and performing pointer arithmetic op-
erations. Finally, the high-level optimizer produces a modified version of the IR (Optimized
Wcode) that lacks UPC-specific artifacts (operations on UPC artifacts are either translated to
PGAS runtime calls or resolved to the base IR through optimizations). The IR produced by
the high-level optimizer is consumed by the low-level optimizer (TOBEY), which performs
further optimizations that are UPC unaware. After optimizing the low level IR, TOBEY gen-
erates machine code for the target architecture (POWER 7). This process is repeated for each
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Figure 1: IBM XL UPC Compiler.

compilation unit. To complete the compilation process, theXL UPC compiler invokes the
system linker, which links compiler-generated objects andany required libraries (such as the
PGAS runtime library) to form an executable.

In this section we discuss the main high level optimizationsthat are UPC specific. All
experimental results included in Section 5 employ these optimizations apropriately.

3.1 Shared object access optimizations

The XL UPC compiler implements a set of performance optimizations on shared array ac-
cesses. The compiler can partition shared array accesses performed in aupc forall work-
sharing loop into two categories: shared local accesses (accesses that have affinity with the
issuing thread) and shared remote accesses. Shared array accesses that are proven to have
affinity with the issuing thread are optimized by the compiler in such a way as to eliminate un-
necessary runtime calls. Shared array accesses that are remote (have affinity to another thread)
can be coalesced by the compiler to reduce the communicationtime required to perform them.

3.2 Shared object access privatization

In general the XL UPC compiler translates accesses to sharedarrays by generating an appro-
priate set of runtime function calls. In the context of aupc forall loop the compiler can
often prove that the memory read and/or written during an array access operation resides in
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the local address space of the accessing thread; in such cases the compiler generates code that
performs the indexing (pointer arithmetic) operations required to access the shared array di-
rectly. To do so the compiler retrieves the address of the shared array partition in the local
address space (the private address space of the accessing thread) via a runtime function call. It
then schedules the runtime call outside theupc forall loop nest containing the shared array
access being translated. This is legal because the local shared array address is loop invariant.
Finally the compiler uses the local array address to index the appropriate shared array element,
doing any pointer arithmetic operations that are necessarylocally.

3.3 Shared object access coalescing

In general the XL UPC compiler translates a remote shared array access by generating a call
to the appropriate runtime function. For example, reading from (or writing to) multiple shared
array elements that have affinity to the same remote thread causes the compiler to generate a
runtime call for each of the array elements read. In the context of a upc forall loop nest
the compiler can often determine that several array elements are read from the same remote
partition. When that is the case the compiler combines the read operations and generates a
single call to the runtime system to retrieve the necessary elements together, thus reducing
the number of communication messages between the accessingthread and the thread that has
affinity with the remote array partition.

3.4 Shared object remote updating

This optimization targets read-modify-write operations on a shared array element. To translate
a read operation followed by a write operation on the same shared array element the compiler
would normally generate two runtime calls: one to retrieve the shared array element and one to
write the modified value back. When the compiler can prove thatthe array elements being read
and written have the same index, it can generate a single runtime call to instruct the runtime
system to perform the update operation on the thread that hasaffinity with the array elements
accessed. This optimization reduces the number of calls required to translate the read-modify-
write pattern from two to one, therefore reducing the communication requirement associated
with the operation. On the P775 architecture this compiler optimization also allows the PGAS
runtime to generate RDMA messages as we will see in Section 4.

3.5 Array idiom recognition

Unified Parallel C programs often include loops that simply copy all elements of a shared
array into a local array, or vice versa, or loops used to set all elements of a shared array with an
initial value. The XL UPC compiler is able to detect these common initialization idioms and
substitute the fine grained communication in such loops withcoarser grained communication.
The compiler achieves this goal by replacing the individualshared array accesses with calls to
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one of the UPC string handling functions:upc memget, upc memset, upc memcpy, or
upc memput.

3.6 Parallel loop optimizations

The XL UPC compiler implements a set of optimizations that remove the overhead associated
with the evaluation of the affinity expression in aupc forall loop. The affinity expression
in aupc forall loop could be naively translated by using a branch to controlthe execution
of the loop body. For example an integer affinity expression ”i” could be translated by inserting
the conditional expression(i == MYTHREAD) around theupc forall loop body. The
compiler instead translates theupc forall loop into a for loop (or a for loop nest) using a
strip-mining transformation technique that avoids the insertion of the affinity branch altogether,
and therefore removes a major obstacle to the parallel scalability of the loop.

4 XL UPC runtime

The XL UPC runtime is the component responsible for orchestrating data transfer between
UPC threads, managing shared memory allocation and deallocation, and implementing syn-
chronization primitives, collective operations and remote atomic operations. The runtime relies
exclusively on the IBM PAMI [2, 42] library for all its communication needs, similar to other
IBM middleware such as MPI[31], OpenShmem and X10[6]. We describe in this section how
the runtime system takes advantage of the P775 specific architecture features to provide good
performance.

4.1 Memory Management

One important feature of the P775 architecture is the availability of multiple modes of data
transfer, including optimized short message transfers (SHORT), arbitrary size messages (FIFO)
and Remote Direct Memory Access (RDMA). SHORT data transfers are used for message
sizes up to 128 bytes. FIFO data transfers are used for messages larger than 128 bytes. In the
RDMAmode a process can read or write data on a remote compute node without involving its
CPU. On top of these hardware transfer modes PAMI provides short active messages, active
messages with large data transfers and RDMA transfers. While the user doesn’t need to know
the effective remote address for active messages, active message performance is often slower
than RDMA due to CPU involvement on the remote side. In the RDMA mode the data trans-
fer is fast but it requires the thread initiating the transfer to know the remote memory address
where data will be read or written.

In this section we describe the XL UPC memory allocator designed to facilitate data ex-
changes using RDMA. The two key constraints for an efficient RDMA operation on P775 are
the following:
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• a thread invoking such an operation needs to know both the local and remote virtual
memory address

• memory involved in RDMA data exchanges needs to be registeredwith the operating
system, and this can be achieved with a special registrationcall available in the PAMI
library.

While the complete details about the memory allocator are outside the scope of this paper,
here we include the key design decisions. First we distinguish in UPC two types of memory
allocations:local memoryallocations performed using malloc and which are currentlyoutside
of the tracking capability of the runtime, andshared memoryallocated using UPC specific
constructs such asupc all alloc() , upc alloc() andupc global alloc() .

Within the UPC specific family of allocation functions, the runtime currently employs a
set of optimizations to help both with remote memory addressinference for RDMA operations
and with memory registration. First, shared arrays allocated usingupc all alloc() are
allocated symmetrically at the same virtual memory addresson all locations and automati-
cally registered for RDMA operations. For this the XL UPC allocator creates a reserved area
in the virtual address space of each process called the symmetric partition. The starting vir-
tual address of each symmetric partition, called the origin, is identical across all threads and
distributed shared arrays are then stored in blocks of memory isomorphically located in each
symmetric partition. The READ and WRITE operations on elementsof a shared array allo-
cated withupc all alloc , therefore, know the virtual address in the remote locations. This
enables RDMA operations, which do not interrupt the remote process and are accelerated in
P775 network hardware. Shared memory allocated using theupc global alloc primitive
is handled in a similar fashion.

Using upc alloc the user can declare shared arrays allocated in one thread’saddress
space. In this situation, other threads can only obtain references to these arrays using another
explicit data exchange. If such a reference is obtained, a remote thread can perform RDMA
reads or writes to the data of the shared array. In the currentXL UPC implementation however
the memory allocated usingupc alloc is not registered with PAMI.

Another case for which we don’t currently have a scalable solution is the situation where
memory accessed byupc memput or upc memget are from arrays explicitly allocated with
systemmalloc . For aupc memput for example, the destination must always be a shared
memory array, while the source can actually be from an array allocated withmalloc . In this
situation RDMA operations won’t be efficiently exploited unless the user explicitly performs a
PAMI or runtime call to register the memory employed in transfer. Similar to theupc alloc
memory allocated with systemmalloc must be register explicitly by the user using PAMI
calls.
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4.2 Point to point data transfers

Point to point data transfers are employed by UPC whenever a remote array index is accessed
or wheneverupc memput/upc memget are invoked. As introduced in the previous section,
the underlying network supports three modes of data transfer, which are referred to as active
messages with short and large data and RDMA. All three modes are exploited by the XL UPC
runtime system. In the current pre release version RDMA must be explictly requested by the
user using-xlpgashfiupdate runtime flag.

In this section we describe how we enforce the ordering constraints imposed by the UPC
memory consistency model. The underlying P775 interconnect and PAMI library do not pre-
serve the order of messages between a source and destinationprocess. For this reason, when
mapping UPC constructs to PAMI primitives, we currently explicitly wait for a message to be
remotely delivered before sending the next message tothe same destination. However we can
send a message to a different destination without waiting for the acknowledgment of messages
on previous destinations. This was an important design decision we had to employ in order to
satisfy consistency of memory reads and writes in UPC. While inprinciple this can be seen
as a performance bottleneck, in practice this decision did not affect the performance of most
benchmarks we evaluated. This is because often the threads send to different destinations be-
fore sending again to a particular one. On a fast architecture like P775 the amount of time
between sends to the same destination from the current threads is often long enough that the
acknowledgment is already received.

The above implementation for point to point data transfers simplifies the complicated UPC
fence mechanism, because now the information on when memoryaccesses from a thread are
completed is always locally available.

4.3 Atomic Operations

The XL Unified Parallel C compiler implements the atomic extension of the Unified Parallel
C language as proposed by Berkeley UPC [1]. This extension, which is on track to being
adopted as part of the UPC 1.3 specification, allows users to atomically read and write private
and shared memory in a UPC program. With atomic functions, you can update variables
within a synchronization phase without using a barrier. Theatomic functions are declared in
theupc ext atomics.h header file and are included in Figure 2. The function prototypes
have different variants depending on the values oftype, X , andRS. X andtype can take
any pair of values in (I, int), (UI, unsigned int), (L, long),(UL, unsigned long), (I64,int64t),
(U64,uint64t), (I32,int32 t), (U32,uint32t). RScan be either ’strict’ or ’relaxed’.

4.4 Accelerated Collectives

UPC collectives are implemented completely within the runtime system. The compiler redi-
rects UPC calls to runtime entries with only some minimal analysis in certain situations. In
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1 t ype x lupc a tom icX read RS ( s h a r e d vo id ∗ p t r ) ;
2 vo id x l u p c a t o m i c X s e t R S ( s h a r e d vo id ∗ p t r , t ype v a l ) ;
3 t ype x lupc atomicX swap RS ( s h a r e d vo id ∗ p t r , t ype v a l ) ;
4 t ype x lupc atomicX cswap RS ( s h a r e d vo id ∗ p t r , t ype o ldva l , t ype newval ) ;
5 t ype x lupc a tom icX fe t chadd RS ( s h a r e d vo id ∗ p t r , t ype op ) ;
6 t ype x lupc a tom icX fe t chand RS ( s h a r e d vo id ∗ p t r , t ype op ) ;
7 t ype x l u p c a t o m i c X f e t c h o r R S ( s h a r e d vo id ∗ p t r , t ype op ) ;
8 t ype x l u p c a t o m i c X f e t c h x o r R S ( s h a r e d vo id ∗ p t r , t ype op ) ;
9 t ype x l u p c a t o m i c X f e t c h n o t R S ( s h a r e d vo id ∗ p t r ) ;

Figure 2: XL UPC Atomics Interface

turn the runtime transforms UPC pointers-to-shared to regular pointers and calls appropriate
collectives within PAMI. Reduce and barrier collectives in XL UPC exploit the Collective
Accelerated Unit (CAU) available on P775 when low latency performance is crucial.

The CAU unit integrated in the IBM P775 HUB provides offload and acceleration for
broadcast and reduce up to 64 bytes of data. For reduce, it supports NO-OP, SUM, MIN, MAX,
AND, OR and XOR operations with 32-bit/64-bit signed/unsigned fixed-point operands or
single/double precision floating-point operands. The benefits of deploying the CAUs are most
evident in low latency operations. For operations requiring large bandwidth like broadcast or
reduction on large data the CAU unit may not perform better than the point to point versions.
For a complete description on how collectives exploit shared memory and CAU on P775 please
consult [42].

Due to machine specific configuration accelerated collectives need to be enabled with
proper environment variables or load leveler directives inorder to be available in XL UPC.

4.5 Other Runtime Optimizations

We briefly describe here a number of other optimizations available at the runtime level. On
a platform that allows up to 128 threads per shared memory node, thread binding turns out
to be crucial. The runtime system provides flexible control on how to bind UPC threads to
hardware threads. By default no binding is performed while a specific mapping is performed
with proper command line arguments. The autobinding option(e.g., -xlpgasbind=auto) is the
option recommended. Huge memory pages is another runtime option, which instructs the
memory allocator to use huge memory pages available on P775.As we will explain in Section
5.3, certain applications benefits from this.
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1 / / Next i s ok i f P=2ˆn
2 / / # d e f i n e PERM(ME, TOT , ITER ) ( (ME) ˆ ( ITER ) )
3 # d e f i n e PERM(ME, TOT, ITER ) ( ( (ME) + ( ITER ))%(TOT ) )
4 i n t 6 4 a l l 2 a l l (TYPE ∗ ds t , u i n t 6 4 ∗ s rc ,
5 i n t 6 4 len , i n t 6 4 nwrd ){
6 i n t 6 4 i , j , pe ;
7 l e n = l e n − ( l e n % ( nwrd ∗ THREADS ) ) ;
8 f o r ( i = 0 ; i < l e n ; i += THREADS∗nwrd ){
9 f o r ( j = 0 ; j < THREADS; j ++) {

10 pe = PERM (MYTHREAD, THREADS, j ) ;
11 s h a r e d [ 0 ] u i n t 6 4 ∗ p t r =( s h a r e d [ 0 ] u i n t 6 4∗)& d s t [ pe ] ;
12 upc memput(& p t r [ i +MYTHREAD∗nwrd ] ,& s r c [ i +pe∗nwrd ] ,
13 nwrd ∗ s i z e o f( u i n t 6 4 ) ) ;
14 }
15 }
16 re turn l e n ;
17 }

Figure 3: All2All

5 Performance Evaluation

In this section we evaluate and analyze the performance of various benchmarks and applica-
tions. We discuss the results obtained and compare them to the theoretical limits imposed
by the system architecture. We identify performance bottlenecks in existing benchmarks and
discuss possible solutions.

5.1 Methodology

In our experiments we have used the IBM XL Unified Parallel C compiler prototype for Linux.
Each node runs Linux with kernel 2.6.32. Unless specified allruns use one process per UPC
thread and schedule one UPC thread per Power7 core. Each UPC thread communicates with
other UPC threads through the network interface or interprocess communication. The UPC
threads are grouped in blocks of 32 per octant and each UPC thread is bound to a different
processor core. All benchmarks are compiled using the ’-qarch=pwr7 -qtune=pwr7
-O3 ’ compiler flags.

5.2 The MPP Benchmark

To evaluate the performance of a parallel machine using UPC point to point and collective
operations we employed the MPP benchmark suite. The MPP benchmark code came to us as
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1 /∗ mpp accumula te∗ /
2 i n t 6 4 mpp accum long ( i n t 6 4 v a l )
3 {
4 s h a r e d s t a t i c u i n t 6 4 s r c [THREADS ] ;
5 s h a r e d s t a t i c u i n t 6 4 d s t ;
6 s r c [MYTHREAD] = v a l ;
7 u p c a l l r e d u c e U L (& ds t , s rc , UPCADD,
8 THREADS, 1 , NULL,
9 UPC IN ALLSYNC |UPC OUT ALLSYNC ) ;

10 re turn d s t ;
11 }
12 / / main
13 d o a l l 2 a l l w a r m u p ( . . . ) ;
14 / / s t a r t t imed loop
15 f o r ( i =0; i <n i t e r a t i o n s ;++ i )
16 mpp accum long ( . . . ) ;

Figure 4: Reduce Benchmark.

1 vo id mpp broadcas t (TYPE∗ ds t , TYPE ∗ s rc ,
2 i n t 6 4 nelem , i n t 6 4 r o o t )
3 {
4 u p c a l l b r o a d c a s t ( ds t , &s r c [ r o o t ] ,
5 nelem ∗ s i z e o f( u i n t 6 4 ) ,
6 UPC IN ALLSYNC |UPC OUT ALLSYNC ) ;
7 }
8 / / main
9 d o a l l 2 a l l w a r m u p ( . . . ) ;

10 f o r ( ne lems =4; nelems<100000;n∗2)
11 / / s t a r t t imed loop f o r each i n p u t s i z e
12 f o r ( i =0; i <n i t e r a t i o n s ;++ i )
13 mpp broadcas t ( ds t , s rc , nelems , i%THREADS ) ;

Figure 5: Broadcast.
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part of an interaction with IBM clients, and is used in this paper with their permission. We
describe and analyze the performance of the five MPP benchmarks next.

5.2.1 Alltoall

The all-to-all benchmark is one of the most important benchmarks we evaluated for measuring
the bandwidth of the system. The pattern employed by this benchmark is very important
as it shows up in a large number of scientific applications including FFT, Sort, and Graph
500. The kernel for this benchmark is included in Figure 3. This measurement allocates a
shared buffer, usingupc all aloc , initializes it with random data and then executes the
equivalent of a global matrix transpose usingupc memput transfers. In Figure 3, Lines 7-9,
we notice the large message being broken in chunks of sizenwrd , which are subsequently
sent to all other threads according to a given permutation (Line 10). In addition to being
used for measurement purposes, the all-to-all communication phase is employed by all other
benchmarks as a “warmup exercise” and sanity check; the communication pattern exercises all
links in the interconnect and warms up caches.

While some initial permutations specifying the order in which data will be written are
provided with the code (Figure 3, Lines 1-3) they do not lead to optimal performance on
the P775 system. We have evaluated the performance for different permutations and what
proved to be the best strategy is to use a random enumeration of the destination threads. The
enumeration is unique for each thread and unless explicitlyspecified this is the communication
pattern employed for measuring the results included in thissection. As we will see later in this
section, the measured bandwidth also depends on the granularity of the data exchanged, so
unless specified the results included are fornwrd =8192 and using one megabyte as the size of
the big message exchanged (len=1MB ).

Discussion of machine peak versus measured performance: In Table 1 we include for
reference the peak all-to-all bandwidth of the machine for various configurations and how
much we are able to achieve using XL UPC all-to-all.

There are two main factors that need to be considered when estimating the bandwidth of
a P775 system: the peak bandwidth of the various links (LL, LR,D), and the peak bandwidth
at which the HUB chip can push data in and out of a node (HUB limit). The data included
in Table 1 is essential for understanding the performance ofthe measured all-to-all bandwidth
included in Figures 6(a),(b) and 7(a),(b) and of subsequentbenchmarks like Guppie described
in Section 5.3 and FFT described in Section 5.4.1.

The following are the columns of the table:

• “Scenario” describes various configurations of the machineconsidered.

• “Links” describes the physical links used which are LL, LR, DLor a combination of
these.

12



Scenario Links Max Max Agg % %
All2All HUB Measured Max Max
BW Agg BW BW(GB/s) All2All HUB
(GB/s) (GB/s)

1 Octant HUB 37.1 37.1875 100
2 Octants 1 LL 96 74.36 61.5 64 82.7
4 Octants 4 LL 384 148.72 71.6875 18 96.4
1Dr 16 LL 1536 297.44 287.5 18 96.6
1Dr+1oct 16LL+1LR 720 334.64 227.81 31 68
1SN 256LR 5120 1189.7 1046.25 20 87.9
2SN 8DL 320 2379.5 187.5 58 7.88

Table 1: Estimated peak all-to-all bandwidth versus measured bandwidth for different machine
configurations.

• “Max All2All BW (GB/s) contains the peak all-to-all bandwidththe interconnect can
provide.

• “Max HUB Agg BW (GB/s)” represents the maximum all-to-all bandwidth measurable
on the system when taking into account the HUB’s maximum ever measured bidirec-
tional bandwidth. We estimate this column by multiplying the number of HUBs em-
ployed in a particular configuration with the maximum measured capacity of a HUB.

• “Agg Measured BW (GB/s)” is the aggregated bandwidth we measure using MPP all-
to-all benchmark.

• “% Max All2All” is the percentage of the measured bandwidth relative to what the links
can provide.

• “% Max HUB” is the percentage we measure relative the maximum it can be measured
on this platform when taking into account the HUB limit.

Next we discuss the five scenarios considered in Table 1 corresponding to the different
components of a P775 supercomputer:

One Octant: When running the benchmark within an octant, all communication is pushed
through the local HUB chip using RDMA operations only, and overall we measure 1190
MB/s/thread for an aggregated bandwidth of 37.18 GB/s. Essentially this gives the upper
limit on how much data the HUB can move in and out of the octant.This is the HUB limit
value we used to compute the values of Column 4.

Two Octants: When using two octants, the communication passes through one LL link
whose capacity is 24 GB/s bidirectional. The all-to-all peakbandwidth in this case is24GB/s×

13



 800

 850

 900

 950

 1000

 1050

 1100

 1150

 1200

 32  128  256  512  960

B
an

dw
id

th
 (

M
B

/s
 p

er
 th

re
ad

)

# of procs

all2all

(a) All2all using random pattern within an octant.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 5  10  15  20  25  30

B
an

dw
id

th
 (

M
B

/s
 p

er
 th

re
ad

)

# of SN

8k msg size
16k msg size

(b) Random exchange pattern for two different mes-
sage sizes and up to 32 SNs.

Figure 6: All2All performance within a supernode and at scale using 32 SNs.

2×2 where the first 2 is because the link support 24 GB/s in both directions, and the second 2 is
because half the traffic stays within the octant. Thus the peak bandwidth is 96 GB/s (column 3,
row 3). In column 5, row 3 and correspondingly in Figure 6(a) we see the aggregated measured
bandwidth to be 61.5 GB/s which is about 60% of the peak bandwidth of the link. However
taking into account that the maximum bandwidth measured forthe HUB chip is 37.18 GB/s,
two HUB chips can push 74.36 GB/s, and our result of 61.5 GB/s is 82.7% of that. However
whennwrd is increased to 16k words per round, we achieve 87% of the HUBs capacity and
this essentially is an indication of some small software overheads when moving smaller data
messages through the network.

Four Octants: Similarly we estimate the bandwidth for four octants (one drawer) where
essentially we see that the immense bandwidth available through the LL links can not be
efficiently exploited due to the HUB chip limit. The results achieved using XL UPC are similar
to other results obtained using either PAMI directly or lower level C interfaces. As we can see
in Figure 6(a), and in Table 1, when using four octants the network bandwidth is not a limit
and essentially we achieve 96% of the highest measured HUB bandwidth.

One drawer plus one octant: When using a drawer and an octant we start exercising the LR
links which can only carry 5 GB/s bidirectional. In Figure 6(a) we see the bandwidth dropping
to 810 MB/s per thread or 227 GB/s aggregated bandwidth. This isonly 68% of what the HUB
can achieve.

One supernode: With a full supernode we see again a huge aggregated peak bandwidth of
5120 GB/s out of which we can only achieve 20%. Taking into account the HUB limitation
though we achieve 87%.

Two supernodes and large scale case: As we move from one super node to two supernodes,
the bandwidth drops considerably (see Figure 6(b)). This ismainly due to limited cross-section
bandwidth provided by the eight D links between two supernodes. In Table 1 we see the peak
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Figure 7: Three different communication schedules(a) and message size study with up 32k
words (b).

aggregated bandwidth dropping to 320 GB/s out of which we can achieve 60% using XL UPC
all-to-all. In Figure 6(b) we include the all-to-all performance when using up to 32 supernodes
and two different message sizes :nwrd of 8k and 16k respectively. We observe that at scale,
the 16k case achieves 1000 MB/s per thread. Considering the HUBlimit, XL UPC achieves
85% of the maximum performance at scale. An independent experiment conducted on the
machine, using only C and low level communication primitives (thus avoiding the overhead of
UPC and PAMI) achieved the same peak bandwidth at scale (Ram Rajamony).

Message size study:Figure 7 (a) shows the performance of the random all-to-all compu-
tation on 32 supernodes when the big message of size 1MB is split into smaller messages with
sizes between 32 and 16384 words. In the code included in Figure 3 this is encompassed by the
variablenwrd . As we increase the message size we measure higher bandwidth, and this is due
to less overhead per message injected into the network. On 32supernodes usingnwrd =16k,
we achieve 1000MB/s per thread or 85% of the HUB capacity. We recommend that, to fully
exploit the bandwidth of this system, UPC memput messages beaggregated in larger chunks.

Different communication schedules:In Figure 7(b) we include results for the three dif-
ferent communication schedules we considered, all usingnwrd =8k. A first schedule sends
messages consecutively, starting with the next logical thread and in a cyclic manner (Figure
3, Line 3). In a second schedule, each thread sends across octants from step zero. This is
achieved incrementing the destination each iteration with32 (the octant size) and starting from
current thread ID. A third schedule uses the random exchangepattern used for all previous
experiments.

The results for the first schedule are included in Figure 7(b)and marked as “original” as this
is the default schedule included in the benchmark. The maximum performance we achieved
with this is only 380 MB/s per thread, which is only 32% of the HUB capacity. The second
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Figure 8: The performance for UPC barrier using CAU only (a) and at scale(b).

pattern improves the performance to almost 800 MB/s per thread which is around 80% of
the HUB capacity. It turns out that while so far we have not found a perfect communication
schedule for the topology employed by this machine, the bestoption is to employ a completely
random pattern on each communicating thread. Such a random scheme avoids communication
hot spots and achieves the highest performance among all schemes we devised. As shown in
Figure 7(b), in the random experiment we achieved 950 MB/sec on 32 supernodes, and very
good performance overall starting with 16 supernodes (80% of the HUB capacity).

5.2.2 Barrier

This benchmark performs a timed loop of barrier invocationsperformed by all threads. Aver-
age barrier latency is reported. In general the UPC barrier requires a check to be performed on
an optional input argument to ensure proper barrier matching across different threads. For this
reason the XL UPC barrier is actually implemented as a PAMI short allreduce operation, not a
barrier.

Figure 8(a) shows the performance of the UPC barrier when using CAU units only. The
barrier is implemented as an allreduce operation consisting of a reduce on node zero followed
by a broadcast from node zero. For this experiment we used a large P7IH cluster of up to
960 SMP nodes and we employ one UPC thread per SMP node, thus using only one of the
32 cores/node. The CAU collectives are enabled using the PAMIMPCOLLECTIVEGROUPS
environment variable. For comparison purposes we include in the plot the performance of 3
different CAU versions employing CAU trees with 3, 5 or 6 connections per CAU node.

As expected, the performance of the CAU collective is affected by the number of children
in the CAU tree; the more connections per CAU node, the lower theoperation latency. Overall
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the latency of the barrier slowly increases as we increase the depth of the CAU tree. On average
we introduce 1µs as we increase the depth by one.

The benefits of deploying the CAUs are most evident in low latency operations. For oper-
ations requiring large bandwidth, such as broadcast or reduction on large data, the CAU unit
may not perform better than the point to point versions [42].

In Figure 8 (b) we include the performance of the barrier whenusing 32 threads per octant
and up to 30720 threads in total. The algorithm in this case has a shared memory component
within the octant and a CAU component across octants [42]. Forcomparison purposes we
compare the CAU accelerated collective for various CAU trees and a generic version of the
barrier implemented using point to point messages. On 32 super nodes we measured 49µs for
the point to point barrier, 34µs for the CAU with tree of degree 3 and 28µs for trees of higher
degree.

5.2.3 Allreduce
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Figure 9: MPP Allreduce.

The code for this benchmark is included in Figure 4. The benchmark performs a loop
consisting of the following operations: reduce a set of values from a shared array to a shared
scalar integer, and return said shared value to all calling threads. The return of a shared value
as a local value to all threads is a covert form of broadcast. Implemented naively (i.e. with
assignments) this operation can lead to major performance degradation.

We believe that the particular way in which the operation is expressed reflects the funda-
mental inadequacy of theupc all reduce operation in the UPC specification. In any case
the current formulation of the benchmark presents a major performance and scalability chal-
lenge to the UPC compiler which required us to look for a compiler optimization to improve
the scaling of the allreduce MPP benchmark.

We observe in Figure 4 that the benchmark allocates a shared integer, followed by a reduc-
tion of data from a shared array into the shared integer and returning the shared integer value
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1 i n t 6 4 mpp accum long ( i n t 6 4 v a l )
2 {
3 s h a r e d s t a t i c u i n t 6 4 d s t ;
4 / / code t h a t a s s i g n s a va l ue t o d s t
5 i n t 6 4 r e t = d s t ;
6 re turn r e t ;
7 }

(a) Original Code

1 i n t 6 4 mpp accum long ( i n t 6 4 v a l )
2 {
3 s h a r e d s t a t i c u i n t 6 4 d s t ;
4 / / code t h a t a s s i g n s a va l ue t o d s t
5 i n t 6 4 r e t ;
6 b r o a c a s t d s t t o r e t ;
7 re turn r e t ;
8 }

(b) Optimized

Figure 10: Optimizing shared scalars access

to all threads. A straightforward implementation of this code translates into the following se-
quence of operations:barrier, reduce, barrier and read shared scalar from thread
zero. The last step of this sequence is not scalable and performance for this kernel greatly
degrades as we use an increasing number of threads.

Essentially what the reduce kernel achieves is an allreduceoperation where all threads
get a copy of the reduction. Based on our experience with UPC this pattern is commonly
used. Thus we employed a compiler optimization that replaces the shared scalar reads from all
threads with a broadcast operation. This way rather than using a linear time operation in the
number of threads we use a logarithmic operation.

Collective Idiom Identification (i.e. replacing a shared scalar read operation with a broad-
cast operation). This optimization has the goal of transforming operations that result in fine
grained P2P communication with a suitable collective operation. In particular the optimization
scans each procedure in a UPC program to look for assignment statements that are concur-
rently executed by all threads, and where the right hand sideof the assignment is a shared
scalar variable and the left hand side of the assignment is a non-shared variable (a local stack
variable or a global thread-local variable for example).

Consider the example in Figure 10(a). The assignment statement at line 5 reads a shared
scalar variable (dst) and assigns a local automatic variable (ret). The assignment statement
can be replaced with a broadcast operation if the compiler can prove that the statement is
executed concurrently by all threads (upc all brodcast must be executed collectively by
all threads). The optimized code for Figure 10(a) is shown inFigure 10(b).

The performance for the optimized MPP allreduce benchmark is included in Figure 9(b).
We observe good logarithmic speedup with 55µs latency when using 32 supernodes. In [41]
we include a more in-depth analysis of other factors affecting the performance like the shared
memory component and the CAU component of the allreduce collective.
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Size 1 SN (B/s) 2 SN 4 SN 8 SN 16 SN 32 SN
8 97800 82170 76790 61950 46520 35700
16 287930 252370 222480 175030 139420 100410
32 623030 526360 459600 379310 299660 222950
64 1140000 1020000 890770 746390 579690 425970
128 2180000 2010000 1720000 1390000 1160000 823830
256 4380000 4000000 3370000 2940000 2240000 1770000
512 9000000 8140000 6480000 5630000 4260000 3060000
1000 17030000 15350000 12940000 10610000 8050000 6240000
2000 29370000 25980000 22300000 18170000 14800000 10350000
4000 53910000 48410000 40940000 34100000 28320000 21210000
8000 80390000 72210000 61710000 54890000 45290000 34490000
16000 103560000 90550000 81440000 70510000 59040000 47040000
32000 154070000 138680000 122170000 107620000 93270000 78180000
64000 182810000 197920000 177050000 158900000 140390000 121520000
98000 250510000 229530000 208790000 187020000 168500000 143570000

Table 2: Broadcast bandwidth per thread for various message sizes. The size is expressed in
bytes and the bandwidth is expressed in B/s per thread.

5.2.4 Broadcast

The code for this benchmark is included in Figure 5. It evaluates the performance of the
broadcast collective for various data sizes (powers-of-two word buffers up to a given maximum
size). Average wall time (in seconds), per thread bandwidth, and aggregate (per job) bandwidth
are reported. For each iteration the root is randomly chosen. For reduce and broadcast the
UPCIN ALLSYNC, UPCOUTALLSYNCflags are used in the benchmark. This increases
execution time due to a fence and a barrier call at the beginning and the end of the function
call..

Table 2 shows the performance of broadcast in terms of bandwidth per thread, for different
buffer sizes varying from 8 bytes to 98 Kbytes. For large buffers we see the bandwidth per
thread slowly decreasing as we increase the number of threads. The algorithm employed is a
P2P binomial algorithm whose execution time is logarithmicwith the number of threads used.
Since the broadcast is not pipelined, every doubling of the number of UPC threads causes
the depth of the binomial tree to increase by one, affecting execution time and thus reducing
measured bandwidth. For the largest message used we achieve250 MB/s per thread within
one supernode, 229 MB/s/thread on 2 supernodes and 143 MB/s/thread on 32 supernodes.
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Figure 11: MPP Ping pong latency on one supernode with and without -xlpgashfiupdates flag.

5.2.5 Ping-Pong Test

The ping pong benchmark tests the latency of reading and writing remote shared memory
locations. The benchmark writes a remote memory location while the remote thread is spinning
waiting for the data to arrive. When data arrives the remote thread will write back to the sender,
which in turn spins waiting for the value to arrive. This essentially measures the latency of a
round trip communication performed using twomemput operations.

The experiment is conducted using one and two supernodes where we make random pairs
of communicating processors. Once the pairing is decided processors start exchanging mes-
sages in a loop. We report averages for all communicating pairs in the histogram plots included
in Figure 11 and 12. For both one and two supernodes we includeresults when using two un-
derlying protocols for data exchange: RDMA and SHORT as described in Section 4. Figure
11 (a) shows the measurements for one supernode and using RDMA. This is enabled using the
runtime flag-xlpgashfiupdate . We observe the majority of measured latencies cluster-
ing around 2.15µs value (98% of measurements) with a second smaller clustering around 2.7
µs value (2%). The plotting scale is logarithmic to emphasize the small clusters.

In Figure 11(b) we show the same ping pong experiment, this time disabling RDMA trans-
fer (i.e., we don’t specify-xlpgashfiupdate flag to the runtime). The short message
protocol is used in this situation. We observe in this case that the majority of the measured
latencies are around 2.27µs (93%) with two additional peaks at 1.5µs (2%) and 3.22µs (2%).
The peak at 1.5µs is due to the pairs communicating within the same octant where short mes-
sages translate to simple memory copies. The reported average within a drawer is 2.22µs and
between drawers is 2.36µs.

Overall without RDMA the latency increases from 2.15 to 2.27µs for the majority of the
samples. Elsewhere we reported that the latency of simple PAMI message sends is also around
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Figure 12: MPP Ping pong latency on two supernodes with and without -xlpgashfiupdates flag.

2 µs and this shows that the MPP ping pong testing methodology andXL UPC adds only a
minimal overhead to what PAMI can provide.

For the two supernodes case included in Figure 12(a), we see two major distinct peaks at
2.13µs and 2.37µs. These peaks correspond to the cluster of intra supernode pairs and across
super nodes pairs of communicating threads. The intra supernode time is basically the same
as the time reported in the one supernode experiment (Figure11(a)). Figure 12(b) shows the
latency when using short messages and here again we notice the cluster corresponding to intra
octant data exchange and the rest.

5.3 Guppie

Guppieis a variant of the HPCC RandomAccess benchmark. Guppie measures the aggregate
rate of random remote updates in a large distributed array. Performance is measured in billions,
or giga-updates, per second, hence the name of the benchmark. In Guppie the remote update
operation is always a bit-wise XOR operation; the distributed array consists of 64-bit words
and fills at least half the total available memory in the system.

Guppie performance in general is gated by (a) how fast any particular process can generate
and process remote updates and (b) how fast the interconnection network can transmit the
updates. The p775 system features special purpose hardwarefor remote updates as follows: up
to four different update requests can be packed into a single128-byte flit, reducing bandwidth
requirements, and the network hardware processes remote updates when received - there are
no CPU requirements on the receiving end of an update. Thus on the p775 system performance
is determined by the following factors:

• Network limits: We have already measured these for MPP alltoall. The traffic pattern
generated by Guppie is very similar to alltoall, since everyGuppie thread sprays update
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packets in every direction. Since we know that each update takes128/4 = 32 bytes on
the network, we can convert alltoall aggregate bandwidth numbers directly into Guppie
numbers by dividing them by 32.

• Huge pages:An additional constraining factor in Guppie is the fact thatsystem memory
is not accessed in a quasi-linear fashion. While MPP alltoallsends messages in contigu-
ous multi-kilobyte chunks, Guppie sends updates to random addresses 8 bytes at a time.
This puts a higher pressure on the update target’s paging system. The p775 network chip
has a 6144-entry page cache; when this cache is exhausted every remote update has to
look up the CPU’s page table, a cumbersome and time consuming process that decreases
performance.

6144 “normal” (64 KByte) pages cover much less than half the memory of a p775 octant.
Thus we are forced to use 16 MByte pages for Guppie. 6144 16 MBytes pages cover 96
GBytes of the 128 GBytes per octant in p775.

• HUB limit: The HUB limit applies to Guppie the same way it applies to MPP alltoall.
Again, bandwidth numbers have to be divided by 32.

• Software overhead and SMT-2 operation:Another difference between Guppie and
alltoall is that UPC index arithmetic is necessary for every8 byte update instead of
e.g. once 8 KByte send. UPC index arithmetic is computationally intensive. Thus on
the p775 system we never reach the HUB limit with Guppie - the UPC runtime cannot
generate remote updates fast enough to saturate the networkhub. We run Guppie in
SMT-2 mode to double the number of threads generating addresses; still we reach no
more than approximately 70% of the HUB limit. A new version ofthe XL UPC compiler,
currently in development, reduces index arithmetic overhead and will allow substantial
improvements.

Figure 13 shows measured Guppie aggregate performance in Giga updates per second on
a system consisting of 1 to 32 supernodes. Unsurprisingly the figure has the same shape as
the MPP alltoall measurement. On 1 and 32 supernodes respectively, performance is gated
by per node throughput. Given the HUB limit - 35 GBytes/s/octant - we should expect35

32
≈

1.1 gups/octant. The actual numbers - 22 gups for 30 octants in one supernode, 650 gups
for 960 octants in 32 supernodes - tell us that UPC address generation overhead limits us to
between 60 and 70 % of the HUB limit.

In all other cases Guppie performance is limited by available network bandwidth. We
therefore expect aggregate numbers in line with those measured for MPP alltoall (Table 1).
For the 2 supernode setup, performance is gated by the 8 D-links connecting the supernodes;
Table 1 lists 187 Gbytes/s aggregate bandwidth. Divided by 32, this translates into 5.87 gups,
which is indeed what we measure with Guppie.

By nature in the p775 system network, doubling the number of supernodes in a measure-
ment quadruples the cross-section of the network; we therefore expect4× performance on 4
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Figure 13: Guppie performance. For 1 and 32 supernodes, performance is limited by software
overhead; for 2, 4, 8, 16 supernodes the network cross-section limits performance.

supernodes (≈ 24gups) and so on. Figure 13 bears out these expectations exactly. Perfor-
mance quadruples with every doubling of the system, until at32 supernodes the cross-section
bandwidth is large enough that per-node overhead becomes the limiting factor again.

5.4 HPCC Benchmarks

We use three benchmarks from the HPC Challenge [25] suite to evaluate the performance:
Global HPL (HPL), Global FFT (FFT), and EP Stream Triad (EP).

5.4.1 FFT

Global FFT performs a Discrete Fourier Transform on a one-dimensional array of complex
values. The arrays in the benchmark are sized to fill 40% of thetotal memory of the ma-
chine. The arrays are evenly distributed across the memory of the participating processors.
The cluster implementation of FFT calls for a sequence of local DFT transformations followed
by global and local transpositions across the nodes.

The FFT uses local DFTs by calling the ESSLdcft function. In order to transpose the
arrays, there are two strategies. In strategy (a) transposition is executed line by line (Point-
to-Point), which tends to generate a large number of short network transactions. Strategy (b)
involves first coalescing the buffers into pieces that can beexchanged over the network with a
single call to all-to-all (Collective).

Figure 14 shows the results for the FFT benchmark. We comparethree different ver-
sions: the Point-to-Point and the coalesced all-to-all versions. We also include a version of
the Point-to-Point with the proper loop scheduling to increase the bandwidth, as discussed in
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Figure 14: FFT performance.

upc_forall(i = 0; i<VectorSize; i++; i)
a[i] = b[i] + alpha * c[i];

Figure 15: UPC version of Stream Triad.

section 5.2.1. The results show that the Point-to-Point approach is faster than the all-to-all
version, due to the additional overhead of marshaling and unmarshaling of the shared data.
Furthermore, the proper scheduling of loop iterations gives from 1.03X up to 2.3X increase
on average in the performance. With the exception of 1024 threads, the random access is faster,
from 1.10X up to 2.1X than when using the collective. Overallthe curve has a similar shape
as the all-to-all performance as this step dominates the execution time at scale.

5.4.2 StreamTriad

The UPC code for this benchmark has a work distribution loop.Figure 15 shows the code
for the UPC version of the stream code. All array references in theupc forall loop above
are actually local. The shared array privatization allows the compiler to recognize that the
loop does not contain any communication, and the compiler can therefore privatize the 3 array
accesses in the stream kernel.

Figure 16 presents Stream performance. In the Stream benchmark, the compiler can rec-
ognize that consecutive array accesses performed by each thread have a physical distance in
memory equal to the size of the array element (stride one access pattern). The compiler remaps
the iteration space of theupc forall loop from the UPC index space to the physical array
distribution and privatizes the shared access. The optimization places the calls outside of the
loop to obtain their local array address. Finally, the compiler applies the traditional stream
prefetching optimization to the loop. The overall scaling is linear as expected, reaching 207.2
TB/s on 32 supernodes (30720 cores).
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Figure 16: Stream performance.

5.4.3 HPL

The main kernel of HPL solves a dense linear system of equations using LU factorization
with row partial pivoting. The basis of the implementation is single-processor blocked LU
factorization code similar to that found in the LAPACK routinesdgetf2 anddgetrf . The
benchmarks uses a distributed tiled data structure in orderto facilitate parallelism and read-
ability of the code. Therefore, the benchmark includes the tiled array library with a UPC port.

The main purpose of the tiled array library is to perform the distributed index calculation
for multi-dimensional tiles laid out using a block-cyclic array distribution. This alleviates
programmer effort and decreased readability in the needed (i.e modulo-arithmetic) steps to
compute which tiles in a distributed array are local or remote to the given thread. The tiled
array library’s main interesting feature is its reliance onone-sided communication.

Figure 17(a) compares the HPL benchmark performance with the peak performance of the
machine. The benchmark achieves from 46% to 65% of the peak performance of the machine.
The benchmark achieves 20 GFlop/s per core in 32 UPC threads and drops to 14.36 GFlop/s
in 32768 UPC threads. There are two reasons that the efficiency of the benchmark decreases
as the number of UPC threads increase: (a) communication overhead and (b) load imbalance.
Figure 17(b) presents the breakdowns for different numbersof UPC threads. Moreover, for 32
UPC threads, the figure shows that while we spend 80+% of execution time in computation,
we still only achieve 65% of peak performance. This is due to ESSL itself only achieving 83%
of peak performance.

5.5 K-Means

The K-Means benchmark is an implementation of Lloyd’s algorithm [26]. The problem, in a
nutshell, is to cluster a set ofN points{x1, x2, ...xN} in D-dimensional Euclidean space into
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Figure 18: K-Means performance.

K sets{S1, S2, ...Sk} so as to minimize the sum of Euclidean distances from the points to the
clusters’ centersµj, j ∈ 1..k, i.e. calculate:

arg min
S

k∑

i=1

∑

xj∈Si

||xj − µi||
2

A naiveimplementation of the algorithm is fairly computationallyintensive, as the classi-
fication phase involves the calculation of the Euclidean distance between every pair of points
and centroids, resulting inO(N × K × D) complexity. There are complicated tree-based
algorithms in existence that cut down computation to a fraction of the above number by elim-
inating redundant distance calculations. However, as far as we are aware, a three-level nested
loop computing pairs of Euclidean distances exists in some form in every variant of optimized
code, as shown in Figure 19.
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1 do p=1, N
2 kmin=-1; dmin=\inf;
3 do k=1, K
4 d0 = 0
5 do d=1, D
6 d0 = d0 + (points[p][d]-clusters[k][d])ˆ2
7 end do
8 if (d0 < dmin) { dmin = d0; kmin = k; }
9 end do

10 nearest[p] = kmin;
11 end do

Figure 19: K-means: pseudo-code for classification phase.

Figure 18 shows the performance of the k-means benchmark. Wemeasured the perfor-
mance for two versions of code, to compare the compilation with static and dynamic number
of threads. The results show that the benchmark scales well.Moreover, XL UPC is able to
simplify the shared pointer arithmetic when the user specifies the number of UPC threads at
compile time. Thus for 32768 UPC threads the static compiledversion is 9% faster than the
version with dynamic number of threads.

The K-means benchmark has three different dis phases. Firstthe benchmark makes the
classification, then calculates the average, first locally and then globally through reduction,
and finally calculates the difference between successive operations. The XL UPC compiler
privatizes most of the shared accesses except one shared read in the classification and one in
calculation of average. The shared reference in the averagecalculation is actual local, however
XL UPC misses the opportunity to privatize due to the complexity of the index expression.

5.6 UTS

The Unbalanced Tree Search benchmark [33, 34] belongs in thecategory of state-space search
problems. The Unbalanced Tree Search benchmark measures the rate of traversal of a tree
generated on the fly using a splittable random number generator. The overall task of a state-
space search problem is to calculate some metric over the setof all good configurations – e.g.
the number of such configurations, the ”best” configuration etc.

The challenge of this benchmark category, is to parallelizethe computation across a poten-
tially very large number of hosts while achieving high parallel efficiency. The computation is
typically initiated at a single host with the root configuration. A good solution must quickly
divide up the work across all available hosts and solve the global load-balancing problem. It
must ensure that once a host runs out of work it is able to quickly find work, if in fact work
exists at any host in the system.

In Figure 20 we show the performance for the UTS benchmark using a mixed weak and
strong scaling approach. We fix a particular tree size and forthat we perform a strong scaling
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Figure 20: UTS performance.

experiment and each line in the plot corresponds to a strong scaling experiment. Subsequently
we increase the tree size by a power of two and we perform another strong scaling experiment
starting with double the number of processors in the previous run. When doubling the input
size while doubling the number of threads we essentially achieve the same amount of load
per UPC thread. From the plot we can see good weak scaling as weincrease the number of
processors and the problem size. The benchmark achieves 2.5million nodes traversed per
second per thread. The same good performance is obtained as we scale up to 16 supernodes.

5.7 Sobel

To evaluate the performance of a parallel machine using fine-grained communication we use
the Sobel benchmark. The Sobel benchmark computes an approximation of the gradient of the
image intensity function, performing a nine-point stenciloperation. In the UPC version [14]
the image is represented as a two-dimensional shared array and the outer loop is a parallel
upc forall loop. The evaluation uses a constant data set size per thread(weak scaling), thus
the overall problem size increases with the number of threads. We start from 32768×32768 as
input image size in 32 UPC threads, up to 1048576×1048576 using 32768 UPC threads. The
maximum allocated memory is two TBytes in 32768 UPC threads.

The low communication efficiency of fine grain data accesses has been identified by many
researchers [8, 10] as one of the main bottlenecks of PGAS languages. The XL UPC compiler
coalesces shared references, when possible, to decrease the overhead of many runtime calls
and increase the network efficiency. The Shared Object Access Coalescing optimization [11]
reduces the number of remote and local shared accesses. The optimization identifies opportu-
nities for coalescing, manages the temporary buffers, including modifying shared references
to read-from/write-to the buffers, and inserts calls to thecoalescing runtime functions. The
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runtime allows the compiler to specify a shared symbol, a stride to use when collecting shared
references, the number of shared references to collect and the temporary buffer to use. The
compiler checks some requirements for coalescing the elements: (i) all shared references must
have the same base symbol; (ii) all candidates must be owned by the same UPC thread; (iii)
all candidates must be either read or write.

Figure 21 presents the performance numbers for the Sobel benchmark in mega-pixel per
second. We use four benchmark versions: (i) Fine-grained with disabled the static coalescing
and privatization; (ii) Fine-grained with all optimizations enabled (-O3); (iii) Manual opti-
mized with coarse grain transfers; (iv) MPI version with coarse grain accesses.

The fine-grained optimized version is around 6X faster than the non-optimized version.
The XL UPC compiler applies two optimizations for fine grained accesses, privatization and
static coalescing. The Sobel benchmark communicates with the neighboring UPC threads only
at the start and end of the computation. One of the goals for the optimizations is to provide
comparable performance to the hand-optimized version withcoarse grain accesses. The fine-
grained version of the Sobel benchmark achieves from 45% up to 77% of the performance
of the MPI version. One interesting observation is that the UPC hand-optimized version is
from 2.1X up to 2.9X faster than the MPI version, because of the better overlap ofone-sided
communication. The MPI version requires the synchronization of the two processes to transfer
the data. Thus, the synchronization with large number of threads is harder to achieved in low
latency, resulting in better speedup for the UPC versions.

1 Megapixel = 1000000 pixels
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6 Related Work

Evaluating the performance of various UPC implementationshas been the focus of numerous
publications [19, 27, 32]. These discuss either point to point operations like shared memory
reads or writes, or whole applications or benchmarks (NPB, BenchC, etc).

Previous UPC performance evaluations [45, 15] have focusedeither on basic data move-
ment primitives, NPB NAS benchmarks [22], or small applications, such as sobel [14] In [28]
the authors compare the NPB NAS benchmarks in MPI and UPC. The results show that MPI
versions is always better than the UPC versions. Authors in [18] present the performance of the
Berkeley compiler, compared with the HP UPC compiler [17]. The performance of the open
source compiler is similar or better than the commercial HP compiler. The authors in [21] use
the MuPC [29] runtime system to evaluate the collective calls.

In [23] the authors perform an in depth performance study of the P7IH various intra and in-
ter node communication links describing achievable latencies and bandwidths. They measure
the performance using simple point to point kernels and discuss it relative to the maximum
specified values.

In [40] the authors present a comprehensive evaluation of two UPC compilers, GNU UPC
and Berkley UPC, on a cluster of SMPs evaluating distributed, shared memory and hybrid
mode of executions. The authors deployed their own kernels similar to Intel MPI collectives
benchmark. In [27] the UPC (GNU UPC and Berkley UPC) collectives are evaluated in the
context of a multicore architecture. The authors of [30] discuss the performance of UPC col-
lectives tuned for Linux/Myrinet and compare them with the default Berkley implementation.

Various papers [36] discuss implementation trade-offs andperformance improvements for
various UPC collectives. The authors of [42] present a set ofcollectives optimized for PERCS
architecture. While they were initially implemented as partof the IBM XL UPC runtime they
were migrated into PAMI, the IBM messaging library.

Optimizations for data coalescing using static analysis exist in Unified Parallel C [8, 11]
and High Performance Fortran [7, 16]. A compiler uses data and control flow analysis to iden-
tify shared accesses to specific threads and creates one runtime call for accessing the data from
the same thread. Another approach for minimizing the communication latency in the PGAS
programming model is to split request and completion of shared accesses. The technique is
called either “split-phase communication” [9] or “scheduling” [12, 16]. Other techniques to
reduce communication latency at runtime include decomposing the coarse-grained transfer
segments, into strips and transferring them in pipeline [20], and the usage of a software-cache
mechanism [44].

Moreover, the inspector-executor strategy is a well-know optimization technique in PGAS
languages. There are approaches [24] for compiler support using a global name space program-
ming model, or language-targeted optimizations such as: High Performance Fortran [5, 43],
Titanium language [39], X10 [13], Chapel [37], and UPC [3]. The inspector loop analyzes the
communication pattern and the executor loop performs the actual communication based on the
results of the analysis performed in the inspector loop.
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7 Conclusion

In this paper we included a comprehensive discussion on the XL UPC compiler, the opti-
mization employed by the high level optimizer and runtime, and evaluated the performance of
various benchmarks. We have shown that XL UPC provide scalable performance when using
more than 30000 cores on the PERCS machine and that the runtime efficiently exploit the un-
derlying PAMI communication library and the hardware features of the machine like RDMA
and accelerated collectives.

We also describes pitfalls of the PGAS programming model employed by UPC and how
they can be either addressed at the programming level or withadditional compiler optimiza-
tions. We highlighted the key characteristics of the PERCS architecture emphasizing the low
latency of the network and the huge bandwidth available on the machine.We have shown that
XL UPC can achieve up to 60% using an all to all pattern which iscommon in a large number
of applications like sort, FFT matrix transposition and others. While the current performance
achievable through software on the architecture is notablerelative to other supercomputer ar-
chitectures, there is still room for improvement to furtherreduce latency of collectives and
further improve bandwidth utilization.
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A Compiler, runtime and environment configuration

A.1 MPP Benchmark

Compiler options used: -O3 -qarch=pwr7 -qtune=pwr7
Runtime options: -xlpgashfiupdate -xlpgashugepages -msg api pgas
Load Leveler Job File:

all2all
MP_CHECKPOINT=no
MP_RDMA_ROUTE_MODE=hw_direct_striped
MP_SHARED_MEMORY=yes
MP_USE_BULK_XFER=yes

bcast
MP_CHECKPOINT=no
MP_SHARED_MEMORY=yes
MP_USE_BULK_XFER=yes
XLPGAS_PAMI_BROADCAST=I1:Broadcast:P2P:P2P

pingpong, barrier, reduce
MP_CHECKPOINT=no
MP_SHARED_MEMORY=yes
MP_USE_BULK_XFER=yes
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A.2 Guppie

Compiler options used: -O3 -DVLEN=1 -DLTABSIZE=$ {LTABSIZE}
Runtime options: -xlpgashfiupdate -xlpgashugepages -msg api pgas
Load Leveler Job File:

SMT2
node_topology = island
job_type = parallel
network.pgas = sn_single,not_shared,us
checkpoint = no
bulkxfer = yes
task_affinity = cpu
collective_groups = 4

A.3 uts

Compiler options used: -O3 -qarch=pwr7 -qtune=pwr7 -DMAIN TIMING -DMAXSTACKDEPTH=8000000
Runtime options: -xlpgasautobind -xlpgasqlock
Load Leveler Job File:

MP_ADAPTER_USE=shared
MP_CHECKPOINT=no
MP_CPU_USE=multiple
MP_DEVTYPE=hfi

A.4 Sobelk

Compiler options used: -O3 -qarch=pwr7 -qtune=pwr7 -qupc=threads=$ {THREADS}
Runtime options: -xlpgasautobind -xlpgashfiupdate
Load Leveler Job File:

MP_ADAPTER_USE=dedicated
MP_CHECKPOINT=no
MP_CPU_USE=unique

A.5 Stream

Compiler options used: -O3 -qarch=pwr7 -qtune=pwr7 -qdebug=finalc Run-
time options: -xlpgasbind=auto -xlpgashfiupdate -msg api pgas

36



Load Leveler Job File:

MP_ADAPTER_USE=dedicated
MP_CPU_USE=unique

A.6 FFT

Compiler options used: -q64 -O3 -qarch=pwr7 -qtune=pwr7 -qprefetch=aggressive
-qinline -qhot
Runtime options: -xlpgashfiupdate -xlpgasautobind
Load Leveler Job File:

MP_ADAPTER_USE=dedicated
MP_CPU_USE=unique
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