RC25364 (WAT1303-075) March 19, 2013
Computer Science

|BM Resear ch Report

M alleable Scheduling for Flows of MapReduce Jobs

Andrey Balmin
IBM Research Division
Almaden Research Center
650 Harry Road
San Jose, CA 95120-6099
USA

Kirsten Hildrum, Viswanath Nagar ajan, Joel Wolf
IBM Research Division
Thomas J. Watson Research Center
P.O. Box 208
Y orktown Heights, NY 10598
USA

——=—= Research Division
S S=E55= Almaden- Austin - Beijing - Cambridge - Haifa - India- T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
0. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on theinternet at http://domino.watson.ibm.com/library/CyberDig.nsf/home.

Malleable Scheduling for Flows of MapReduce Jobs

Andrey Balmin* Kirsten Hildrum' Viswanath Nagarajan' Joel Wolf'

Abstract

We consider the problem of scheduling MapReduce workloads. A workload consists of multiple
independent flows, and each flow is itself a set of MapReduce jobs with precedence constraints. We
model this as a parallel scheduling problem [5, 9], more specifically as precedence constrained mal-
leable scheduling with linear speedup and processor mazima. Each flow is associated with an arbitrary
cost function that describes the cost incurred for completing the flow at a particular time. The overall
objective is to minimize either the total cost (minisum) or the maximum cost (minimaz) of the flows.
We use resource augmentation analysis to provide a (2, 3) bicriteria approximation algorithm for gen-
eral minisum objectives, and a (1,2) bicriteria approximation algorithm for minimax objectives. We
note that (unless P=NP) no finite approximation ratio is possible without resource augmentation.
As corollaries of these results, we obtain a 6-approximation algorithm for total weighted completion
time (and thus average completion time and average stretch), and a 2-approximation algorithm for
mazimum weighted completion time (and thus makespan and maximum stretch).

We also demonstrate via extensive simulation experiments the overall performance of our algo-
rithms relative to optimal and also relative to other, standard MapReduce scheduling schemes.

*IBM Almaden Research Center. Email: abalmin@us.ibm.com
fIBM T.J. Watson Research Center. Email: {hildrum, viswanath, jlwolf}@us.ibm.com

1 Introduction

MapReduce [4] is a fundamentally important programming paradigm for processing big data. Ac-
cordingly, there has already been considerable work on the design of high quality MapReduce sched-
ulers [17, 18, 16, 1, 15, 11]. All of the schedulers to date have quite reasonably focused on the scheduling
of collections of singleton MapReduce jobs. Indeed, single MapReduce jobs were the appropriate atomic
unit of work early on. Lately, however, we have witnessed the emergence of more elaborate MapReduce
work, and today it is common to see the submission of flows of interconnected MapReduce jobs. Each
flow can be represented by a directed acyclic graph (DAG) in which the nodes are singleton MapReduce
jobs and the directed arcs represent precedence. Significantly, the flows have become the basic unit of
MapReduce work, and it is the completion times of these flows that determines the appropriate measure
of goodness, not the completion times of the individual MapReduce jobs.

This paper introduces a set of scheduling algorithms for flows of MapReduce jobs. We will consider a
variety of scheduling metrics, each of which is based on the completion times of the flows. Examples
include makespan, average completion time, average and maximum stretch and metrics involving one
or more deadlines. Any given metric will be appropriate for a particular scenario, and the algorithm
we apply will depend on the choice of metric. For example, in a batch environment one cares about
makespan, to ensure that the batch window is not elongated. In an interactive environment users would
typically care about completion time. To the best of our knowledge scheduling schemes for flows of
MapReduce jobs have never been considered previously in the literature.

Our contributions are both theoretical and practical. We advance the theory of so-called malleable
parallel scheduling with precedence constraints. At the same time, we produce a highly generic and
practical MapReduce scheduler for flows of jobs, which we call FlowFlex, and demonstrate its capabilities
experimentally. The closest previous scheduling work for MapReduce jobs appeared in [16]. The Flex
scheduler presented there is incorporated in IBM Biglnsights [2]. Flex schedules to optimize a variety
of metrics as well, but differs from the current work in that it only considers singleton MapReduce
jobs, not flows. Architecturally, Flex sits on top of the Fair MapReduce scheduler [17, 18], essentially
overriding its decisions while simultaneously making use of its infrastructure. See also the special
purpose schedulers [1] and CircumFlex [15], built to amortize shared Map phase scans.

We note that the theory of malleable scheduling fits the reality of the MapReduce environment quite
closely and accurately. In order to understand this we give a brief, somewhat historically oriented
overview of theoretical parallel scheduling and its relation to MapReduce.

The first parallel scheduling implementations and theoretical results involved what are today called
rigid jobs. These jobs run on a fixed number of processors and are presumed to complete their work
simultaneously. One can thus think of a job as corresponding to a rectangle whose width corresponds
to the number of processors p, whose height corresponds to the execution time t of the job, and whose
area s = p - t corresponds to the work performed by the job. Early papers, such as [3], focused on the
makespan metric, providing some of the original approzimation algorithms. (These are polynomial time
schemes with guaranteed performance bounds.) Makespan was an appropriate metric for the batch
workloads of the time. It was also mathematically simpler to analyze than some of the others.

Subsequent parallel scheduling research took a variety of directions, again more or less mirroring real
scenarios of the time. One such direction involved what has now become known as moldable scheduling:
Each job can be run on an arbitrary number of processors, but with an execution time which is a
monotone non-increasing function of the number of processors. Thus the width of a job is turned from
an input parameter to a decision variable. The first approximation algorithm for moldable scheduling
with a makespan metric appeared in [14]. In a different direction, [12] found the first approximation
algorithm for both rigid and moldable scheduling problems with a (weighted) average completion time

metric. This metric was more appropriate for the interactive workloads, but harder to analyze.

The notion of malleable scheduling is more general than moldable. Here the number of processors
allocated to a job is allowed to vary over time. However, each job must still perform its fixed amount
of work. One can consider the most general problem variant in which the rate at which work is done
is a function of the number of allocated processors, so that the total work completed at any time is
the integral of these rates through that time. However, this problem is enormously difficult, and so the
literature to date [5, 9] has focused on the special case where the speedup function is linear through
a given maximum number of processors, and constant thereafter. It is a tautology that malleable
schedules can only improve objective function values relative to moldable schedules. On the other hand,
malleable scheduling problems are even harder to solve well than moldable scheduling problems. We
will concentrate on malleable scheduling problems with linear speedup up to some maximum, with flow
precedence constraints and any of several different metrics on the completion times of the flows. See
[5, 9] for more details on both moldable and malleable scheduling. The literature on the latter is quite
limited, and this paper is a contribution.

Why does MapReduce fit the theory of malleable scheduling with linear speedup and processor maxima
so neatly? One reason is that there is a natural decoupling of MapReduce scheduling into an Allocation
Layer followed by an Assignment Layer. In the Allocation Layer, quantity decisions are made, and
that is where the mathematical complexity resides. The Assignment Layer then implements these
allocation decisions (to the extent possible) in the MapReduce cluster. Fair, Flex, CircumFlex and our
new FlowFlex scheduler reside in the Allocation Layer. The malleable (as well as rigid and moldable)
scheduling literature is also about allocation rather than assignment. (There is one minor wording issue:
In MapReduce, the atomic unit of allocation is called a slot, and there are typically some small constant
number of MapReduce slots per core in the cluster. So the word processor in the theoretical literature
corresponds to the word slot in a MapReduce context.)

Secondly, both the Map and Reduce phases are composed of many small, independent tasks. Because
they are independent they do not need to start simultaneously and can be processed with any degree
of parallelism without significant overhead. This, in turn, means that the jobs will have nearly linear
speedup. Because the tasks are many and small, the decisions of the scheduler can be approximated
closely. To understand this, consider Figure 1, which depicts the Assignment Layer implementing the
decisions of the Allocation Layer. The Allocation Layer output is a hypothetical malleable schedule
for three jobs. The Assignment Layer works locally at each node in the cluster. Suppose a task on
that node completes, freeing a slot. The Assignment Layer simply determines which job is the most
relatively underallocated according to the Allocation Layer schedule. And then it acts greedily, assigning
a new task from that job to the slot. Examining the figure, the tasks are represented as “bricks” in the
Assignment Layer. The point is that the large number and small size of the tasks makes the right-hand
side a close approximation to the left-hand side. That is, Assignment Layer reality will be an excellent
approximation to Allocation Layer theory.

One final reason is that maximum constraints occur naturally, either because the particular job happens
to be small (and thus have few tasks), or at the end of a normal job, when only a few tasks remain
to be allocated. We note, by the way, that job minima were a key aspect of the Fair [17] scheduler,
because the goal was to avoid the starvation inherent in a simple scheduling scheme like First in, First
Out (FIFO). But Flex [16] demonstrates convincingly that the right way to avoid starvation is actually
to integrate the slot (resource) and time dimensions rather than to focus only on the former. Although
Flex and CircumFlex[15] support job minima, they are not necessary and not considered in this paper.

We note also that Moseley et al. [11] models the MapReduce setting differently (as a “two-stage flexible
flow shop” [13]), and gives approximation and online algorithms for total completion time of independent

MapReduce jobs. Compared to our model (which itself builds on [16]), we observe that [11] handles
precedence at the MapReduce task level. We model interconnected MapReduce jobs instead, with fully
general cost functions. So the results in [11] and ours are incomparable.

1.1 The Model

As discussed, we model the MapReduce application as a parallel scheduling problem. There are P
identical processors that correspond to resources (slots) in the MapReduce cluster. Each flow j is
described by means of a directed acyclic graph. The nodes in each of these DAGs are jobs, and the
directed arcs correspond to precedence relations. We use the standard notation ¢; < i to indicate that
job i1 must be completed before job i5 can begin. Each job i must perform a fixed amount of work s;
(also referred to as the job size), and can be performed on a maximum number §; € [P] of processors
at any point in time.Throughout the paper, for any integer £ > 1, we denote by [¢] the set {1,...,¢}.
We consider jobs with linear speedup through their maximum numbers of processors: the rate at which
work is done on job i at any time is proportional to the number of processors p € [J;] assigned to it.
Job ¢ is complete when s; units of work have been performed.

We are interested in malleable schedules. In this setting, a schedule for job ¢ is given by a function
7i 1 [0,00) — {0,1,...,8;} where [Z 7i(t)dt = s;. Note that this satisfies both linear speedup and
processor maxima. We denote the start time of schedule 7; by S(7;) := argmin{t > 0 : 7;(t) > 0};
similarly the completion time is denoted C(7;) := argmax{t > 0 : 7;(t) > 0}. A schedule for flow j
(consisting of jobs I;) is given by a set {7 : i € I;} of schedules for its jobs, where C (7;,) < S (7i,)
for all i1 < 43. The completion time of flow j is max;c;; €' (7;), the maximum completion time of its
jobs. Our algorithms make use of the following two natural and standard lower bounds on the minimum
possible completion time of a single flow j. (See, for example, [5].)

e Total load (or squashed area): + Zidj Si.
e Critical path: the maximum of Zle ;ZT over all chains i; < --- < iy in flow j.

T

Each flow j also specifies an arbitrary non-decreasing cost function w; : R; — R, where w;(¢) is the cost
incurred when job j is completed at time t. We consider both minisum and minimax objective functions.
The minisum (resp. minimax) objective minimizes the sum (resp. maximum) of the cost functions over
all flows. In the notation of [5, 9] this scheduling environment is Plvar,p;(k) = pi,(cl),éi,prec]*.l We
refer to these problems collectively as precedence constrained malleable scheduling with linear speedup.
Our highly general cost model can solve all the commonly used scheduling objectives: weighted average
completion time, makespan (maximum completion time), average and maximum stretch, and deadline-
based metrics associated with number of tardy jobs, service level agreements (SLAs) and so on. (Stretch
is a fairness metric in which each flow weight is the reciprocal of the size of the flow.) Figure 2 illustrates
4 basic types of cost functions.

1.2 Our Results

We provide approximation algorithms for the above malleable scheduling problems. It turns out that
even under very special precedence constraints (chains of length three) the general minisum and minimax
problems admit no finite approximation ratio. See Theorem 2.1, which is a consequence of [6]. Hence
we use resource augmentation [8] and focus on bicriteria approximation guarantees: An algorithm is
said to achieve an (o,)-approximation if it produces a schedule using 3 > 1 speed processors that has
objective value at most o > 1 times the optimal (under unit speed processors).

Theorem 1.1 The precedence constrained malleable scheduling problem with linear speedup admits a:

e (2,3)-bicriteria approrimation algorithm for general minisum objectives.

"Here var stands for malleable scheduling, pi(k) = piT(l) denotes linear speedup and §; is processor maxima.

e (1,2)-bicriteria approzimation algorithm for general minimaz objectives.

e G-approximation algorithm for total weighted completion time (including total stretch).

e 2-approximation algorithm for maximum weighted completion time (including makespan and maz-
imum stretch).

e (3- 21/p)—approximation algorithm for £,-norm of completion times.

The first two results on general minisum and minimax objectives imply the rest as corollaries. Weighted
completion time is perhaps the most useful metric in practice, for which we obtain a 6-approximation
ratio. For concreteness, one can also focus on this objective while reading the minisum algorithm.

The main idea in our algorithms (for both minisum and minimax) is a reduction to deadline-metrics, for
which a simple greedy scheme is shown to achieve a good bicriteria approximation. The reduction from
minisum objectives to deadline-metrics is based on a minimum cost flow relaxation, and “rounding” the
optimal flow solution. The reduction from minimax objectives to deadlines is much simpler and uses a
“guess and verify” framework that is implemented via bracket and bisection search. Simulation results
in Section 3 show the excellent performance of our algorithms.

2 The Scheduling Algorithm
Our scheduling algorithm has three sequential stages, described at a high level as follows.

1. First we consider each flow j separately, and covert its (general) precedence constraint into a
chain precedence constraint.? We create a pseudo-schedule for each flow that assumes an infinite
number of processors, but respects precedence constraints and the bounds §; on jobs i. Then we
partition the pseudo-schedule into a chain of pseudo-jobs, where each pseudo-job k corresponds to
an interval in the pseudo-schedule with uniform processor usage. Just like the original jobs, each
pseudo-job k specifies a size s, and bound ¢ of the maximum number of processors it can be run
on. We note that (unlike jobs) the bound d; of a pseudo-job may be larger than P.

2. We now treat each flow as a chain of pseudo-jobs, and obtain a malleable schedule consisting of
pseudo-jobs. This stage has two components:

a. We first obtain a bicriteria approximation algorithm in the special case of metrics based on
strict deadlines, employing a natural greedy scheme.

b. We then obtain a bicriteria approximation algorithm for general cost metrics, by reduction to
deadline metrics. For minisum cost functions we formulate a minimum cost flow subproblem
based on the cost metric, which can be solved efficiently. The solution to this subproblem
is then used to derive a deadline for each flow, which we can use in the greedy scheme. For
minimax cost metrics we do not need to solve an minimun cost flow problem. We rely instead
on a bracket and bisection scheme, each stage of which produces natural deadlines for each
chain. We thus solve the greedy scheme multiple times.

At this point, we have a malleable schedule for the pseudo-jobs, satisfying the chain precedence
within each flow as well as the bounds Jy.

3. The final stage combines Stages 1 and 2. We transform the malleable schedule of pseudo-jobs
into a malleable schedule for the original jobs, while respecting the precedence constraints and
bounds 9;. We refer to this as shape shifting. Specifically, we convert the malleable schedule of
each pseudo-job k into a malleable schedule for the (portions) of jobs ¢ that comprise it. The full
set of these transformations, over all pseudo-jobs k and flows j, produces the ultimate schedule.

2.1 Stage 1: General Precedence Constraints to Chains

We now describe a procedure to convert an arbitrary precedence constraint on jobs into a chain con-
straint on “pseudo-jobs”. Consider any flow with n jobs where each job i € [n] has size s; and processor

2Recall that a chain precedence on elements {e; : 1 < i < n}is just a total order, say e1 < ez < -+ < en.

bound 9;. The precedence constraints are given by a directed acyclic graph on the jobs.

Construct a pseudo-schedule for the flow as follows. Allocate each job i € [n] its maximal number
0; of processors, and assign job ¢ the smallest start time b; > 0 such that for all i1 < is we have
bi, > biy, + 5 %1 The start times {b;}"_; can be computed in O(n?) time using dynamic programming.
The pseudo—schedule runs each job i on §; processors, between time b; and b; + (ST: Given an infinite
number of processors the pseudo-schedule is a valid schedule satisfying precedence.

Next, we construct pseudo-jobs corresponding to this flow. Let T = maxj’_; (b; 4 5) denote the comple-
tion time of the pseudo-schedule; observe that 1" equals the critical path bound of the flow. Partition
the time interval [0, 7] into maximal intervals I, ..., I} so that the set of jobs processed by the pseudo-
schedule in each interval stays fixed. For each k € [h], if r;, denotes the total number of processors being
used during I}, define pseudo-job k to have processor bound (k) := ry and size s(k) := r - |Ix| which
is the total work done by the pseudo-schedule during I. (We employ this subtle change of notation
to differentiate chains from more general precedence constraints.) Note that a pseudo-job consists of
portions of work from multiple jobs; moreover, we may have r; > P since the pseudo-schedule is defined
independent of P. Finally we enforce the chain precedence constraint 1 < 2 < ---h on pseudo-jobs.
Notice that the squashed area and critical path lower bounds remain the same when computed in terms
of pseudo-jobs instead of jobs.?

Subfigure 3(a) illustrates the directed acyclic graph of a particular flow. Subfigure 3(b) shows the
resulting pseudo-schedule. Subfigures 3(c-d) show the decomposition into maximal intervals.

2.2 Stage 2: Scheduling Flows with Chain Precedence Constraints

In this section, we consider the malleable scheduling problem on P parallel processors with chain
precedence constraints and general cost functions. Each chain j € [m] is a sequence k:] =< k] ok _y
of pseudo-jobs, where each pseudo-job k has a size s(k) and specifies a maximum number 5(kz) of
processors that it can be run on. We note that the d(k)s may be larger than P. Each chain j € [m] also
specifies a non-decreasing cost function w; : Ry — Ry where w;(t) is the cost incurred when chain j
is completed at time t. The objective is to find a malleable schedule on P identical parallel processors
that satisfies precedence constraints and minimizes the total cost.

Malleable schedules for pseudo-jobs (resp. chains of pseudo-jobs) are defined identically to jobs (resp.
flows) as in Subsection 1.1. To reduce notation, we denote a malleable schedule for chain j by a sequence

7= <7’f . ..,TZ (])> of schedules for its pseudo-jobs, where 7# is a malleable schedule for pseudo-job ki
for each r € [n(j)]. Note that chain precedence implies that for each » € {1,...,n(j) — 1}, the start

time of k7 41, S(74) > C(7), the completion time of k7. The completion time of this chain is
C(17) :=C(7 n(])).
Even very special cases of this problem do not admit any finite approximation ratio:

Theorem 2.1 ([6]) Unless P=NP, there is no finite approzimation ratio for the general malleable
scheduling problem, even with chain precedence constraints of length three.

The proof appears in the appendix. Given this hardness of approximation, we focus on bicriteria
approximation guarantees. We first give a (1, 2)-approximation algorithm when the cost functions are
based on strict deadlines. Then we obtain a (2,3)-approximation algorithm for arbitrary minisum
metrics and a (1, 2)-approximation algorithm for arbitrary minimax metrics.

3Clearly, the total size of pseudo-jobs 22:1 sk =y, Si the total size of jobs. Moreover, there is only one maximal

chain of pseudo-jobs, which has critical path ZZ 1 S: = Zk 1 x| =T, the original critical path bound.

2.2.1 Scheduling with Strict Deadlines

We consider the problem of scheduling chains on P parallel processors under a strict deadline metric.
That is, each chain j € [m] has a deadline d; and its cost function is: w;(t) = 0 if ¢ < d; and oo otherwise.

We show that a natural greedy algorithm is a good bicriteria approximation.

Theorem 2.2 There is a (1,2)-bicriteria approximation algorithm for malleable scheduling with chain
precedence constraints and a strict deadline metric.

Proof: By renumbering chains, we assume that d; < --- < d,,. The algorithm schedules chains in
increasing order of deadlines, and within each chain it schedules pseudo-jobs greedily (by allocating the
maximum possible number of processors). A formal description appears as Figure 4 in the appendix.

First, notice that this algorithm produces a valid malleable schedule that respects the chain precedence
constraints and the maximum processor bounds. Next, we prove the performance guarantee. It suffices
to show that if there is any solution that satisfies deadlines {d;}};”, then C(77) < 2d; for all chains
J € [m]. Consider the utilization function o : [0,00) — {0,..., P} just after scheduling chains [j] in
the algorithm. Let A; denote the total duration of times ¢ in the interval [0, C(77)] where o(t) = P,

i.e. all processors are busy with chains from [j]; and B; = C(77) — A; the total duration of times when
o(t) < P. Note that A; and B; consist of possibly many non-contiguous intervals. It is clear that

i n(£)

1
A< SIS, M

=1 i=1
which corresponds to the total work in the first j chains. Since the algorithm always assigns the
maximum possible number of processors to each pseudo-job, at each time ¢ with o(t) <P we must have
7/ (t) = 6(k]), where i € [n(j)] is the unique index of the pseudo-job with S(77) <t < C(7/). So

§2 s(k))

o O(k])
Notice that the right hand side in (1) corresponds to the squashed area bound of the first j chains,
which must be at most d; if there is any feasible schedule for the given deadlines. Moreover, the right

hand side in (2) is the critical path bound of chain j, which must also be at most d; if chain j can
complete by time d;. Combining these inequalities, we have C (17) = Aj+ B; <2-d;.

B;

(]

: (2)

Thus, if the processors are run at twice their speeds, we obtain a solution that satisfies all deadlines.
This proves the (1, 2)-bicriteria approximation guarantee. |

2.2.2 Minisum Scheduling

We now consider the problem of scheduling chains on P parallel processors under arbitrary minisum
metrics. Recall that there are m chains, each having a non-decreasing cost function w; : Ry — R4,
where wj;(t) is the cost of completing chain j at time ¢. The goal in the minisum problem is to compute
a schedule of minimum total cost. We obtain the following bicriteria approximation in this case.

Theorem 2.3 There is a (2,34 o(1))-bicriteria approzimation algorithm for malleable scheduling with
chain precedence constraints under arbitrary minisum cost metrics.

Proof: For each chain j € [m], define @); := max {Z?’:(Jl) 5(1@5)/5(1{:{), Z:L:(Jl) s(ki)/P} to be the maxi-
mum of the critical path and area lower bounds. We may assume, without loss of generality, that every
schedule for these chains completes by time H := 2m - [max; Q;|. In order to focus on the main ideas,
we assume here that (i) each cost function w;(-) has integer valued breakpoints (i.e. times where the

cost changes) and (ii) provide an algorithm with runtime polynomial in H. In the appendix, we show
that both these assumptions can be removed.

Our algorithm works in two phases. In the first phase, we treat each chain simply as a certain volume
of work, and formulate a minimum cost flow subproblem using the cost functions w;s. The solution to

this subproblem is used to determine candidate deadlines {d;}7", for the chains. Then in the second
phase, we run our algorithm for deadline-metrics using {d;}7, to obtain the final solution.

Minimum Cost Flow. Here, we treat each chain j € [m] simply as work of volume V; := E?:(jl) s(k:f),
which is the total size of pseudo-jobs in j. Recall that a network flow instance consists of a directed
graph (V, E') with designated source/sink nodes and demand p, where each arc e € E has a capacity .
and cost (per unit of flow) of B, . A flow satisfies arc capacities and node conservation (in flow equals
out flow), and the goal is to find a flow of p units from source to sink having minimum cost.

The nodes of our flow network are {aq,...,a,} U{b1,...,bg}U{r,r'}, where r denotes the source and

' the sink. The nodes a;s correspond to chains and b;s correspond to intervals [t — 1,¢) in time. The
arcs are K = Fy U Ey U E5 U E4, where:

Eq :={(r,aj):j €[m]}, arc (r,a;) has cost 0 and capacity V7,
E; :={(a;,b) : je[m],te[H],t>Q;}, arc(a;,b;) has cost w"/—it) and capacity oo,
E3 :={(b;,7") : t € [H]}, arc (bs,r’) has cost 0 and capacity P, and
Ey ={(bt41,b) : t € [H—1]}, arc (by11,b:) has cost 0 and capacity oo.

See also Figure 5. We set the demand p := Z;”Zl Vj, and compute a minimum cost flow f : £ — R,.
Notice that, by definition of arc capacities, any p-unit flow must send exactly V; units through each
node a; (j € [m]). Moreover, this network flow instance is a valid relaxation of any malleable schedule:

Total cost of flow f < opt, optimal value of the malleable scheduling instance. (3)

To prove (3) consider any feasible malleable schedule having completion time C; for each chain j € [m].
By definition Q; is a lower bound for chain j, i.e. C; > @; and hence edge (a;,bc,) € Es for all j € [m].
We will prove the existence of a feasible flow of p units having cost at most Z;n:l w;(Cj). Since the cost

functions w;(-) are monotone, it suffices to show the existence of a feasible flow of p units (no costs) in
the sub-network N’ consisting of edges E4 U E5 U E3U Ey where Ef := {(a;,b) : j € [m], Q; <t < Cj}.
By max-flow min-cut duality, it now suffices to show that the minimum 7 — 7’ cut in this N’ is at
least p. Observe that any finite capacity r — r’ cut in N’ is of the form {r} U {a; : j € S} U
{bs : 1 <t < maxjcgCj}, where S C [m] is some subset of chains. The capacity of edges crossing is:

;V} + P-r]neaéch. (4)

Notice that all the chains in S are completed by time 7' := maxjcg C; in the malleable schedule: so
the total work assigned to the first 7" time units is at least jes Vj- On the other hand, the malleable
schedule only has P processors: so the total work assigned to the first 7' time units is at most P - T.
Hence P-maxjes C; > > jes Vi, and combined with (4) implies that the minimum cut in N’ is at least
721 Vj = p. This completes the proof of (3).

Obtaining Candidate Deadlines Now we round the flow f to obtain deadlines d; for each chain
j € [m]. We define d; := argmin {¢: S flaj,bs) > Vj/2}, for all j € [m]. In other words, d;
corresponds to the “half completion time” of chain j given by the network flow f. Since wj(-) is
non-decreasing and thdj flaj, b)) > V;/2, we have

wi(dy) < Q.ij(.t)

v
t>d; 7

flag,be), Vi€ [m]. (5)

Note that the right hand side above is at most twice the cost of arcs leaving node a;. Thus, if we obtain
a schedule that completes each chain j by its deadline dj, using (5) the total cost > 7", w;(d;) < 2-opt.
Moreover, by definition of the arcs Fjo,

dj > @Q; > (critical path of chain j), Vi € [m]. (6)

By the arc capacities on Ej3, we have » 0", St f(aj,bs) < P-t, for all t € [H].

Let us renumber the chains in deadline order so that dy < dy < ---d,,. Then, using the definition of
deadlines (as half completion times) and the above inequality for ¢ = d;,

J i 4
Vi< 2233 flagb) < 2P-d;, Vje[m]. (7)

=1 (=1 s=1
Solving the Deadline-metric Subproblem Now we apply the algorithm for scheduling with deadline
metrics (Theorem 2.2) using the deadlines {d; }7; computed above. Notice that we have the two bounds

required in the analysis of Theorem 2.2:
e Squashed area: + - ZZZI V; <2-d; for all j € [m] by (7).
e Critical path bound is at most d; for all j € [m], by (6).
By an identical analysis, it follows that the algorithm in Theorem 2.2 produces a malleable schedule

that completes each chain j by time 3-d;. So, running this schedule using processors three times faster
results in total cost at most » 71, w;(d;) <2 - opt. [

In practice we could round the flow based on multiple values, not just the single halfway point described
above. This would yield, in turn, multiple deadlines, and the best result could then be employed.

We note that in the case of weighted completion time, the “bicriteria” guarantees can be combined.

Corollary 2.4 There is a 6-approximation algorithm for minimizing weighted completion time in mal-
leable scheduling with chain precedence constraints, including average stretch.

Proof: This follows directly by observing that if a 3-speed schedule is executed at unit speed then each
completion time scales up by a factor of three. |

2.2.3 Minimax Scheduling

By a similar algorithm we obtain the following result for minimax metrics:

Theorem 2.5 There is a (1,2 + o(1))-bicriteria approxzimation algorithm for malleable scheduling with
chain precedence constraints under arbitrary minimax cost metrics.

Proof: The algorithm assumes a bound M such that M < opt < (1 4 €)M for some small € > 0 and
attempts to find a schedule of minimax cost at most M. The final algorithm performs bracket and
bisection search on M and returns the solution corresponding to the smallest feasible M. (This is a
common approach to many minimax optimization problems, for example [7].) As with the minisum
objective in Theorem 2.3, our algorithm here also relies on a reduction to the deadline metric. In fact
the algorithm is much simpler:

1. Obtaining deadlines. Define for each chain j € [m], its deadline D; := arg max{t : w;(t) < M}.

2. Solving deadline subproblem. We run the algorithm for deadline-metrics (Theorem 2.2) using
these deadlines {Dj};”zl. If the deadline algorithm declares infeasibility, our estimate M is too
low; otherwise we obtain a 2-speed schedule having minimax cost M. We start the algorithm with
a value M corresponding to the critical path bound.

Setting € = 1/m, the binary search on M requires logy(n - Wyay) iterations which is polynomial. |

As in Corollary 2.4, the bicriteria guarantees can be combined for some metrics.

Corollary 2.6 There is a 2-approximation algorithm for minimizing mazimum completion time in
malleable scheduling with chain precedence constraints, including makespan and mazximum stretch.

2.3 Stage 3: Converting Pseudo-Job Schedule into Valid Schedule

The final stage combines the output of Stages 1 and 2, converting any malleable schedule of pseudo-
jobs and chains into a valid schedule of the original jobs and flows. We consider the schedule of each
pseudo-job k separately. Using a generalization of McNaughton’s Rule [10], we will construct a malleable
schedule for the (portions of) jobs comprising pseudo-job k. The original precedence constraints are
satisfied since the chain constraints are satisfied on pseudo-jobs, and the jobs participating in any single
pseudo-job are independent.

Consider any pseudo-job k that corresponds to interval I, in the pseudo-schedule (recall Stage 1), during
which jobs S C [n] are executed in parallel for a total of 7, = >, ¢ d; processors. Consider also any
malleable schedule of pseudo-job k, that corresponds to a histogram o (of processor usage) having area
s = [Ix| - 7, and maximum number of processors at most 7.

We now describe how to shape shift the pseudo-schedule for S in I into a valid schedule given by
histogram o. The idea is simple: Decompose the histogram ¢ into intervals J of constant numbers of
processors. For each interval J € J, having width (number of processors) o(J), we will schedule the
work from a time % sub-interval of Ij; observe that the respective areas in ¢ and I, are equal. Since
> ger|dl-a(J) = sp = |Ix| - Ty, taking such schedules over all J € J gives a full schedule for I;. For a
particular interval J, we apply McNaughton’s Rule to schedule the work from its I, sub-interval. This
rule was extended in [6] to cover a scenario more like ours. It has linear complexity. McNaughton’s Rule
is basically a wrap-around scheme: We order the jobs, and for the first job we fill the area vertically, one
processor at a time, until the total amount of work involving that job has been allotted. Then, starting
where we left off, we fill the area needed for the second job, and so on. All appropriate constraints are

easily seen to be satisfied.

Subfigure 6(a) highlights the first pseudo-job from the last Stage 1 pseudo-schedule. The right-most
histogram of Subfigure 6(b) illustrates the corresponding portion for this pseudo-job in the Stage 2
malleable greedy schedule; the constant histogram ranges are also shown. The equal area sub-intervals
are shown in Subfigure 6(a). Applying McNaughton’s Rule to the first sub-interval we get the schedule
shown at the bottom of Subfigure 6(b). The scheme then proceeds with subsequent sub-intervals.

3 Simulation Results

In this section we describe the performance of our FlowFlex algorithm via a variety of simulation
experiments. We consider two competitors, Fair [17] and FIFO (first in, first out). We will compare
the performance of each of these three in terms of the best lower bounds we can find for these NP-hard
problems. (There is no real hope of finding the true optimal solutions in a reasonable amount of time,
but these lower bounds will at least give pessimistic estimates of the quality of the FlowFlex, Fair and
FIFO schedules.) We will consider nearly all combinatorial choices of scheduling metrics, from five
basic types. They are based on either completion time, number of tardy jobs, tardiness and SLA step
functions. (See Figure 2.) They can be either weighted or non-weighted, and the problem can be to
minimize the sum (and hence average) or the maximum over all flows. So, for example, average and
weighted average completion time are included for the minisum case. So is average stretch, which is
simply completion time weighted by the reciprocal of the amount of work associated with the flow.
Similarly, makespan (which is maximum completion time), maximum weighted completion time, and
thus maximum stretch is included for the minimax case. Weighted or unweighted numbers of tardy
jobs, total tardiness, total SLA costs are included in the minisum case. Maximum tardy job cost,
maximum tardiness and maximum SLA cost are included in the minimax case. (A minimax problem
involving unit weight tardy jobs would simply be 1 if tardy flows exist, and 0 otherwise, so we omit
that metric.) We note that that these experiments are somewhat unfair to both Fair and FIFO, since
both are completely agnostic with respect to the metrics we consider. But they do at least make sense,

when implemented as ready-list algorithms. (In other words, they simply schedule all ready jobs by
either Fair or FIFO rules, repeating as new jobs become ready.) We chose not to compare FlowFlex to
Flex, because that algorithm does optimize to a particular metric, and it is not at all obvious how to
“prorate” the flow-level metric parameters into a set of per job parameters.

The calculation of the lower bound depends on whether the problem is minisum or minimax. For
minisum problems the solution to the minimum cost flow problem provides a bound. For minimax
problems the maximum of the critical path objective function values provides a lower bound. But we can
also potentially improve this bound based on the solution found via the bracket and bisection algorithm.
We perform an additional bisection algorithm between the original lower bound and our solution, since
we know that the partial sums of the squashed area bounds must be met by the successive deadlines.

Each simulation experiment was created using the following methodology. The number of flows was
chosen from a uniform distribution between 5 and 20. The number of jobs for a given flow was chosen
from a uniform distribution between 2 and 20. These jobs were then assumed to be in topological order
and the precedence constraint between jobs j; and jo was chosen based on a probability of 0.5. Then
all jobs without successors were assumed to precede the last job in the flow, to ensure connectivity.
Sampling form a variety of parameters governed whether the flow itself was “big” in volume, and also
whether the jobs in that flow were “tall” and/or “wide” (that is, having maximum width equal to the
number of slots). Weights in the case of completion time, number of tardy jobs and tardiness were also
chosen from a uniform distribution between 1 and 10. The one exception was for stretch metrics, where
the weights are predetermined by the size of the flow.) Similarly, in the case of SLA metrics, the number
of steps and the incremental step heights were chosen from similar distributions with a maximum of 5
steps. Single deadlines for the tardy and tardiness cases was chosen so that it was possible to meet the
deadline, with a uniform random choice of additional time given. Multiple successive deadlines for the
SLA case were chosen similarly. The number of slots was set to 25.

Table 1 illustrates both average and worst case performance (given 25 simulation experiments each)
for 9 minisum metrics. Each row represents the ratio of the FlowFlex, Fair or FIFO algorithm to the
best lower bound available.* So by definition each ratio must be at least 1. Ratios close to 1 are by
definition very good solutions, but, of course, solutions with poorer ratios may still be close to optimal.
Note that FlowFlex performs significantly better than either Fair or FIFO, and often is close to optimal.
FIFO performs particularly poorly on average stretch, because the weights can cause great volatility.
FlowFlex also does dramatically better than either Fair or FIFO on the tardiness metrics. Similarly,
Table 2 illustrates the comparable minimax experiments, for those 8 metrics which make sense. Here
one sees that makespan is fine for all schemes, which is not particularly surprising. But FlowFlex does
far better than either Fair or FIFO on all the others, and some of these are very difficult problems.
Again, some of the Fair and FIFO ratios can be quite bad. In all 8 sets of experiments, FlowFlex is
within 1.26 of “optimal” on average, and generally quite a lot better.

4 Conclusion

We introduced a model for scheduling flows of interconnected MapReduce jobs in a malleable paral-
lel scheduling setting. Since no standard approximation ratios are possible for our general problem
(unless P=NP), we used resource augmentation to obtain constant-factor bicriteria approximations for
both minisum and minimax objectives. We evaluated our algorithms extensively on random problem
instances, demonstrating excellent performance relative to lower bounds on the optimum (obtained as
byproducts of our algorithms), as well as to other prevalent MapReduce scheduling schemes.

4To deal with lower bounds of 0, which is possible for some metrics, we added 1 to both the numerator and denominator.
Generally, the effect of this technical fix will be quite modest.

10

References

1]

[13]

[14]

[15]

[16]

[17]

[18]

P. Agrawal, D. Kifer and C. Olston: Scheduling Shared Scans of Large Data Files, Proceedings
of VLDB, 2008.

Biglnsights: www-01.ibm.com/software/data/infosphere/biginsights/

E. Coffman, M. Garey, D. Johnson and R. Tarjan: Performance Bounds for Level-Oriented
Two-Dimensional Packing Algorithms. SIAM Journal on Computing, 9(4), 808-826, 1980.

J. Dean, J. and S. Ghemawat: Mapreduce: Simplified data processing on large clusters. ACM
Transactions on Computer Systems, 51(1),107-113, 2008.

M. Drozdowski, Scheduling for Parallel Processing, Springer, 2009.

M. Drozdowski and W. Kubiak, Scheduling Parallel Tasks With Sequential Heads and Tails,
Annals of Operations Research, 90, 221-246, 1999.

D.S. Hochbaum and D.B. Shmoys, A unified approach to approximation algorithms for bottle-
neck problems, J. ACM, 33(3), 533-550, 1986.

B. Kalyanasundaram and K. Pruhs, Speed is as powerful as clairvoyance, J. ACM, 47(4), 2000,
617-643.

J. Leung, Handbook of Scheduling, Chapman and Hall/CRC, 2004.

R. McNaughton, Scheduling with Deadlines and Loss Functions, Management Science, 6(1),
1-12, 1959.

B. Moseley, A. Dasgupta, R. Kumar and T. Sarlds, On scheduling in map-reduce and flow-shops,
In SPAA, 289-298, 2011.

U. Schwiegelshohn, W. Ludwig, J. Wolf, J. Turek and P. Yu, Smart SMART Bounds for Weighted
Response Time Scheduling, STAM Journal on Computing, 28(1), 237-253, 1999.

P. Schuurman and G.J. Woeginger, A polynomial time approximation scheme for the two-stage
multiprocessor flow shop problem, Theor. Comput. Sci., 237(1-2), 105-122, 2000.

J. Turek, J. Wolf and P. Yu: Approximate Algorithms for Scheduling Parallelizable Tasks, in
SPAA, 1992.

J. Wolf, A. Balmin, D. Rajan, K. Hildrum, R. Khandekar, S. Parekh, K.-L. Wu and R. Vernica,
On the Optimization of Schedules for MapReduce Workloads in the Presence of Shared Scans,
VLDB Journal, 21(5), 2012.

J. Wolf, D. Rajan, K. Hildrum, R. Khandekar, R. Kumar, S. Parekh, K.-L.. Wu and A. Balmin,
FLEX: A Slot Allocation Scheduling Optimizer for MapReduce Workloads, in Middleware, 2010.

M. Zaharia, D. Borthakur, J. Sarma, K. Elmeleegy, S. Schenker and I. Stoica, Job Scheduling
for Multi-User MapReduce Clusters, UC Berkeley Technical Report EECS-2009-55, 2009.

M. Zaharia, D. Borthakur, J. Sarma, K. Elmeleegy, S. Shenker and I. Stoica: Delay Scheduling:
A Simple Technique for Achieving Locality and Fairness in Cluster Scheduling, in EuroSys, 2010.

11

A Missing Proofs

Proof of Theorem 2.1. This follows directly from the NP-hardness of the makespan minimization
problem called P|lanyl, pmitn|Cpee due to Drozdowski and Kubiak [6]. We state their result in our
context: each chain is of length three, where the first and last pseudo-jobs have maximum § = 1, and
the middle pseudo-job has maximum é = P. Then it is NP-hard to decide whether there is a malleable
schedule of makespan equal to the total load bound (denoted M).

We create an instance of general cost malleable scheduling as follows. There are P processors and the
same set of chains. The cost function of each chain j is w; : Ry — R4 where w(t) = 0if t < M and
w(t) =1if t > M. Clearly, the optimal cost of this malleable scheduling instance is zero if and only if
the instance of P|lanyl, pmtn|Cie, has a makespan M schedule; otherwise the optimal cost is one.

Removing assumptions in proof of Theorem 2.3. We will show that both assumptions made
earlier can be removed, while incurring an additional 1+ o(1) factor in the processor speed. Recall the
definitions of lower bounds @; for chains j € [m], and the horizon H = 2m - max; Q;. By scaling up
sizes, we may assume (without loss of generality) that min; @; > 1. So the completion time of any
chain in any schedule lies in the range [1, H]. Set € := 1/m, and partition the [1, H] time interval as:

Ty = [(1 +e)f 1+ e)g] , forallt=1,... logy, H.

Note that the number of parts above is N := log;, . H which is polynomial. We now define the poly-
sized flow network on nodes {a1,...,an} U{b1,...,bx} U {r,r'}, where r denotes the source and 7’
the sink. The nodes a;s correspond to chains and bys correspond to time intervals Tys. The arcs are
F = FE, U E>U E3U Ey, where:

Eq:={(r,aj):j €[m]}, arc (r,a;) has cost 0 and capacity V7,

By = {(a;,b)) : j€[m],Le[N],Q; < (1+e)}, arc(aj,be) has cost w; ((1+¢€)*~!) /V; and capacity oo,
E3 :={(bg,r") : £ € [N]}, arc (b, r’) has cost 0 and capacity |T| - P, and
Ey = {(bpy1,be) : £ € [H— 1]}, arc (bey1,be) has cost 0 and capacity oo.

Above, |Ty| = e-(1+¢€)*~! denotes the length of interval T;. As before, we set the demand p := > Vi,
and compute a minimum cost flow f : £ — R,. Notice that, any p-unit flow must send exactly V;
units through each node a; (j € [m]). Exactly as in (3) we can show that this network flow instance
is a valid relaxation of any malleable schedule. The next two steps of computing deadlines and solving
the deadline-metric subproblem are also same as the proof in Theorem 2.3. The only difference is that
the squashed area (7) and critical path (6) lower bounds are now larger by a 1 + € factor, due to the
definition of intervals Tys. Thus, the algorithm is a (2,3(1 + ¢))-bicriteria approximation.

Minimizing /,-norm objectives. Our general minisum algorithm (Subsection 2.2.2) is also a
(3 21/ P)-approximation algorithm for minimizing the ¢,-norm of completion times, for any p > 1.

1/
Recall that for a schedule with completion times {C;}7,, the £)-norm objective equals (Z;n:l Cf) g

We use the minisum cost function w;(t) = t” in Theorem 2.3. The algorithm in Theorem 2.3 then
gives a (2,3)-bicriteria approximation for the minisum objective Z;”:l C’f . Viewed as a unit speed
schedule this is a (2 - 37)-approximation, and hence for the ¢, norm objective we obtain the claimed
(3 - 21/P)-approximation algorithm.

12

B Figures And Tables

@ g
& =) =
Processors Processors
Allocation Layer Model Assignment Layer Reality
Figure 1: MapReduce and Malleable Scheduling.
(a) Completion Time (b) Number of Tardy Flows (c) Tardiness (d) SLA Costs
5 5 3 / 5
Time Time Time Time

Figure 2: Typical Cost Functions Types.

SN,
DNEZE

Time

Processors
(c) (d)
m E
E |
(=
Processors Processors

Figure 3: FlowFlex Stage 1.

13

11:
12:
13:

initialize utilization function o : [0,00) — {0,1,..., P} to zero.
:for j=1,...,mdo
fori=1,...,n(j) do '
set S(77) < C(7]_;) and initialize 7 : [0,00) — {0,..., P} to zero.

for each time ¢ > S(7/) (in increasing order), set Tij(t) — min{P—J(t), (5(kf)}, until

ftzs(nj)#(t) dt = s(k).

end for

end if
end for

update function o o — 7.

set C(9) — C(+?

set C(Tij) — max{z : Tij(z) > 0}

J

n ()

if C(77) > 2-d; then
instance is infeasible.

Figure 4: Algorithm for Scheduling Chains with Deadline Metric

a1

cost w;(t)/V;

by

When unspecified, cost = 0, cap = oo.

Figure 5: The Minimum Cost Flow Network.

14

(a) Pseudo-Schedule

The highlighted interval on the left maps
to the solid histogram on right

(b) Malleable Schedule

Equal area —1

Figure 6: FlowFlex Stage 3.

Constant Histogram Ranges in o

Algorithm FlowFlex Fair FIFO
Completion Time 1.23/1.46 | 2.10/2.25 | 2.07/ 3.00
Stretch 1.22/1.38 | 3.79/6.32 | 7.92/21.03
Weighted Completion Time | 1.25/1.52 | 2.42/3.15 | 2.30/ 5.39
Number of Tardy Jobs 1.42/2.12 | 1.88/3.97 | 1.64/ 3.31
Weighted Number of Tardy | 1.65/3.06 | 2.71/9.31 | 2.14/ 7.08
Tardiness 1.51/3.11 | 3.51/8.54 | 3.74/10.55
Weighted Tardiness 1.77/4.11 | 4.84/8.99 | 5.25/16.54
Unit SLA 1.62/3.27 | 2.62/5.19 | 2.22/ 4.27
SLA 1.52/2.44 | 2.56/5.31 | 2.32/ 4.96

Table 1: Minisum Simulation Results (Average/Worst Case)

Algorithm FlowFlex Fair FIFO
Makespan 1.01/1.07 | 1.01/ 1.10 1.02/ 1.08
Stretch 1.03/1.14 | 4.33/13.42 | 15.67/55.00
Weighted Completion Time | 1.05/1.14 | 2.22/ 3.81 | 2.15/ 3.81
Weighted Number of Tardy | 1.12/1.17 | 1.50/10.00 | 1.47/10.00
Tardiness 1.07/1.35 | 1.13/ 1.81 1.47/ 4.12
Weighted Tardiness 1.08/1.31 | 2.69/ 5.28 2.92/ 5.92
Unit SLA 1.26/1.50 | 1.50/ 3.00 1.42/ 2.00
SLA 1.10/1.43 | 1.59/ 2.63 | 1.54/ 2.63

Table 2: Minimax Simulation Results (Average/Worst Case)

15

	Introduction
	The Model
	Our Results

	The Scheduling Algorithm
	Stage 1: General Precedence Constraints to Chains
	Stage 2: Scheduling Flows with Chain Precedence Constraints
	Scheduling with Strict Deadlines
	Minisum Scheduling
	Minimax Scheduling

	Stage 3: Converting Pseudo-Job Schedule into Valid Schedule

	Simulation Results
	Conclusion
	Missing Proofs
	Figures And Tables

