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Abstract—We consider the problem of admitting sets of,
possibly heterogenous, virtual machines (VMs) with stochastic
resource demands onto physical machines (PMs) in a Cloud
environment. The objective is to achieve a specified quality-of-
service related to the probability of resource over-utilization in
an uncertain loading condition, while minimizing the rejection
probability of VM requests. We introduce a method which
relies on approximating the probability distribution of the total
resource demand on PMs and estimating the probability of over-
utilization. We compare our method to two simple admission
policies: admission based on maximum demand and admission
based on average demand. We investigate the efficiency of the
results of using our method on a simulated Cloud environment
where we analyze the effects of various parameters (commitment
factor, coefficient of variation etc.) on the solution for highly
variate demands.

Index Terms—admission control, cloud management, dynamic
resource demand, performance comparison, policies, virtual ma-
chines

I. INTRODUCTION

In a Cloud system managing the utilization of physical
resources with effective admission control policies is essential.
Admission control policies ensure that sufficient resources
are available in a cluster to provide fail-over protection and
to ensure that virtual machine resource reservations are re-
spected [1]. If the additional resources are not reserved, the
power-on attempt fails and the fail-over protections cannot be
realized. Hence, admission control policies reserve resources
to ensure robustness for a potential fail-over and successful
power-on procedures.

Each resource in a physical machine in the Cloud system has
an over-utilization threshold. When this threshold is exceeded
and the resources are over-utilized for longer periods of
time, operations of physical machines may be interrupted or
migration may become necessary. Over-utilization threshold is
the maximum acceptable utilization percentage for a resource.
As an example, if the over-utilization threshold is 90%, it is
assumed that the operations will not be interrupted, as long
as the resource utilization remains below 90%. In addition
to over-utilization threshold, the likelihood of the resource
being over-utilized is another parameter to be considered
for the purpose of admission control. The second threshold
is the percentage of time that the over-utilization can be
tolerated. In other words, the likelihood of finding the resource
over-utilized. Note that the over-utilization threshold can be

exceeded for short periods of time. If the likelihood of fail-
over or the virtual machine power-on is negligible, exceeding
the over-utilization threshold may be tolerated. In this paper,
we study the behavior of various admission control policies
under dynamic resource demand and introduce a method for
configuring admission control policies against over-utilization.

Admission control policies adopt admission criteria by
which admission control schema accepts or rejects a request to
be placed in the Cloud. In general, admission control schemas
are either parameter-based or measurement-based. Parameter-
based admission control schemas are based on apriori knowl-
edge of the input requests and provide for deterministic
guarantees for uninterrupted Cloud operations. Examples of
this type of admission control schemas include admitting a
VM request based on its resource demand characteristics,
such as maximum resource demand or average resource de-
mand. Parameter-based schemas are easy to implement and
guarantee Cloud operations under worst-case assumptions. A
measurement-based admission control schema, on the other
hand, utilizes the estimated resource utilization of physical
machines in addition to input VM request parameters. In
this case, the utilization of a resource is characterized by
its stochastic properties and a probabilistic bound can be
defined for the potential interruptions of Cloud operations.
The probability density function (pdf) of the utilization of a
resource is the convolution of all the resource demands of the
accepted requests that utilize that resource. In such aggregation
of independent resource demands, the probability that the
aggregate utilization will reach the sum of the peak demand is
infinitesimally small. Using the pdf of the aggregated resource
utilization in admission criteria provides for probabilistic
guarantees. That is, instead of providing deterministic bound
for the worst case scenarios, measurement-based admission
control policies guarantee a bound on the probability of over-
utilization. In mathematical terms, resource k is stable if its
utilization, Uk, satisfies the following constraint,

P (Uk > Uok ) ≤ εo (1)

where Uo is the over-utilization threshold and εo is the
probabilistic bound on over-utilization.

In this paper, we introduce a measurement-based admission
control policy for the Cloud by approximating the pdf of
the aggregated resource utilization using the first and second
moments. Then, we employ (1) as the admission criterion to
decide if the statistical properties of an arriving VM request
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will likely to drive the physical machine into over-utilization.
Thus, we enforce an admission criterion that guarantees a
bound on the probability of over-utilization. We compare
the performance of two parameter-based admission control
policies against a measurement-based control policy that we
introduce. We also show how to configure the parameter-
based admission control policies by using the probabilistic
bound of the measurement-based policy. Note that parameter-
based approaches provide a deterministic bound against worst
case scenarios and their admission criteria do not change with
the variations of resource demand. We also show how much
parameter-based control policies are sensitive to variations in
dynamic resource demand.

The paper is organized as follows. We describe the prob-
lem formulation in section II. Two parameter-based and one
measurement-based admission control policies are introduced
in section III. In section IV we describe how to configure the
admission control criteria to reduce the likelihood of over-
utilization. Our simulation results are presented in section V.
We review related work in section VI and summarize the
conclusion and future work in section VII.

II. FORMULATION

A. Homogenous System

Consider p homogenous PMs with K different resources
with each having capacity Ck, subjected to a stream of
homogenous requests with a Poisson arrival process with rate
λ and a generally distributed lifetime with mean τ . A request
has a demand Dk for resource k that is generally distributed
with distribution function FDk

(dk) = Pr[Dk ≤ dk], where
dk ∈ [Dmin

k , Dmax
k ]. Without loss of generality we assume

that Dmin
k = 0 and Dmax

k > 0. We denote the mean and
standard deviation of the demand for resource k by µDk

and
σDk

, respectively. Hence, the mean offered load for the kth

resource is given by

ρk = λ τ µDk
. (2)

Let Znk denote the sum of n independent kth resource
demands. Given that Znk = n Dk, the mean of Znk is
E[Znk ] = n µDk

, the variance is V [Znk ] = n σDk
2, and the

probability distribution, denoted by FZn
k

(zk), is the n-fold
convolution of FDk

(dk).

B. Heterogeneous System

The same notations can be extended to a system that is
subjected to heterogenous requests. A request type is charac-
terized by the amount of demand for resources. A request is
classified to type i = 1, 2, · · · , I , where I is the number of
types. Let the system consist of, as before, p homogenous PMs
with each having Ck capacity for the resource type k. A type
i request has a demand of Dik for the resource k with mean
and standard deviation of µDik

and σDik
, respectively, and a

distribution function of FDik
(dik) = Pr[Dik ≤ dik], where

dik ∈ [Dmin
ik , Dmax

ik ]. Similar to the homogenous system, we
assume that Dmin

ik = 0 and Dmax
ik > 0. Let λi represents

the mean arrival rate for Poisson arrivals and τi represent the
generally distributed mean lifetime of the ith request type.

Hence, the mean offered load for a given type i for the kth

resource is given by

ρik = λi τi µDik
. (3)

The total mean offered load for resource k is:

ρk =

I∑
i=1

ρik =

I∑
i=1

λi τi µDik
. (4)

Let n = (n1, n2, · · · , nI) denote the number of requests
of each of the I types in the system. Given n, the sum of
independent kth resource demands in the heterogenous system,
Zn
k is given by, Zn

k =
∑I
i=1 ni Dik where ni represents the

number of type i requests. The mean of Zn
k is E[Zn

k ] =∑I
i=1 ni µDik

, the variance is V [Zn
k ] =

∑I
i=1 ni σDik

2,
and the probability distribution, denoted by FZn

k
(zk), is the

convolution of FDik
(dik) over i.

III. CLOUD ADMISSION POLICIES

An admission controller admits a request into the Cloud
based on some policy P(φ), with a set of parameters φ used
in admission criteria. The parameter set φ includes elements
that characterize the requests, such as the maximum demand,
average demand and elements that characterize the resources
in the cloud such as resource capacity. As discussed in
the Introduction section, if the admission criterion uses fix
parameter values based on the characterization of the input
request and the Cloud resource, we call the admission policy
parameter based. On the other hand, if the admission criterion
uses measurements to capture the stochastic nature of the
current state, such as the mean and the variance of resource
utilization, we call it measurement based.

In this section, for the sake of simplicity, we detail the
description of policies for homogenous system only. In section
IV, we show how these policies can be extended to a heteroge-
nous system without loss of generality. In parameter based
admission control policies, the maximum number of requests
that can be accommodated by the Cloud for each resource
k is denoted by Nmax

k . Let n be the number of requests
in the PM at the time admission policy is applied. Thus, a
request is admitted to a PM if n < Nmax

k and is rejected for
that particular PM otherwise. If a request cannot be placed to
any of the PMs, it is rejected from the Cloud. By using the
resulting request rejection probability δ, the mean utilization
of kth resource Uk is calculated as

Uk =
(1− δ) ρk
Ck p

. (5)

We consider three policies from the class of admission
policies described above. The first two admission control
policies are parameter based and the third one is measurement
based.

1) Admission based on the maximum value of demand with
a commitment factor: P1(κ,Dmax

k ), where Dmax
k is the

maximum demand for resource k, κ is the commitment
factor for the resources on a PM and κ > 1.

2) Admission based on the average value of the demand
with a commitment factor: P2(θ, µDk

), where µDk
is



3

the average demand of a request for resource k and θ is
the commitment factor for the resources on a PM and
0 < θ < 1.

3) Admission based on a probabilistic bound over-
utilization: P3(U∗k , ε, µk, σk), where U∗k is the utilization
threshold and εk is the probabilistic bound on the
over-utilization probability for resource k such that the
probability of over-utilization being above U∗k is limited
to εk. µk and σk are the mean and the variance of the
utilization for resource k.

Details of these three different admission policies are ex-
plained below.

A. Policy 1: Admission based on the maximum value of
demand with a commitment factor:

In this admission control policy, the maximum demand
values for the resources are taken into account for admission
decision. Let us denote this policy with P1(κ,Dmax

k ), where κ
is the commitment factor for all types of resources and Dmax

k

is the maximum value of the demand for resource type k. The
respective maximum allowed concurrent requests Nmax(P1)
in a PM for this admission policy is

Nmax(P1) = min
k∈K

{
b κ Ck
Dmax
k

c
}
. (6)

Here K is the number of resources a request is demanding in
a physical machine, PM. This policy accepts requests to a PM
as long as the total number of requests in the PM is less than
or equal to Nmax(P1) at the time of admission. Nmax(P1) is
the maximum number of requests that can be accommodated
without over-committing any of the resources beyond κ.

In this policy, the commitment factor, κ is used to prevent
the under-utilization of a resource on a PM. Since the accepted
requests are not always demanding their maximum value,
selecting κ > 1 reduces under-utilization. The performance of
the Cloud depends on selecting the κ value properly. As long
as the requests are demanding less than their maximum value,
particular PM is guaranteed to function properly with κ = 1.
This selection, however, will cause under-utilization of the
resources. On the other hand, if the VMs that are accepted to
that PM demand their maximum values and when κ > 1, then
resources on PM face an over-utilization since total demand
exceeds the resource capacity. This problem causes “crashing”
on the physical machine if particular resource is a memory.
Higher the κ values, the more likely for P1 to accept VMs
thus more likely to over-utilize a resource on a PM.

Note that selecting a value for κ provides a deterministic
bound on the number of requests to be accepted. In order to
utilize the resources effectively, κ value needs to be adjusted
against the stochastic variations of resource utilization. In
practice, it is not common to change the κ values frequently.

B. Policy 2: Admission based on the average value of the
demand with a commitment factor

In this admission policy, the average demand of a VM
request is taken into account for admission decision. Let us
denote this policy with P2(θ, µDk

), where θ is the commitment

factor for all resources and µDk
is the mean value of the

demand for the resource type k. The respective maximum
allowed concurrent requests Nmax(P2) in a PM for this
admission policy is

Nmax(P2) = min
k∈K

{
bθ Ck
µDk

c
}
. (7)

In this admission control schema, requests are accepted to
a PM as long as the total number of requests in the PM is less
than or equal to Nmax(P2) at the time of admission.

The commitment factor, θ is used to prevent the over-
utilization of resources on a PM since the accepted requests
do not always demand their average value. This factor helps to
maintain the utilization of resources on a PM to be under an
upper limit for the times when the admitted requests demand
higher than their average value. Usually, θ is selected as:
0 < θ < 1. Smaller the θ value, it is more likely to reject
the requests thus less likely to over-utilize resources on a PM.

Note that Nmax(P2) is a deterministic bound. As in the
case of P1, the parameter of P2, θ, needs to be adjusted
when the demand at a particular instance is different from
the average demand, µDk

in order to maintain the utilization
under a certain threshold. Frequent adjustments to θ, however,
is not practical as in case of Policy 1.

C. Policy 3: Admission based on a probabilistic bound over
utilization

In this admission policy, dynamic nature of a demand for
a resource is represented with its mean, µDk

and standard
deviation, σDk

. Let each PM consists of K resources, the
utilization of each resource, Uk, is a random variable between
[0,1] and characterized by its first and second moments:

Uk: kth resource utilization of PM where k ≤ K
µk: Mean of Uk
σk: Standard deviation of Uk

We approximate the probability distribution function (pdf)
of Uk as a Beta distribution since Beta distribution is a
good approximation for the maximum entropy probability
distribution for all classes of distributions with the same first
and second moments (see Appendix A for the reasoning of
this assumption). Beta distribution is a family of continuous
probability distributions defined on the interval [0,1] by two
positive shape parameters, denoted by α and β. Hence, we
also characterize the utilization Uk with two parameters, α
and β, associated with the first and second moments of Uk.
For more information on Beta distribution, see Appendix B.

Admission criterion for Policy 3, P3(U∗k , εk, µk, σk), utilizes
U∗k , εk, µk and σk to make an admission decision. Here U∗k
is the over-utilization threshold, εk is the probabilistic bound
on over-utilization, µk and σk are the estimated mean and the
standard deviation of the measured utilization of resource k
after the request arrival. The admission criterion for Policy 3
is given by

FZn
k

(U∗k ) ≥ (1− εk) (8)

If equation (8) is not satisfied with the new request arrival,
the request is rejected. The respective maximum allowed con-
current requests Nmax(P3) in a PM for Policy 3 is expressed
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as:

Nmax(P3) = min
k∈K

{
sup

{
n | FZn

k
(U∗k ) ≥ (1− εk)

}}
. (9)

Here Uk ∈ [0, 1] is the utilization of resource k and Uk ∼
Beta(αk, βk). As described in Appendix B, the corresponding
αk and βk values are found from the estimated mean and
variance values of the utilization of resource k in the PM as:

αk = R̄k

(
R̄k(1− R̄k)

S̄2
k

− 1

)
(10)

βk = (1− R̄k)

(
R̄k(1− R̄k)

S̄2
k

− 1

)
(11)

where R̄ and S̄ are estimations for µk and σk respectively.
Hence the cumulative distribution function FZn

k
(Uk) for the

utilization of resource k is expressed as:

FZn
k

(Uk, αk, βk) = B(Uk, αk, βk)/B(αk, βk) (12)

where B is the Beta function. Note that Nmax(P3) is not
a deterministic bound, but it changes as the mean and the
variance of the utilization change dynamically. Unlike P1 and
P2, P3 does not need to be adjusted, since P3 is dynamically
adjusted with the measured statistical properties of resource
utilization. The predefined thresholds for U∗k and εk are set
by the Cloud manager depending on the specifications of the
physical machine.

IV. CONFIGURATION OF ADMISSION POLICIES

A. Homogenous System

So far, we have obtained maximum allowed concurrent
requests Nmax(Pk) in a physical machine for each policy as:

1) Nmax(P1) = minK

{
b κ Ck

Dmax
k
c
}

2) Nmax(P2) = minK

{
b θ Ck

µDk
c
}

3) Nmax(P3) = minK
{

sup
{
n | FZn

k
(U∗k ) ≥ (1− εk)

}}
.

The first two are deterministic bounds for the number of
concurrent requests that can be accommodated in the Cloud
and the third one is a probabilistic bound. The first bound
guarantees accommodation in the Cloud for requests with
maximum demand Dmax

k on resource k with a commitment
factor κ. Similarly, the second bound guarantees accommoda-
tion in the Cloud for requests with the average demand µDk

on resource k with a commitment factor θ. Note that these
deterministic bounds cannot guarantee that resources will not
be over-utilized. Also, there is no guarantee that the requests
will be not be rejected as long as resources are available
at the time arrival. This is merely because the first and the
second admission control policies do not take into account the
dynamic nature of the resource utilization of existing virtual
machines in the Cloud. The third policy, however, uses the
measured utilization statistics in the admission criterion, thus
Nmax(P3) is continuously adjusted.

For the same request arrival process, all three policies
perform the same when Nmax(P1) = Nmax(P2) = Nmax(P3).
In this case, the rejection rate, as well as the overload factor,
will be the same for all policies. As the statistical character-
istics of PM resource utilization change, the over-utilization

probability in Policy 3 remains below εk. This is not the case
for Policy 1 and 2. Regardless, over-utilization probabilities
for the first two policies can be controlled by configuring κ
and θ values using the measured resource utilization statistics
and Nmax(P3).

Let the estimated mean and standard deviation of utilization
be µ̄k and σ̄k for resource k, respectively . The next request
with demand statistics µ and σ will increase the mean utiliza-
tion to µ̄k

∗ = µ̄k + µ and the variance to σ̄2
k

∗
= σ̄2

k + σ2.
As a result, over-utilization probability after the new arrival is
found as in (12),

FZn
k

(U∗k , α
∗
k, β
∗
k) = Pr(Uk > U∗k ). (13)

Here α∗k and β∗k are found from the estimated mean and
variance, µ̄k∗ and σ̄2

k

∗
, respectively, as explained in equations

(10) and (11). If equation (13) is greater than the probabilistic
bound εk, then the request is rejected.

Assume that the resource utilization demand for all indepen-
dent arrival requests have the same mean and variance, µ and
σ, the probability of over-utilization for N concurrent requests
is given by

FZn
k

(U∗k , αk(N), βk(N)) = Pr(Uk(N) > U∗k ). (14)

Here Uk(N) is the resource utilization of N concurrent
requests for the resource k. The parameters of the beta
function αk(N) and βk(N) are obtained from (10) and (11)
by substituting R̄ = Nµk and S̄2 = Nσ2

k. This yields the
probabilistic bound Nmax(P3) as defined above. Nmax(P3) is
the smallest number of concurrent requests that causes over-
utilization for any resource k. Once Nmax(P3) is computed
with estimated values of µk and and σk, then the commitment
factors for Policy 1 and 2 are found as follows:

κ =
Nmax(P3) Dmax

k

Ck

θ =
Nmax(P3) µDk

Ck
. (15)

Since P3 considers the dynamic demand, it can be used
to tune the parameters of the other policies. This forces the
system to run with same rejection rate, thus with the same
overload factor for all three policies. As the probability dis-
tribution function of requests, FZn

k
, changes, new Nmax(P3)

values are calculated, thus new parameters for P1 and P2 are
generated.

We have also shown how to compute the distribution of the
number of requested arrivals in the Cloud by using indepen-
dent arrival assumptions in Appendix D. This approximation
may be useful to estimate the under-utilization probabilities
which we left out of the scope of this paper.

B. Heterogenous System
For the heterogenous case, admission controller still admits

a request into a PM based on n, the number of requests in the
PM at the time of admission policy P(φ) is applied. Denote
the resulting request rejection probability by δi, and the mean
utilization of kth resource by Uk. It is given by

Uk =

∑I
i=1(1− δi) ρik
Ck |PM |

. (16)
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The three policies that are described before are still applicable
in the heterogenous system with some modifications. The
Nmax value that is calculated by policies now have a list
of arrays where each array contains feasible combination of
acceptable numbers of each type of VMs. Let N j

max represent
one of the possible combination of feasible maximum vector
for different types of VMs such that N j

max = {n1, . . . , nI},
where ni represents the number of allowed type i requests
in the PM and there is a total of I types of requests. The
Nmax = {N1

max, . . . , N
J
max} represents all possible combina-

tions of feasible admissions that will reveal the same maximum
value and there is a total of J number of lists that satisfy the
total maximum number of requests including all types.

Let the policies be now adjusted per request type i such that;
P1(κ,Dmax

ik ), P2(θ, µDik
), and P3(U∗k , ε, µDik

, σDik
). Each of

the above policies per type determines its respective maximum
value on the allowed concurrent request type i by assuming
that the number of other types of requests placed in the same
physical machine is zero. In particular, we have an upper
bound on ni values such that:

1) ni(P1) ≤ minK

{
b κ Ck

Dmax
ik
c
}

2) ni(P2) ≤ minK

{
b θ Ck

µDik
c
}

3) ni(P3) ≤ minK
{

sup
{
n | FZn

k
(U∗k ) ≥ (1− εk)

}}
By using the relationships between upper limits and Diks,
we can write the list of Nmax = {N1

max, . . . , N
J
max} and

construct admission decision based on these vectors.

V. NUMERICAL RESULTS

A. Description of setup

We consider a Cloud with 15 PMs, each with a CPU
capacity of 80 cores. There are two types of VM requests, small
and large depending on their size hence we are working with
a heterogenous system. A small VM requires 2 CPU cores and
a large VM requires 10 CPU cores on average. The variation
in demand is characterized by the coefficient of variation with
respect to demand and is in the range of 0.5 to 5 with 0.5
increments. The over-utilization threshold for CPU is set to
95% and it is not allowed for the utilization to violate this
threshold more than 1% of time.

We simulate the above system, starting from an empty
system, leading up to an offered loading of 95% average PM
CPU utilization. VM requests arrive as a Poisson process and
the lifetime of a VM is exponentially distributed in such a way
to maintain the 95% average load. The mix of small and large
VMs is governed by a Bernoulli process with probabilities 0.3
and 0.7, respectively.

We implemented the three policies under study. First, we
investigated the impact of the parameters of the policy on its
performance. Then, we compared the behavior of the policies
with respect to demand variation. Later, we showed how to
configure parameter based policies by using Policy 3.

B. Effect of parameters on mean utilization

In order to compare the performances of parameter-based
policies P1 and P2 in terms of utilization we vary tunable
parameters and observe the behavior of mean utilization. For

P1(κ,Dmax
k ), we varied κ from 1 to 10 with increments of 0.5

for three different Dmax values: {4, 20}, {8, 40}, {20, 100},
where each tuple represents the value of Dmax for small and
large VMs, respectively. We obtained the rejection rates from
the simulator and calculated the mean utilization using (16).
As depicted in Fig. 1(a), (b), (c) we observe an increase in
mean utilization with the increase in the commitment factor,
for all maximum demand values. Further, we observe that
for the same commitment factor κ, as the Dmax

CPU decreases,
utilization increases since smaller Dmax

CPU values admit more
thus the policy rejects less number of requests.
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CPU = {20, 100}.

Fig. 1. Utilization in policy (P1) as a function of commitment factor κ

For P2(θ, µDk
), we varied θ in the range of [0.5, 1] with

increments of 0.05 for the mean demand of {2, 10}. The mean
utilization as a function of θ is depicted in Fig. 2. We observe
that an increment in θ value allows the admission controller
to accept more requests, thus increasing the mean utilization.

Fig. 1 and Fig. 2 show the corresponding resource utilization
for selected policy parameters and provide a benchmark for
Cloud administrators to select parameter values for the desired
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Fig. 2. Utilization in policy (P2) as a function of θ

utilization values. As an example, when Dmax
CPU is {4, 20} for

different VM types, the average utilization is limited to 0.90 if
κ = 8 is chosen as seen in Fig. 1 for the 95% average load in
Policy 1. Similarly, the corresponding θ value for the desired
average utilization for Policy 2 is found from Fig. 2.

P3, on the other hand, is not parameter-based and it ensures
the given quality-of-service and keeps the utilization below
the desired level based on the measured resource utilization
statistics.

C. Effect of demand variation on probability of over-
utilization

In P1 and P2, resource demand variations are not taken into
account in selecting the policy parameters. In this section,
we investigate the impact of variation in CPU demand on
probability of over-utilization with respect to fixed parameters
of P1 and P2.

For P1, we fixed the commitment factor, κ, to {2, 5, 8, 10}
for various levels of fixed Dmax

CPU : {4, 20}, {8, 40}, {20, 100}
values. We obtained the average number of accepted requests
from the simulator and calculated the convoluted probability
distribution function as described in section II. Fig. 3(a), (b),
(c) depicts that for all κ and Dmax

CPU values, as the coefficient of
variation increases, the probability of over-utilization increases
due to increase in the uncertainty. (Fig. 3 shows the proba-
bilities in logarithmic scale.) For the same κ values, higher
Dmax
CPU values result in rejecting more requests thus yielding

less over-utilization probability. For instance, the probability
of over-utilization for the same coefficient of variation is less
in Fig. 3(c) than Fig. 3(a). Moreover, when the coefficient
of variation increases for fixed Dmax

CPU values (any Dmax
CPU ),

κ values need to be decreased to reduce the chance of over-
utilization. This experiment clearly indicates that the impact
of demand variations can be fenced by selecting appropriate
κ values in P1 and likelihood of higher-utilization is reduced.

Similarly, in P2, as the coefficient of demand variation in-
creases, the probability of over-utilization increases regardless
of the commitment factor, θ. Fig. 4 also shows that for higher θ
values, the probability of over-utilization is higher. (Fig. 4 is in
logarithmic scale as well). When the coefficient of variation
increases, θ values need to be decreased in order to reduce
the probability of over-utilization. Thus, in order to limit the
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Fig. 3. Probability of over-utilization in policy (P1), P (UCPU ≥ 0.95), as
a function of the coefficient of variation

probability of over-utilization below a threshold, ε for P2, the
commitment factor, θ, needs to be tuned accordingly.
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Since P3 is a measurement-based policy, it always ensures
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that the probability of over-utilization is under ε, which is 0.01
for this specific example, regardless of changes in coefficient
of variation. Fig. 5 illustrates that over-utilization probability
in P3 does not depend on demand variations.

Unlike P1 and P2, P3 monitors the system and makes the
acceptance decision based on the state of the Cloud in terms
of over-utilization probability. Not only it ensures the stability
of the Cloud but also it can be used to tune the parameters
of P1 and P2 to keep the over-utilization probability under ε
threshold. The relationship between P3 and other policies is
described in the next section.
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Fig. 5. Probability of over-utilization in policy (P3) as coefficient of variation
increases

D. Relationship between policies

As previous experiments indicate, admissions with P1 and
P2 with fixed parameters will under-perform as the coefficient
of variation of demand changes, whereas P3 always ensures
the required quality-of-service for the Cloud. The commitment
factor, κ, for P1 and θ for P2 need to be adjusted as the
variation in the CPU demand changes in order to maintain the
quality-of-service on over-utilization. One can use the proba-
bility of over-utilization function for P3 to adjust the parame-
ters of the other two policies. We obtained the average number
of accepted requests by P3 from the simulator and used (15) to
obtain various κ values for different levels of variations. Fig. 6
shows the relationship between the commitment factor, κ, and
the coefficient of variation for different Dmax

CPU values for P1.
We note that the probability of over-utilization is kept under ε
in P1 by employing the same number of concurrent requests
allowed Nmax(P3) that we found for P3 in P1. For instance,
by employing this approach, as the coefficient of variation
increases from 0.5 to 2.5 for Dmax

CPU = {4, 20}, κ value needs
to be dropped from 6 to 2 in order to keep the probability
of over-utilization under 0.01. The relationship between κ and
the coefficient of variation follows an exponential behavior,
and as Dmax

CPU values increases, the degree of the exponent
decreases.

Similarly, admissions under P2 is not responsive to changes
in coefficient of variation unless the commitment factor, θ,
is adjusted. Fig. 7 shows the relationship between θ and the
coefficient of variation for P2. We note that P2 maintains
the probability of over-utilization under ε by again using
the probability of over-utilization function of P3. There is
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Fig. 6. Maintaining (P3) utilization in (P1) by tuning commitment factor

almost a linear relationship between these two attributes for
µ = {2, 10}. For instance, when the coefficient of variation
increases from 2 to 4, θ value needs to be dropped from 0.6
to 0.25.
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VI. RELATED WORK

The problem of admission control in data centers, and in the
Cloud in general, has been addressed from different angles.
In [2], a data center that is subjected to a stream of VM
requests of different types is considered. Due to the large
size of the problem, an approximate dynamic programming
technique is proposed. The allocation of VMs on PMs is
performed assuming a fixed demand of resources. But, in
practice, the demand varies over time, suggesting the inclusion
of the variability in demand when admitting a VM. In [3], this
variability in CPU usage enabled the overbooking of resources.

In the area of task allocation in distributed systems, the
variability in resource demand has also been addressed. In
[4], a genetic algorithm is employed to dynamically schedule
heterogeneous tasks on heterogeneous processors. A different
approach is proposed in [5] that is based on annealing models
and simulated annealing.

Fundamentally, admission control is similar in many ways
to loss systems. In such systems, a collection of resources
with some capacities are provided to a stream of requests,
where each request specifies its resource demand. Typically,
the resource demand is fixed. Even in this case, and given
Poisson arrivals of requests and generally distributed request
residence times, the probabilistic analysis, say to evaluate the
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loss probability, which corresponds to the rejection rate in
admission control, is challenging due to the need to compute a
normalizing constant [6]. To overcome this challenge, asymp-
totic approximations have been obtained for load factors that
correspond to light, critical, and overload conditions [7].

As for the case of stochastic demand, there has been
extensive research in the area of stochastic bin packing. For
an overview see [8]. An example of packing items with
random sizes is given in [9]. An application in stochastic load
balancing is presented in [10].

Back to the Cloud computing environment, there the vari-
ability in demand depends on the nature of the resource.
For example, for the CPU resource on a PM, the total CPU
demand of all VMs hosted on that CPU may very well exceed
100%. This will simply result in congestion and degraded
performance. However, for the memory resource, such an
overload is unacceptable since it may lead to crashing. Hence,
a method for estimating the probability of overload is crucial
in deciding on admitting a VM into the system. And, that is
exactly the goal of this paper.

VII. CONCLUSION AND FUTURE WORK

We address the problem of making admission decision for
Cloud on sets of, possibly heterogenous, VMs with dynamic
resource demands. The admission problem is trivial if the
demand is assumed to be fixed during the admission process
hence quality-of-service on over-utilization is satisfied as long
as there is enough capacity on the PM. For VMs with dynamic
demand, it is not as simple to consider only the realization of
the demand during the admission time however it is necessary
to take into account the demand distribution during its lifetime
to be able to meet the predefined quality-of-service throughout
its lifetime on a PM.

We have introduced a method for admitting sets of VMs
with dynamic (stochastic) resource demands in Cloud while
maximizing the utilization and achieving a specified quality-
of-service to avoid over-utilization of resources in the system.
Our solution method approximates the probability distribution
of total resource demand on PMs as beta distribution and
admits the VMs into the system by estimating the probability of
over-utilization. We compare our admission policy with two
parameter based policies where each considers the resource
demand as fixed. The experiments indicate that probability of
over-utilization increases significantly with the increase in de-
mand variation for both of these policies when the parameters
are fixed to a predetermined value. Our policy, P3, maintains
robust performance with highly variate demands thus always
ensures the satisfaction of quality-of-service for different dis-
tributions of demand. Also, importantly, our method can be
used to adjust the parameters of P1 and P2 to maintain the
desired quality-of-service level.

As a future work, we intend to evaluate the system on a
larger scale. Another extension of this work that we wish
to pursue is automating the adjustment of parameters for a
given parameter based policy by using our method. Prioritizing
admissions by assigning different quality-of-service levels to
requests and optimizing such system is another open research
study that we would like to investigate in the future.
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Fig. 8. Fitting maximum entropy and Beta distributions.

APPENDIX A
CHOICE OF BETA DISTRIBUTION

We select a probability distribution for the utilization of
resource k, Uk, from the first and second moments of the
distribution. In general, when given the first few moments of
a probability distribution, the most likely distribution function
is the one that maximizes entropy [11]. As an example, given
a mean of 0.6 and a standard deviation of 0.2 for a distribution
in [0,1], we plot the distribution which maximizes entropy in
Fig. 8(a). Matching the first and second moments, we plot
the corresponding Beta distribution in Fig. 8(b). As noted,
the Beta distribution approximates well the maximum entropy
distribution.

APPENDIX B
PARAMETERS OF THE BETA DISTRIBUTION

Beta distribution is a family of continuous probability
distributions defined on the interval [0,1] by two positive
parameters, denoted by α and β with following probability
density function:

f(x;α, β) =
xα−1(1− x)β−1

B(α, β)
(17)

where B is the beta function. Hence, we also characterize
the utilization x with two parameters, α and β, associated
with the first and second moments of x. First moment of the
beta distribution: Using the method of moments estimator,
the sample mean R̄ and the variance S̄2 of the observed
utilization are set to the population mean and the variance and
expressed in terms of the mean and the standard deviation of
the associated beta distribution as:

R̄ =
α

α+ β
(18)

S̄2 =
αβ

(α+ β + 1)(α+ β)2
(19)
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From (18) and (19), α and β are solved in terms of population
mean and variance as:

α = R̄

(
R̄(1− R̄)

S̄2
− 1

)
(20)

β = (1− R̄)

(
R̄(1− R̄)

S̄2
− 1

)
(21)

For the estimated α and β values, the cumulative distribution
function can be expressed in terms of incomplete beta function
F (x;α, β) as:

F (x;α, β) =
B(x;α, β)

B(α, β)
= Ix(α, β) (22)

Here, (22) gives the xth percentile of the beta distribution. As
an example, the 90th percentile of the resource utilization is
expressed as F (0.9, α, β) = I0.9(α, β) which is the probability
that the utilization is below 90%.

APPENDIX C
ADDING A VM

The impact of a virtual machine to a physical machine can
be measured by how much the likelihood of exceeding the
over-utilization threshold is increased. If µ and σ are the first
and second moments of the utilization demand, respectively,
on resource Rk by the new arrival, then the new mean and
variance value for resource utilization after the arrival is found
as:

R̄′ = R̄+ µ (23)

S̄2′ = S̄2 + σ2. (24)

Here, we assume that the utilization demand of the newly
arriving VM is independent of the utilization of the physical
machine. The probability density function for the new utiliza-
tion is characterized by α′ and β′ values associated with the
new mean and variance values. If the contribution of a virtual
machine to the first and second moments of a resource changes
the α and β values to α′ and β′, then the increase in the 90th

percentile due to this particular virtual machine is found as:
I0.9(α, β)−I0.9(α′, β′). As an example if the newly presented
virtual machine reduces the 90% percentile of the utilization
from I0.9(α, β) = 0.25 to I0.9(α′, β; ) = 0.20 , then it is
5% more likely that the resource utilization will go over 90%
utilization with the new arrival. This is the impact of a virtual
machine on a physical machine.

APPENDIX D
DISTRIBUTION OF THE NUMBER OF REQUESTS

ACCOMMODATED IN THE CLOUD

Given an Nmax we can evaluate the stationary distribution
of the number of requests in the system by noting that the
equivalent model is that of an M/G/m/m loss queueing
system [12], where m = |PM | × Nmax. In particular, in
the case of exponentially distributed lifetimes, we have an
M/M/m/m loss queue whose stationary distribution is given
by [13]

πn = π0
(λ τ)n

n!
, n = 1, 2, · · · ,m, (25)

and π0 is given by the normalizing constant

π0 =

[
m∑
n=0

(λ τ)n

n!

]−1
. (26)

The average occupancy is given by

N =

m∑
n=0

n πn. (27)

Thus, given Nmax, we have the average utilization of
resource k as:

Uk =
N µDk

Ck |PM |
(28)

and the rejection probability

δ = πNmax
. (29)

Define an overload factor η(U∗k ) = Pr[Uk > U∗]. Since Uk =
N Dk, then by conditioning on N we get

ηk(U∗k ) =

Nmax∑
n=1

πn Pr[Uk > U∗k |n]

=

Nmax∑
n=1

πn
(
1− FZn

k
(U∗k |n)

)
. (30)
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