
RC25366 (AUS1303-004) March 7, 2013
Computer Science

IBM Research Report

The Power 775 Architecture at Scale

R. Rajamony, M. W. Stephenson, W. E. Speight
IBM Research Division

Austin Research Laboratory
11501 Burnet Road
Austin, TX 78758

USA

This material is based upon work supported by the U. S. Defense Advanced Research Projects Agency (DARPA) under its Agreement
No. HR0011-07-9-0002.

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

The Power 775 Architecture at Scale

Abstract
We describe the IBM Power 775, a supercomputing system

that was designed to provide high performance at very large
scales. The system recently attained world record perfor-
mance numbers for three important, communication-heavy
supercomputing benchmarks: RandomAccess, PTRANS, and
FFT 1. At the heart of the Power 775’s performance is the
“hub module”, which is a high-radix router containing forty-
seven copper and optical links with a switching capacity of
over 1.1 Tbyte/second. For the scale of the systems we have
achieved, such bandwidth is unprecedented. As a result, we
were forced to develop a complete software stack to fully
leverage the communication capabilities of the system. In
this paper we evaluate the Power 775 server at scales up to
2 Petaflops (63,360 POWER7 cores), discuss hardware and
software tradeoffs considered during the design process, and
finally present some post facto lessons learned.

1 Introduction

The design of the Power 775 (henceforth referred to as
P775) began in 2001 as part of a DARPA program called
PERCS [21], and centered around the premise that high-
performance communication would be the significant chal-
lenge for large-scale computing systems.

It is well known that several real-world analytics and su-
percomputing problems are communications bound. These
problems spend more time moving data than they do oper-
ating on data. Indeed, we can see this effect today even on
relatively small GPU systems with high-bandwidth connec-
tions to memory [16]. The problem of operand delivery is
exacerbated as we increase the size of the system under con-
sideration.

Consider an operation as conceptually simple as matrix
transposition on which many algorithms rely. A parallel im-
plementation of transpose may require a large fraction of the
system to communicate, including potentially requiring ev-
ery process to communicate with every other process. This is
clearly a situation that becomes more expensive as the num-
ber of processes increase, and the maximum spatial distance
between any two processes increases.

Much of the design effort for the P775 focused on the
hub module, which is the heart of the system’s commu-
nication fabric. The hub module is a high-radix router
that switches data between sixteen 10 Gbyte/s optical links,
twenty-four 5 Gbyte/s optical links, and seven 24 Gbyte/s

1While the Power 775 currently holds the number two spot in Global
FFT, its efficiency when computing the FFT exceeds that of the number one
system’s by over 3.5×.

copper links, with each link delivering the stated capacity in
each direction. The hub chip switches raw data at over 1.1
Tbyte/second.

As demonstrated in November 2012, the P775 is over 3×
faster than its nearest competitor in parallel matrix transpo-
sition, and over 4× faster on RandomAccess, a global mem-
ory performance benchmark [9]. These differences are even
starker when the comparison is normalized and done on a
per unit FLOP basis. On Global FFT, the P775 is only 1.6×
worse than the K computer while being 5.5× smaller in peak
capacity.

In this paper we describe the design of the P775 and eval-
uate it on three communication-heavy HPCC benchmarks [9]
commonly used to gauge supercomputers. More specifically,
we make the following contributions:

• We evaluate the P775 server “at scale” on workloads
that traditionally perform poorly. This is the first paper
to evaluate the P775 system at large scales.

• We describe how we attained world record perfor-
mances for the communication heavy HPCC bench-
marks: RandomAccess, PTRANS, and Global FFT.

• We learned many lessons through the course of this
decade-long project. Of particular importance to this
community, we describe system architectural features
that we found useful, that we found detrimental, and
that we wished we had.

The next section walks the reader through the sys-
tem level design, starting with the microarchitecture. We
also describe the compute node, other building blocks,
and culminate with a description of an at-scale P775
server. Section 3 describes the communication-heavy, high-
performance-computing workloads we use to analyze the
P775, and we perform the analysis in Section 4. Section 5
is a retrospective discussion of lessons learned. We review
related work in Section 6, and finally, Section 7 concludes
the paper.

2 The Architecture
This section provides a bottom-up view of the system ar-

chitecture. We start by describing the main compute engine
of the P775, the POWER7 chip. Then we introduce the com-
pute node, which is a collection of tightly interconnected
POWER7s and a hub chip. We finally describe the P775’s
interconnection topology and routing schemes.

The entire system, including the processors, memories,
and hub chips, is water cooled. Thermal waste dissipated

1

by purified water circulating over the system components is
exchanged with the facility chilled water through a set of four
water conditioning units at the bottom of each rack.

2.1 The POWER7

The POWER7 chip is the main compute engine of the
P775. The POWER7 processor has been thoroughly de-
scribed elsewhere [5, 14, 15], so we only discuss some of
its most pertinent features here. The POWER7 chip has
eight cores and each core has an independent set of inclu-
sive L1, L2, and L3 caches 2. The cores are superscalar,
highly speculative, and support up to 4-way simultaneous
multi-threading (SMT). The microarchitecture also imple-
ments a set of integer and floating point SIMD instructions,
referred to as VSX (Vector Scalar eXtension). Using VSX,
each core can process up to eight double precision float-
ing point operations per cycle. There are two memory con-
trollers in every POWER7 chip, which connect through eight
memory channels to multi-ported DDR3 1333MHz DIMMs.
The POWER7 hardware prefetchers maintain enough state to
prefetch up to twelve concurrent memory streams.

2.2 The Compute Node (Octant)

With the computational building block of the P775 in
place, we can discuss the compute node, which for historical
reasons, is also called an octant. A compute node contains
a Quad Chip Module (QCM) and a hub chip. The QCM,
shown in Figure 1, contains four tightly connected POWER7
chips providing 32 cores within a Linux or AIX SMP image.
The tight connection is provided by the XYZABC links. This
name makes more sense in the context of Figure 1, where we
can see the direct communication channel between all pairs
of POWER7 chips in the QCM. The bandwidth of each of
these links is 48 Gbyte/s in each direction.

A compute node supports up to 256 Gbytes of memory,
and its 32 cores run at 3.84GHz, attaining a peak perfor-
mance of 0.98 Tflop/s.

Figure 1. The XYZABC links in a QCM.
From a management perspective, it is important to note

that a QCM runs a single operating system image [21], and
at the level of a QCM, programmers can use posix threads
and shared memory to orchestrate communication and com-
putation.

2The L3 can also be shared among the cores, as noted in [6].

2.2.1 The Hub Chip

The compute node contains a fifth chip, the hub chip, that is
the heart of the P775 architecture. The hub chip is a high-
radix router that enables system sizes up to 16,384 compute
nodes. The hub chip uses Llocal, Lremote, and D links to
connect to other compute nodes. We discuss these later.

The hub chip performs several important I/O functions
and optimizations. It uses a high-performance coherent bus,
the PowerBus, to fully participate in coherence operations
that take place among the four POWER7 chips. Software can
register portions of a process’ effective address space with
the hub chip’s memory management unit. Consistency can
then be maintained with the translation look-aside buffers
(TLBs) on the QCM’s cores. This important feature is the
building block for using a global address space across the
entire system. Specific packet types exist that can instruct a
hub chip to atomically perform certain operations on regis-
tered memory without involving the local cores.

The hub chip also has PCI connections (two 16× and a
single 8×) that are used to connect to storage adapters. Stor-
age disk enclosures are integrated into the P775 rack. Storage
server functions are executed on QCMs set aside for that pur-
pose. A description of the storage performance of the P775
is outside the scope of this paper.

Hub chips are the gateways for global communications.
All collective operations (e.g., barrier, reduce, broadcast, pre-
fix sums, etc.) necessarily funnel through hub chips. To
improve the performance of collective operations, the hub
chip contains a Collective Acceleration Unit (CAU), which
reduces the involvement of the POWER7 cores for many
collective operations [24]. In the work we present here, we
found the synchronization acceleration provided by the CAU
to be especially useful.

Figure 2 shows a broader view of the QCM links (QCMs
are on the blue planes). The links that connect the hub chip
to the POWER7 chips are called W links, and they provide a
bandwidth of 24 Gbyte/s in each direction.

The hub chip is 582 mm2 in size, is implemented using 45
nm Cu SOI lithography, and contains 440 million transistors
and 13 levels of metal [4].

2.3 Drawers

Figure 2 shows the P775 architecture at scales larger than
a single compute node. A drawer is a collection of eight
compute nodes (the green boxes in the figure). Physically,
a drawer is 3.6” high (2U), 34.4” wide, and 54” deep, and
weighs close to 350 lbs. The 256 cores in a drawer attain a
peak performance of 7.86 Tflop/s.

Within a drawer, a set of copper Llocal links provides
direct connectivity between each pair of the eight compute
nodes. These links operate at 24 Gbyte/s in each direction.

2

Figure 2. The P775 topology. A QCM consists of four POWER7 chips and a hub chip. A drawer contains up to
eight compute nodes, and a supernode contains up to four drawers. There is full, direct connectivity between the
compute nodes within a drawer (via local L-links), and between drawers (via remote L-links). Supernodes also
have full, direct connectivity (via optical D-links).

2.4 Supernodes

In canonical form, four drawers comprise a supernode
(the yellow boxes in the figure). A supernode therefore con-
tains 32 nodes for a total of 1024 cores, and a peak perfor-
mance of 31.4 Tflop/s. A rack can be configured to house two
or three supernodes, with a two-supernode-per-rack configu-
ration permitting more storage than the three-supernode-per-
rack configuration.

Within a supernode, Lremote links connect each pair of
compute nodes in different drawers with a bandwidth of 5
Gbyte/s in each direction. The combination of Llocal and
Lremote links fully connects a compute node within a supern-
ode to every other compute node within that supernode.

2.5 At Scale

The maximal configuration supported by the architecture
is 512 supernodes, resulting in 16,384 nodes, 512K cores,
and a peak performance of 16 Pflop/s.

Optical D-links provide full connectivity between each
pair of supernodes. The bandwidth of each link is 10 Gbyte/s
in each direction and they can be ganged up. Because it not

obvious from the figure, we specifically point out that the
topology was designed as a two-level interconnect that fully
connects any two compute nodes in at most three hops [21].

2.6 Routing

The P775 moves packets using both direct and indirect
routes [3]. A direct route employs one of potentially many
shortest paths between any two compute nodes in the system.
With only two levels in the topology, the longest direct route
can have at most three hops.

Indirect routes provide increased point-to-point band-
width and guard against potential hot spots in the intercon-
nect. An indirect route has an intermediate compute node in
the route that resides on a different supernode from that of
the source and destination compute nodes. Thus, it is a com-
position of a shortest path from the source compute node to
the chosen intermediate node, and a shortest path from the
intermediate node to the destination node.

3 Communication-Heavy HPC Workloads

This section describes three communication-heavy work-
loads from the HPC Challenge benchmark suite [9, 19] that

3

we consider in this paper. The motivation for using these in
our evaluation is:

• These workloads are communication heavy and mem-
ory intensive. It is a common observation in the com-
puter architecture literature that memory and intercon-
nection bandwidths are not scaling nearly as fast as
compute capabilities. These workloads nicely highlight
the widening capability gap.

• These workloads can be heavily modified to take advan-
tage of special features of the target platform. We were
able to leverage the P775’s architecture to elegantly tune
these applications from the algorithm level down to the
assembly level.

• Because these are standardized benchmarks, vendors
and researchers can conveniently compare our results
to those for other systems.

3.1 RandomAccess (GUPS)

Whereas some benchmarks, such as LINPACK, are pri-
marily designed to measure the compute capabilities of a
system, RandomAccess is designed to stress memory and in-
terconnect performance.

Conceptually, a “global address space” is created that is
made up of the memories of all the compute elements partici-
pating in the execution. Each compute element then launches
a series of operations that update the values of locations
within this global address space. The locations are chosen
at random and could point to a location local or remote to the
current compute element. An update consists of performing
an “exclusive-or” operation between the existing contents of
the memory location and a random value. The contents of the
memory location do not have to be retrieved. Performance is
measured in terms of Giga Updates Per Second (GUPS).

3.2 PTRANS

PTRANS (parallel matrix transpose) is a conceptually
simple benchmark that performs the matrix operation

A = AT +B (1)

whereA andB are random, double precision n by nmatrices
(i.e., A,B ∈ Rnxn). The stated purpose of PTRANS is to
measure “the total communications capacity of the system
interconnect” [19]. The data transfer rate is simply the size
(in bytes) of matrix A divided by the time it takes to perform
the operation in Equation 1.

It is interesting to note that the benchmark imposes strict
requirements on the way data is distributed between the sys-
tem’s processes. The rules ensure that communication can-
not be circumvented through an artful mapping between pro-
cesses and compute elements. Figure 3 shows the salient
points of the PTRANS data distribution including the notions

of P and Q that determine how the data is tiled [7]. For the
cases considered in this paper, we chose P and Q to be rel-
atively prime, necessitating that every process communicate
data to every other process in the system.

3.3 Global Fast Fourier Transform (FFT)

The Fast Fourier Transform (FFT) is one of the most
widely used computations in the world. It is used in a di-
verse set of fields, for computations as varied as convolution
to solving partial differential equations. The FFT computes
the Discrete Fourier Transform in time Θ(n log n) [10].

Algorithm 1 The six-step recursive FFT algorithm.
function F = FFT(f)
1 n = length(f)
2 [n1, n2] = factor(n)
3 M = reshape(f , n1, n2)
4 M1 = transpose(M) % Step 1: global all-to-all
5 for k = 1:n2 % Step 2: local computation
6 M2(k,:) = FFT(M1(k,:)) % Compute the FFTs along
7 end % the rows of M1

8 M3 = transpose(M2) % Step 3: global all-to-all
9 M4 = M3 .* Vn1×n2 % Step 4: twiddle factors [10]
10 for k = 1:n1 % Step 5: local computation
11 M5(k,:) = FFT(M4(k,:)) % Compute the FFTs along
12 end % the rows of M4

13 F = transpose(M5) % Step 6: global all-to-all

In this work we consider the widely used Cooley-Tukey
algorithm, which is stated recursively in Matlab in Algo-
rithm 1. Of particular importance for large-scale multipro-
cessor systems, note that there are three global transposes
(requiring all-to-all communication), and two local compute-
intensive phases.

The algorithm treats the 1D input f as a 2D n1×n2 matrix
M , where n1 · n2 = length(f).3 Thereafter, all of the local
computation, including the recursive calls on lines 6 and 11,
operates along the rows of the intermediate matrices. The ex-
plicit transpositions on lines 4, 8, and 13 optimally localize
the data for subsequent computation [12]. With this view in
mind, it becomes more evident how to map this algorithm to
processes: each process “owns” a contiguous slab of the in-
termediate matrices so that all computation is process-local.

Notice that we do not include the bottom-out condition of
the recursion. In the multiprocessor setting it is typical to
relegate the recursive steps (lines 6 and 11) to a highly-tuned
FFT library. Again, this is feasible because the memory re-
quired for these steps is local to the process.

3Without loss of generality, we assume row-major order. We also assume
length(f) is not prime.

4

Figure 3. The A and B matrices are block-cyclic distributed with a randomized assignment of matrix chunks to
processes. The processes are arranged as a P ×Q grid (2× 3 here). The three sub-figures on the right-hand side
show the data “owned” by process T2 and how it is stored in column major order within its address space.

4 Results

This section discusses results obtained on a 64-supernode
P775 system named Hurcules 4 with a peak performance of
2 Pflop/s. For each of the workloads, we highlight important
aspects of the system’s design, including software consider-
ations, that were necessary for attaining high performance.
Performance data on additional workloads is available on the
HPC Challenge website [9].

We obtained a first set of results at the full Hurcules size
involving 1,980 compute nodes running Linux.5 In addition,
we measured the scalability of RandomAccess and PTRANS
on up to 1,472 compute nodes equating to 48 supernodes. We
then infer the scalability of Global FFT using the measured
PTRANS scalability and the performance of serial FFT on a
single compute node.

4.1 RandomAccess

RandomAccess rules forbid sorting that transforms the
random updates into regular (non-random) operations. Fur-
thermore, no more than 1,024 updates can be buffered at a
compute element at any given time. On large systems, the
buffered updates are almost all bound for distinct destina-
tions. The traditional high-performance solution to Rando-
mAccess introduces software-based dimension-ordered rout-
ing that aggregates individual updates into larger packets
bound to the same region of the larger system [13]. Such a
scheme is inefficient because it uses more interconnect band-
width than required and because of the software overheads in
breaking up and reassembling packets at intermediate desti-
nations.

On the P775, we implement RandomAccess as a multi-
threaded program running concurrently on all compute
nodes. At startup, the software “registers” the local portion
of the RandomAccess table with the local hub chip. The
threads craft packets (each specifying a distinct update op-
eration) placing them in send FIFOs, which are data struc-

4The machine name is indeed (mis)spelled Hurcules [sic].
5Even though a 64-supernode system contains 64 × 32 = 2, 048 com-

pute nodes, a small number of these are set aside for storage, login, and
fail-in-place.

Figure 4. RandomAccess scaling on Hurcules. The
Y-axis is in terms of GUPS per compute node (Sys-
tem GUPS performance divided by the number of
nodes used) The 1.08 GUPS/node asymptote indi-
cates linear performance scaling.

tures from where the hub chip picks up packets. Each packet
is 32-bytes in size and specifies the effective address of the
remote location, the compute node housing the location, and
the operand to be used in the update. The local hub chip
sends the packets to the remote compute node’s hub chip,
where the update is performed. The hub chip hardware is
optimized to move 32-byte atomic read-modify-write pack-
ets that are aggregated (dis-aggregated) into (from) 128-byte
network flits at intermediate hub chips.

Figure 4 shows the performance of RandomAccess as
the number of supernodes is varied. The Y-axis shows the
system performance in Giga Updates Per Second (GUPS)
divided by the number of compute nodes. A flat line on
this graph indicates that an incremental increase of compute
power yields a linear increase in performance. Indeed, the
graph asymptotes to a performance of 1.08 GUPS per com-
pute node. No known previous system has exhibited this
level of performance.

The P775 has an abundance of interconnect links and in-
terconnect bandwidth. Every pair of supernodes on Hurcules
is connected by eight D optics links, providing a bandwidth

5

of 80 Gbyte/s per supernode pair in each direction. However,
the achievable bisection bandwidth of a two-supernode sub-
set of Hurcules is far higher, since indirectly routed traffic
can bounce off any of the remaining 62 intermediate supern-
odes in the system (see Section 2.6). An express goal of
our scaling studies was to determine where the interconnect
stops becoming a bottleneck. We achieve this by deliberately
considering only direct routing.

Thus, a dramatic performance drop can be seen when
going from one supernode (where the performance is 1.08
GUPS per compute node) to two supernodes (where the per-
formance is 0.1 GUPS per compute node). RandomAccess
performance steadily increases linearly as more supernodes
are added to the system, continuing until the interconnect is
no longer the bottleneck at 24 supernodes.

Beyond 24 supernodes, the performance starts oscillating
in a “sawtooth” pattern that gradually trends upwards. The
reason for the drop in GUPS per compute node from 24 to 25
supernodes, from 32 to 33 supernodes, and from 40 to 41 su-
pernodes as well as the rising trend of the overall GUPS per
compute node has to do with how non-local RandomAccess
traffic is routed.

The first hop taken by a non-local RandomAccess flit (i.e.,
a RandomAccess flit that is destined for a different supern-
ode) is always a Llocal hop. This link also has a limit on
how much traffic it can carry. When switching from 24 to
25 supernodes, there is one Llocal link that has to carry twice
the traffic as the other links within that drawer. As the num-
ber of supernodes increases, the proportionally more traffic
to be carried by the one Llocal link as compared to the other
links in the drawer decreases. In other words, the imbalance
in Llocal link traffic reduces as the number of supernodes in-
creases. We expect the asymptote to eventually become the
1.08 GUPS obtained on a single supernode.

4.2 PTRANS

The P775 has very high raw interconnect bandwidth. The
main challenge with obtaining high-performance on the par-
allel matrix transpose is in delivering that bandwidth through
the communications stack to the workload. We achieved
this by implementing an elegant solution for dealing with the
boundary condition of packet losses.

In the absence of fully reliable hardware packet transport,
protocol stacks typically make a local copy of all transmitted
data, and use a timer-driven, acknowledgment-based mecha-
nism to perform re-transmissions and garbage collect copies
of the sent data. On the P775, there are two reasons why
a data packet sent to/from the hub chip FIFOs [3] can get
lost. First, the hardware optical laser transceiver can itself
fail. This is rare (with a predicted MTTF of around a week)
for which an out-of-band checkpoint-restart technique is apt.
The more prevalent reason for packet losses is due to the re-
ceive FIFO into which the hub chip deposits packets [3] be-
coming full. This happens when the receiving software is not

emptying a receive FIFO as fast as the hub chip is filling it.
Packets are dropped in this situation to prevent traffic from
backing up and unfairly causing other parts of the system
(perhaps executing other workloads) to get congested.

Rather than add a re-transmission protocol to handle such
dropped packets, we devise a solution to eliminate the possi-
bility of the receive FIFO ever getting full. We break up the
data transfer into “rounds” that only transfer as much data as
can fit into pre-allocated receive FIFO buffers. We set aside
4 Gbytes of buffer space on every compute node, equal to
slightly over 3% of the node’s physical memory. Because the
size of the data being transferred is known a priori, each pro-
cess is able to precompute the exact receive FIFO at the des-
tination for each packet it will send. The receivers can also
calculate exactly how much data will arrive on each FIFO.

After all data is sent for a round and after it has all been
received, each process enters a global barrier that precludes
buffer overruns. Upon exit from the barrier, all processes be-
gin the procedure again until all rounds are completed. This
algorithm makes use of the fact that on the P775, the time to
carry out a round (i.e., pump out 4 Gbytes) far exceeds the
time to perform a global barrier using the CAU.

To eliminate hot spotting in the interconnect, we would
like to randomize the destinations to which packets are sent.
Interestingly, the data distribution adopted by PTRANS al-
ready randomizes the mapping of data blocks to tasks; al-
though this was adopted to discourage solutions that reduce
data transfer through clever mappings of tasks to physical
system nodes. Traversing the A matrix in order is therefore
sufficient to ensure that the packets being sent are bound for
different destinations. We revisit this aspect when discussing
the transpose phase of the Global FFT.

We further simplify our implementation by eliminating
the need to maintain state beyond that which can be encap-
sulated in a single packet. The largest packet that can be sent
on the P775 interconnect is 2048 bytes (of course, software
can always compose longer messages using multiple pack-
ets). We limit ourselves to sending no more that 2048 bytes
of data and metadata, which a receiver uses to deposit re-
ceived data into the correct places within its address space.
More specifically, we use a PTRANS block size of 15×15 to
ensure that each such block can be both transported within an
indivisible P775 packet and dealt with independently by the
receiver. Each block and its associated metadata fits within a
single 1920-byte packet.

Figure 5 shows the scalability of PTRANS between one
and forty-eight supernodes. As in the case of RandomAc-
cess, the Y-axis on the graph shows the system performance
divided by the number of compute nodes. A flat line on
this graph indicates that an incremental increase of compute
power yields a linear increase in performance. The graph
asymptotes to a performance of over 30 Gbyte/s per com-
pute node. This level of performance is far superior to that
exhibited by other high performance computing systems [9].

6

Figure 5. PTRANS scaling on Hurcules. The Y-
axis is in terms of PTRANS per compute node (sys-
tem PTRANS performance divided by the number of
compute nodes used). Linear scaling is clearly evi-
dent from the performance asymptote.

As with RandomAccess, performance falls dramatically
when going from one to two supernodes simply because in
Hurcules, directly routed traffic can only use the eight physi-
cal wires connecting the two supernodes.

At one supernode, the system performs at 919 Gbyte/s
corresponding to 29.7 Gbyte/s/octant. At two supernodes,
the performance falls to 260 Gbyte/s, corresponding to 4.2
Gbyte/s/octant. As the number of supernodes increases be-
yond two, PTRANS performance steadily increases on a per-
supernode basis. This happens until we reach 19 supernodes
at which point the system has sufficient bisection bandwidth
such that the D-link capacity is no longer a bottleneck.

Beyond 19 supernodes, there is performance variation at
different supernode levels, but the per-octant PTRANS per-
formance stabilizes to be≈ 30 Gbyte/s/octant. The sawtooth
shaped performance behavior is not seen in G-PTRANS be-
cause the local L-links offer the full link capacity for carrying
data, as opposed to being gated by the packet recombination
rate for 32-byte RandomAccess packets.

4.3 Global FFT

The Global FFT in HPC Challenge requires a single-
dimensional double-precision complex–to–complex FFT to
be performed by all compute elements. The input vector is
distributed over all nodes and the result vector is required to
be deposited back in–place. As mentioned in Section 3.3,
we treat the large single-dimensional input vector as a two-
dimensional matrix, and we follow Algorithm 1. We choose
HPC Challenge parameters such that the matrix is approxi-
mately square.

We use FFTW 3.2 [11] to compute the row FFTs (lines
6 and 11 in the algorithm), which we modified to support
POWER7’s VSX SIMD instruction set [5]. Load balanc-
ing while computing the row FFTs is achieved by having the

cores compete for work.
The three global transpositions (lines 4, 8, and 13 in the

algorithm) are similar to that used in PTRANS. We use an
internal block size of 8 × 8 during the transpose operation
(note that 8 × 8 × 16 = 1024, which is again smaller than
the 2048-byte packet limit even after accounting for neces-
sary software headers. Interestingly, the P775 interconnect
performs as well for packets of this size compared to larger
2 Kbyte packets.

During the transpose phase of the Global FFT, each pro-
cess must communicate with every other process in the sys-
tem. To avoid interconnect hot spots, we use a software ar-
chitected pseudo-randomized routing scheme. Each process
randomly traverses the set of all processes with which it must
communicate– care being taken to ensure that every node
uses a different pseudo-random traversal through the node
set. Our implementation is particularly simple. Let N be the
total number of tasks with which a given task must commu-
nicate. We provide each task with a number P (taken from
a large statically constructed list of prime numbers) that is
both relatively prime to N as well as different from the value
of P used on any other task. The task set is ordered exactly
the same way on each node, but in iteration i each node picks
task P · i mod N in the ordered set with which to communi-
cate. Of course, many other randomization schemes are pos-
sible. We also experimented with a regular routing scheme
where every node traverses the task set starting with the node
to its “right”. Such a scheme is oft-advocated but performed
12% worse than our randomized scheme on the single su-
pernode upon which we were able to test.

Table 1. Performance of Global FFT at different scales

System size Raw performance Percentage of peak
(compute nodes) (Gflop/s)

8 512.1 6.52%
1,458 94855.8 6.63%
1,944 132658.1 6.95%

Table 1 shows the performance of Global FFT at different
system sizes (HPCC constrains node counts to be expressible
as 2i.3j .5k for integer i, j, k.). Unlike RandomAccess and
PTRANS, we were unable to obtain a full scaling curve due
to the prohibitive time it would have taken to plan the FFTW
component at each of the different data set sizes.

The asymptotic Global FFT performance on large P775
systems can be calculated as a composition of the perfor-
mance for each stage of Algorithm 1. The performance for
the two compute phases (lines 5–7 and 10–12) depends on
how long FFTW takes to compute the associated “slabs” of
rows on the POWER7 compute node. The performance for
the three transpose phases is determined by the asymptotic
PTRANS performance of 30 Gbyte/s/compute node. Note

7

that the extra floating point operations in line 9 for perform-
ing the so-called “twiddle” multiplications get transparently
folded in to the transpose operation before data blocks are
written out. These operations can be trivially overlapped
with the memory loads that bring data into the caches.

Let n be the size of the Global FFT being solved. FFT
efficiency calculations assume that the FFT itself requires
5 · n · lg n floating point operations. Let P be the number
of nodes, F be the floating point execution rate (flops/s) per
node when executing the serial compute phases, ηs be the ef-
ficiency when computing the serial portion of the FFT, and
B represent the bandwidth that each node can sustain during
the transpose phase (we know from figure 5 that B asymp-
totes to 30 Gbyte/s). Note that each FFT data point is double-
precision complex and 16 bytes in size. Then:

Time for each compute phase = 5 · n · lg n/(F · P)

Time taken by each transpose = 16 · n/(B · P)

Total time = 3× TransposeTime + 2× ComputeTime
= 48 · n/(B · P) + 10 · n · lg n/(F · P)

FLOP rate = Floating point operations /Time taken
= 5 · lg n ·B · F · P/(48 · F + 10 ·B · lg n)

Efficiency = 5 · lg n ·B · ηs/(48 · F + 10 ·B · lg n)

For the weakly scaled case, the size of the FFT is pro-
portional to the number of nodes used in the computation.
Then, lg n = k + lgP , where k is some constant. Assume
that each node can contribute 230 data points, corresponding
to 16 Gbytes of data. We can later observe that our results
are not sensitive to this assumption. Each node or compute
node can also compute at a peak rate of 982 Gflop/s. We can
then compute the efficiency for the global FFT:

ηg = (5.30.(30 + lgP.ηs)/(48.982.ηs + 300.(30 + lgP))

≈ 6.8% when P = 1000

A few interesting observations can be made from the
above equation. First, since we compute the serial FFT on
only either the row or the column, and since the 1D vector
is structured as a roughly square matrix, an increase in the
1D vector length by a factor of f only increases the size of
the serial FFT by

√
f . On the POWER7, ηs is around 30%

for n corresponding to what will fit in the memory of up to a
few thousand nodes. Solving the above equation, we see that
the efficiency of the global FFT changes very slowly as the
number of nodes is changed; the insensitivity to the constant
k can also be immediately grasped.

4.4 Analysis

Hurcules the maximal P775 system we were able to ac-
cess, was made up of 64 supernodes with a peak performance

of 2 Pflop/s. At this scale, the RandomAccess, PTRANS, and
Global FFT performances were 2,021 GUPS, 60.5 Tbyte/s,
and 132.7 Tflop/s respectively. By itself, the raw perfor-
mance on RandomAccess and PTRANS places the P775 at
the number one spot in the world. However, comparing the
2 Pflop/s Hurcules system we experimented upon against
larger production systems such as the K computer 6 or the
Cray XT5 system at ORNL6 is inherently unfair. A bet-
ter technical comparison would be to normalize the perfor-
mance on these workloads against peak system performance,
especially since we have empirically shown linear perfor-
mance scaling on these three workloads. Figure 6 does ex-
actly that. The dramatically improved efficiency of the P775
is very clear in this figure, which shows normalized perfor-
mance against peak flops that various systems have been able
to achieve over time, on the HPC Challenge benchmarks.7

5 Heroic Programmer’s Retrospective

This section describes some interesting observations and
lessons learned while designing, developing, and evaluating
the system. We mention up front that our goal was to tease
as much performance out of the system as possible. From
a software point of view, this involved continuous tweak-
ing, and redesign. A common theme among the lessons we
learned is that architectural and software features designed
to aid programmer productivity can severely inhibit perfor-
mance for heroic programmers. In a few cases we decided to
bypass architectural features that are in place to relax the bur-
den on software. Likewise, we also avoided some program-
mer productivity libraries such as MPI and PAMI. Given the
context of this paper, this should not be viewed as a condem-
nation of these features. However, we hope this discussion
leads to a more automatic middle ground that strikes a better
balance between programmer productivity and optimal per-
formance.

5.1 Core Architecture Observations

Somewhat surprisingly, simultaneous multi-threading
was not useful for any of the workloads we ran, and in many
cases hurt performance. Traditionally, SMT helps perfor-
mance by permitting the core to overlap instruction execu-
tion with high latency instructions. We designed our codes
with appropriate software–inserted prefetches to make de-
mand load latencies to generally not be a performance bottle-
neck. Consequently, the resource division that occurs with si-
multaneous multithreading [23, Page 1:3 “POWER7 Core”]
far outweighed any latency hiding advantages. For less care-
fully designed code, SMT is likely to be beneficial.

Reinforcing much related work (e.g., [20]), we found the
VSX SIMD extensions to be useful for the FFT (as well

6http://www.aics.riken.jp/en/ and http://www.olcf.ornl.gov/
7BG/Q’s recently published results of 858 GUPS on a 3.36 Pflop/s sys-

tem still place it at only 0.00026 GUPS/Peak GFLOP.

8

Figure 6. Historical normalized performance per peak flop for a variety of different systems.
as for HPL and DGEMM, which we have not addressed in
this paper). For the sizes of FFTs we consider in this paper,
our VSX-enabled FFTW-3.2 library is ∼18% faster than its
scalar counterpart on POWER7.

For the benchmarks on which we have evaluated the P775,
hardware prefetching was not strictly required and was often
a hindrance. Specifically, for the benchmarks surveyed in
this paper, RandomAccess is random by design, and there-
fore hardware prefetchers hurt performance by squandering
memory bandwidth on data that will never be referenced.
PTRANS and FFT do have predictable strides for which it
seems reasonable to presume that hardware prefetching will
prove useful. In fact, the POWER7 architecture somewhat
impressively maintains enough hardware state for prefetch-
ing up to 12 different streams.

However, we discovered that in the case of PTRANS, ar-
ray subtiles larger than 12×12 were necessary in order to get
sufficient communications performance; such subtiles ren-
dered the 12–stream hardware prefetcher useless. An execu-
tion of PTRANS on a 1.7 Pflop/s subset of Hurcules with
hardware prefetcher enabled realized a 15% performance
loss, showing how system–level issues (in our case com-
munication) outweigh micro-level design decisions. A more
beneficial approach was to explicitly prefetch required data
through hand-inserted software prefetch instructions. The in-
teraction of software and system-level issues is often very
complicated, making a compelling argument that hardware
focus more on providing strong support for explicit software
prefetching.

On the positive side, the POWER7 architecture provides
a mechanism to change the mode of the prefetcher on-the-
fly. We used this feature to great effect in the case of Global
FFT, where we placed the cores in full hardware prefetch
mode during the sequential compute phases and then turned
them off when moving on to the transpose phases. We found
the combination of hardware feature and Linux kernel sup-
port that achieved this be particularly elegant and eminently
useful.

5.2 Large-scale Observations

While communications libraries such as MPI simplify
programming, using them incurs a significant amount of
overhead. In particular, the copy and garbage collection over-

heads involved in the use of such stacks (see Sections 4.2
and 4.3) eats away precious memory bandwidth that is no
longer available to the application. We used a custom de-
signed software stack that more tightly integrates commu-
nication with the application logic; such stacks need to be
further explored. 8

When evaluating all-to-all communications on the ma-
chine, we noticed that naively communicating between all
pairs of processes creates hotspots. While randomized rout-
ing is an effective approach for reducing hotspots [17], it
requires additional hardware support. We instead advocate
moving the complexity to software. Our all-to-all com-
munications randomize the 〈source, dest〉 pairs involved in
communication at the algorithm level to avoid network con-
tention. The approach performs well and is quite practical,
as it still relies on deterministic routing (see Sections 4.2
and 4.3). To the best of our knowledge, this approach to
alleviating hotspots is novel.

6 Related Work

Various aspects of the P775 system have previously been
discussed. The POWER7 chip has been described in [15,
14]; the network characteristics of the system are discussed
in [3, 24]. Finally, the performance of an early, drawer-level
version of the P775 has been previously evaluated [6, 21].
At 64 supernodes and 2 Pflop/s, this system is significantly
larger than those in earlier studies [6, 21]. Furthermore, the
benchmarks we consider in this paper significantly stress the
interconnect.

The P775 hub chips are high-radix routers: Even for the
largest supported configurations, the shortest path between
any two nodes is at most three hops. Other notable imple-
mentations of high-radix routers include Cray’s BlackWidow
system [1, 22], and the Cray Dragonfly network [2, 17]. As
Kim et. al note in [17] where they introduce the Dragonfly
topology, high-radix routers simultaneously reduce the di-
ameter and the latency of interconnection networks.

To further improve the interconnect performance, the
P775 hub chip has hardware support for collective commu-
nication operations, and supports several high-performance

8We have also used such an integrated stack in the design of our
Graph500 implementation [8], a non-trivial workload.

9

computing protocols [3, 24]. The Blue Gene/Q interconnect
also has hardware acceleration for collective operations [18].

Unlike the Dragonfly topology, the P775 does not employ
dynamic routing. Instead, the hub chip implements determin-
istic and hardware-directed randomized indirect routing [3].
We use deterministic routing for the experiments presented in
this paper; however, we developed a randomized algorithm
for the all-to-alls in PTRANS and FFT that substantially re-
duces network congestion.

7 Conclusion
We rigorously evaluated and analyzed large-scale config-

urations of the IBM P775 on three HPC Challenge bench-
marks. The benchmarks particularly stress a system’s inter-
connect, and require optimization from the algorithm level
down. Several interesting features of the P775 (the hub chip’s
high-radix routing, the Collective Acceleration Unit, soft-
ware prefetching, etc.) allowed us to extract a high level of
performance from these benchmarks. In fact, the P775 cur-
rently holds the top spot for PTRANS and RandomAccess.
As we have seen for these applications, the P775 especially
shines when we consider system efficiency.

Enabling peak performance of these benchmarks on the
P775 taught us much about the system. We opted to write
our own application-specific communication layers to avoid
the overhead of libraries like MPI. Though the effort involved
was significant, the protocols we devised were extremely thin
and effective; further improvements were gained by crafting
randomized versions of our protocols. In a couple of cases
we were surprised to discover that for our carefully writ-
ten code, ordinarily beneficial hardware features consistently
hindered performance. Though we couch our lessons learned
in the context of heroic programmers, they are hopefully of
interest to the broader architecture community.

References
[1] D. Abts, A. Bataineh, S. Scott, G. Faanes, J. Schwarzmeier,

E. Lundberg, T. Johnson, M. Bye, and G. Schwoerer. The
Cray BlackWidow: a highly scalable vector multiprocessor.
In Proceedings of ACM/IEEE Supercomputing (SC), 2007.

[2] B. Alverson, T. Johnson, J. Kopnick, M. Higgins, and J. Rein-
hard. Cray Cascade: a Scalable HPC System based on a Drag-
onfly Network. In Proceedings of ACM/IEEE Supercomput-
ing (SC), 2012.

[3] B. Arimilli, R. Arimilli, V. Chung, S. Clark, W. Denzel,
B. Drerup, T. Hoefler, J. Joyner, J. Lewis, J. Li, N. Ni, and
R. Rajamony. The PERCS High-Performance Interconnect.
In 2010 IEEE 18th Annual Symposium on High Performance
Interconnects (HOTI), pages 75 –82, Aug 2010.

[4] B. Arimilli, S. Baumgartner, S. Clark, D. Dreps, D. Siljen-
berg, and A. Maki. The IBM POWER7 HUB Module: A Ter-
abyte Interconnect Switch for High-Performance Computer
Systems. Hot Chips 22, 2011.

[5] R. X. Arroyo, R. J. Harrington, S. P. Hartman, and T. Nguyen.
IBM POWER7 systems. IBM Journal of Research and De-
velopment, 55(3):2:1 –2:13, May-June 2011.

[6] K. J. Barker, A. Hoisie, and D. J. Kerbyson. An early perfor-
mance analysis of POWER7-IH HPC systems. In Proceed-
ings of ACM/IEEE Supercomputing (SC), 2011.

[7] J. Choi, J. Dongarra, and D. Walker. Parallel matrix trans-
pose algorithms on distributed memory concurrent comput-
ers. ORNL Tech Report ORNL/TM-12309, October 1993.

[8] G. Committee. Observe P775 having number two rank.
http://www.graph500.org/results june 2012.

[9] H. Committee. HPC Challenge Benchmark Results.
http://icl.cs.utk.edu/hpcc/.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. MIT Press, 2nd edition, 2001.

[11] M. Frigo and S. G. Johnson. The Design and Implementation
of FFTW3. Proceedings of the IEEE, 2005.

[12] M. Frigo, C. Leiserson, H. Prokop, and S. Ramachandran.
Cache-oblivious algorithms. In Proceedings of the 40th An-
nual FOCS Symposium . IEEE, 1999.

[13] R. Garg and Y. Sabharwal. Optimizing the HPCC randomac-
cess benchmark on blue Gene/L Supercomputer. Proceedings
of SIGMETRICS/Performance, 2006.

[14] R. Kalla and B. Sinharoy. POWER7: IBM’s Next Generation
Server Processor. Hot Chips 21, 2010.

[15] R. Kalla, B. Sinharoy, W. Starke, and M. Floyd. POWER7:
IBM’s next-generation server processor. IEEE Micro,
30(2):7–15, 2010.

[16] S. Keckler, W. Dally, B. Khailany, M. Garland, and D. Glasco.
GPUs and the Future of Parallel Computing. IEEE Micro,
31(5):7 –17, Sep-Oct 2011.

[17] J. Kim, W. J. Dally, S. Scott, and D. Abts. Technology-
Driven, Highly-Scalable Dragonfly Topology. In Proceedings
of the 35th Annual International Symposium on Computer Ar-
chitecture (ISCA), 2008.

[18] S. Kumar, A. Mamidala, D. Faraj, B. Smith, M. Blocksome,
B. Cernohous, D. Miller, J. Parker, J. Ratterman, P. Heidel-
berger, D. Chen, and B. Steinmacher-Burrow. PAMI: A Paral-
lel Active Message Interface for the Blue Gene/Q Supercom-
puter. In 26th International Parallel and Distributed Process-
ing Symposium (IPDPS),, May 2012.

[19] P. R. Luszczek, D. H. Bailey, J. J. Dongarra, J. Kepner,
R. F. Lucas, R. Rabenseifner, and D. Takahashi. The HPC
Challenge (HPCC) benchmark suite. In Proceedings of
ACM/IEEE Supercomputing (SC), 2006.

[20] H. Nguyen and L. K. John. Exploiting SIMD parallelism in
DSP and multimedia algorithms using the AltiVec technol-
ogy. In Proceedings of the 13th International Conference on
Supercomputing (ICS), pages 11–20. ACM, 1999.

[21] R. Rajamony, L. B. Arimilli, and K. Gildea. PERCS: The
IBM POWER7-IH High-Performance Computing System.
IBM J. Res. Dev., 55(3):233–244, May 2011.

[22] S. Scott, D. Abts, J. Kim, and W. J. Dally. The BlackWidow
High-Radix Clos Network. In Proceedings of the 33rd Inter-
national Symposium on Computer Architecture (ISCA), 2006.

[23] B. Sinharoy and et. al. IBM POWER7 multicore server pro-
cessor. IBM Journal of Research and Development, 55(3):1:1
–1:29, May-June 2011.

[24] G. I. Tanase, G. Almási, H. Xue, and C. Archer. Compos-
able, non-blocking collective operations on POWER7 IH. In
Proceedings of the 26th ACM International Conference on
Supercomputing (ICS), ICS ’12, pages 215–224. ACM, 2012.

10

