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Abstract

Asynchronous methods for solving systems of linear equations have been researched since Chazan
and Miranker published their pioneering paper on chaotic relaxation in 1969. The underlying idea of
asynchronous methods is to avoid processor idle time by allowing the processors to continue to work and
make progress even if not all progress made by other processors has been communicated to them.

Historically, work on asynchronous methods for solving linear equations focused on proving conver-
gence in the limit. How the rate of convergence compares to the rate of convergence of the synchronous
counterparts, and how it scales when the number of processors increase, was seldom studied and is still
not well understood. Furthermore, the applicability of these methods was limited to restricted classes of
matrices (e.g., diagonally dominant matrices).

We propose a shared-memory asynchronous method for general symmetric positive definite matrices.
We rigorously analyze the convergence rate and prove that it is linear and close to that of our method’s
synchronous counterpart as long as not too many processors are used (relative to the size and sparsity
of the matrix). A key component is randomization, which allows the processors to make guaranteed
progress without introducing synchronization. Our analysis shows a convergence rate that is linear in the
condition number of the matrix, and depends on the number of processors and the degree to which the
matrix is sparse.

Keywords: linear solvers, asynchronous computation, randomized algorithms



1 Introduction

Asynchronous methods for solving linear equations have been researched since Chazan and Miranker pub-
lished their pioneering paper on chaotic relaxation in 1969 [4] (see review by Frommer and Szyld [6]). The
underlying idea of asynchronous methods is to allow processors to continue to work even if not all progress
made by other processors has been communicated to them, thereby eliminating synchronization points and
their associated cost.

While asynchronous methods were successfully applied to many numerical problems [6], interest in them
dwindled over the years. One reason is related to convergence rate. Historically, work on asynchronous meth-
ods for solving linear equations focused on proving convergence in the limit. How the rate of convergence
compares to the rate of convergence of the synchronous counterparts, and how it scales when the number
of processors increase, was seldom studied and is still not well understood. It was observed experimentally
that asynchronous methods can sometimes be substantially slower than their synchronous counterparts [3].
Furthermore, the applicability of existing asynchronous methods is limited to rather restricted classes of
matrices (e.g., diagonally dominant matrices).

We propose a shared-memory asynchronous method for symmetric positive definite matrices with a
provable linear convergence rate under a mostly asynchronous computational model which assumes bounded
delays. A key component of our algorithm is randomization, which allows the processors to make progress
independently with only a small probability of interfering with each other. Our analysis shows a convergence
rate that is linear in the condition number of the matrix, and depends on the number of processors and the
degree to which the matrix is sparse. A slightly better bound is achieved if we occasionally synchronize the
processors. In either case, as long the number of processors used is not too large (relative to the size and
sparsity of the matrix), the convergence rate is close to that of the synchronous counterpart. Unlike previous
asynchronous methods, the convergence rate does not depend on numerical classification of the matrix (e.g.,
diagonal dominance). In particular, our method will converge for essentially any large sparse symmetric
positive definite matrix as long as not too many processors are used. We discuss previous work, and contrast
them to ours, in Section 7, after we describe our results in detail.

The remainder of the paper is organized as follows. We describe the basic setup and give essential
background on randomized Gauss-Seidel in Section 2. In Section 3 we propose two asynchronous models
for executing randomized Gauss-Seidel: one assumes that consistent reads have been enforced, and one does
not. Section 4 analyzes the convergence when consistent read is enforced. Section 5 shows that convergence
can be improved if we control the step-size. In Section 6, we analyze convergence rate when we allow
inconsistent reads. Finally, in Section 7 we discuss previous results and how our results relate to them.

2 Preliminaries

2.1 Setup and Notation

This paper concerns with solving the linear equation Ax = b where A ∈ Rn×n is a symmetric positive
definite matrix, and b ∈ Rn. For simplicity we will assume that A has a unit diagonal. This is easily
accomplished using re-scaling. Our results can be easily generalized to allow an arbitrary diagonal, but
making this assumption helps keep the presentation and notation more manageable. We denote the exact
solution to this equation by x?, i.e. x? = A−1b. We denote the largest eigenvalue of A by λmax, and the
smallest eigenvalue by λmin. The condition number of A, which is equal to λmax/λmin, is denoted by κ.
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We are predominantly interested in the case that A is sparse and very large, and the number of non-zeros
in each row is between C1 and C2 � n with a small ratio between C2 and C1. This scenario frequently
occurs in many scientific computing applications. Throughout the paper we refer to this scenario as the
reference scenario. We state and prove more general results; we do not use the properties of the reference
scenario in the proofs. The reference scenario is mainly useful for the interpretation of the practical implica-
tions of the results. Note that in the reference scenario we have λmax ≤ C2 � n, as A has a unit-diagonal
(so off-diagonal entries must be smaller than or equal to one).

We use (·, ·)A to denote the A inner product. That is, (x,y)A ≡ yTAx where x,y ∈ Rn. The fact that
A is a symmetric positive definite matrix guarantees that (·, ·)A is an inner product. The A-norm is defined
by ‖x‖A ≡

√
(x,x)A. We use e(1), e(2), . . . , e(n) to denote the n-dimensional identity vectors (i.e. e(i) is

one at at position i and zero elsewhere). Ai denotes row i of A, and Aij denotes the i, j entry of A. We will
generally use subscript indexes on vectors for iteration counters. The notation (x)i denotes the ith entry of
x.

Throughout the paper we describe algorithms that generate a series of approximations to x?, denoted
by x0,x1, . . . (subscript index is the iteration counter), which are actually random vectors. We denote the
expected squared A-norm of the error of xm by Em. That is,

Em = E
[
‖xm − x?‖2A

]
.

2.2 Randomized Gauss-Seidel

Our asynchronous algorithm is based on the randomized variant of the Gauss-Seidel iteration, originally
proposed by Leventhal and Lewis [8] (see also Griebel and Oswald [7]). The goal of this section is to
describe and review the basic properties of the randomized Gauss-Seidel iteration.

Consider the following iteration applied to some arbitrary initial vector x0 ∈ Rn , and a series of direction
vectors d0,d1, . . . :

rj = b−Axj

γj = dT
j rj

xj+1 = xj + γjdj .

In terms of the analysis it is more convenient to write the iteration in the following equivalent form:

γj = (x? − xj ,dj)A

xj+1 = xj + γjdj .
(1)

The reason for listing both iterations is to show that even though x? (which is unknown) appears in (1), the
iteration is computable.

In (1) the scalars γ0, γ1, . . . are selected so as to minimize ‖x? − xj+1‖A when xj+1 is obtained from
xj by taking a step in the direction dj . There are quite a few ways to set d0,d1, . . . . Each is associated
with a different per-iteration cost, and different convergence properties. One well known method is setting
di = e((i mod n)+1). In that case, every n iterations corresponds to a single iteration of Gauss-Seidel (recall
that we assume that the matrix has unit diagonal).

Leventhal and Lewis suggested using random directions instead of deterministic ones: d0,d1, . . . are
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Algorithm 1 Randomized Gauss-Seidel
1: Input: A ∈ Rn×n, b ∈ Rn, (pointer to) vector x (initial approximation and algorithm output) .
2:

3: for j = 1, 2, . . . do
4: Pick a random r uniformly over {1, . . . , n}
5: Read the entries of x corresponding to non-zero entries in Ar

6: Using these entries, compute γ ← (b)r −Arx
7: Update: (x)r ← (x)r + γ
8: end for

i.i.d. random vectors, taking e(1), . . . , e(n) with equal probability1. With this distribution of direction vectors,
they proved the following bound on the expected error in the A-norm [8]:

Em ≤
(

1− λmin

n

)m
‖x0 − x?‖2A .

So, the randomized Gauss-Seidel iteration converges in expectation at a linear rate2. Note that the expected
cost per iteration of randomized Gauss-Seidel is Θ(nnz (A) /n), so n iterations are about as costly has a
single Gauss-Seidel iteration. The proof of the last bound relies on the following lemma, which we use
extensively in our analysis as well3:

Lemma 2.1. Let d be a random vector taking e(1), . . . , e(n) with equal probability. Suppose that x and d
are independent. Then,

λmin

n
E
[
‖x− x?‖2A

]
≤ E

[
(x− x?,d)2A

]
≤ λmax

n
E
[
‖x− x?‖2A

]
.

3 Asynchronous Randomized Gauss-Seidel

Algorithm 1 contains a pseudo-code description of randomized Gauss-Seidel in which we made the
read and update operations explicit. This obviously entails some details that are, in a sense, implementa-
tion specific. There are implementations of the randomized Gauss-Seidel iteration which do not match the
description in Algorithm 1.

Consider a shared memory model with P processors. Each processor follows Algorithm 1 using the
same x, i.e. all processors read and update the same x, which is stored in shared memory. The processors
do not explicitly coordinate or synchronize their iterations. We do, however, impose assumptions, some
of which may require enforcement in an actual implementation. The first assumption is rather simple: the
update operation in each iteration is atomic.

1Leventhal and Lewis consider the more general setting where A does not have unit diagonal. For that case, they analyze non-
uniform probabilities. When the matrix has unit diagonal, their algorithm and the convergence analysis reduces to the ones stated
here.

2Some care should be employed with terminology. Some mathematicians or computer scientists might say this is an exponential
or geometric convergence rate. However, numerical analysts refer to this rate as linear, as it is linear in O(log(ε)) where ε is the
desired reduction factor of the error.

3The upper bound in the following lemma was not proven by Leventhal and Lewis [8], but it can be proved using the same
technique they used to prove the lower bound. For completeness we include a proof in the appendix.
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Assumption 3.1 (Atomic Write). The update operation in line 7 is atomic.

The update operation operates on a single coordinate in x. For single precision or double precision
floating point reals, updates of the form used in line 7 have hardware support on many modern processors
(e.g. compare-and-exchange on recent Intel processors).

If atomic write is enforced, then for the sake of the analysis we can impose an order x0,x1,x2, . . . on
the values that x takes during the computation. Here xj denotes the value of x after j updates have been
applied (breaking ties in an arbitrary manner).

We now turn our attention to the read operation in line 5. Here we consider two possible models. In the
first model, we assume the following consistent read assumption is enforced.

Assumption 3.2 (Consistent Read). The values of the entries of x read in line 5 appeared together in x at
some time before the update operation (line 7) is executed.

Note that assumption 3.2 does not imply that none of the entries read during the execution of line 5 are
modified while that line is being executed, but the opposite does hold (and this is one way of enforcing this
assumption).

With consistent read we can denote by k(j) ≤ j the maximum iteration index such xk(j) is equal to
the values read on line 5, on the indexes read during the execution of line 5. The existence of such a k(j)
is guaranteed by assumption 3.2 (since all writes are atomic, all time intervals correspond to some iteration
index). The iteration can then be written:

γj = (x? − xk(j),dj)A

xj+1 = xj + γjdj .
(2)

We also consider a model where we allow inconsistent reads. Since every iteration changes a single
coordinate, and we require all writes to be atomic, the value of x read in line 5 is the result of a subset
of the updates that occurred before the write operation in line 7 is executed. Let us denote by K(j) ⊆
{0, 1, . . . , j − 1} a maximal set of updates consistent with the computation of γ in iteration j (a formal
definition of K(j) is as follow: an update index i is in K(j) if either it updates an entry of x not read for
computing γj , or it updates an entry and the update was applied before that entry was read) . The vector read
is then

xK(j) = x0 +
∑
i∈K(j)

γidi .

The iteration can then be written as

γj = (x? − xK(j),dj)A

xj+1 = xj + γjdj .

Obviously, enforcing consistent read involves some overhead. However the bounds we obtain for the
inconsistent read model are not as good as the ones achieved when we assume consistent reads. There is
clearly a trade-off here, which we present but do not attempt to quantify. It is a complex trade-off that
depends on many factors, including possible hardware features like transactional memory that may enable
efficient enforcement of consistent reads. We do however note that in many cases even without any special
provisions, the probability of an inconsistent read in a single iteration is extremely small, so much that we
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do not expect it to happen much (or at all) in a normal execution of the algorithm. The reason is that in order
to have an inconsistent read in a single iteration there has to be at least two updates to entries read during
that iteration. Consider again the reference scenario. Each iteration reads at most C2 � n entries. Suppose
there are u updates while reading those entries. Each such update affects a single random entry. Therefore,
the probability that it will update one of the C2 entries being read is at most C2/n. The probability of getting
two such updates is bounded by the probability of getting at least two in a binomial distribution with u
experiments and probability C2/n. Unless u is very large, this is an extremely small probability (since C2/n
is tiny).

We are mainly interested in algorithms with provable convergence rates. In a totally asynchronous model
with arbitrary delays, there can also be an arbitrary delay in convergence. Therefore, we assume that asyn-
chronism is bounded in the sense that delays are bounded.

Assumption 3.3 (Bounded Asynchronism). There is a constant τ (measure of asynchronism) such that
all updates that are older than τ iterations participate in the computation of iteration j, for all iterations
j = 1, 2, . . . .

In the consistent read model, this assumption translates to requiring that

j − τ ≤ k(j) ≤ j . (3)

In the inconsistent read model, this assumption translates to requiring that

{0, 1, . . . ,max{0, j − τ − 1}} ⊆ K(j) . (4)

When the the variance in the number of non-zeros per row is not too large (with respect to the mean), as is
the case in our reference scenario, then the time spent per iteration is roughly uniform. Therefore, in that
case we expect τ to be of order of P .

We now discuss the relation between k(0), k(1), . . . orK(0),K(1), . . . and the random variables d0,d1, . . . .
If we inspect the pseudo-code of Algorithm 1 closely we will realize that k(j) or K(j) (depending on the
model) depend on the random choices d0,d1, . . . ,dj−1 made before the write operation, and more crucially
on the random choice dj . The reason is that on line 5 we read only the relevant entries of x, so only a small
set of updates can be considered for inclusion, and this set of relevant entries is determined by the selection of
dj . However, a completely adversarial model which allows dependence of k(j) (or K(j)) on d0,d1, . . . ,dj
(for j = 1, 2, . . . ) and analyzes the worst-case behavior is not likely to be very faithful to the actual behavior
of the algorithm. Therefore, we assume the delays are independent of the random choices, but allow them to
be arbitrary (as long as the bounded asynchronism assumption holds).

Assumption 3.4 (Independent Delays). We allow an arbitrary set of delays that satisfy (3) or (4) (depending
on the context), but they do not depend on the random choices d0,d1, . . . .

4 Convergence Bound With Consistent Read

In this section we analyze iteration (2), which corresponds to the consistent read model (which assumes
both assumptions 3.1 and 3.2), under assumptions 3.3 and 3.4. We first state and prove the results, and then
discuss them.
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Theorem 4.1. Consider iteration (2) for an arbitrary starting vector x0, where d0,d1, . . . are i.i.d. vectors
that take e(1), . . . , e(n) with equal probability, and k(0), k(1), . . . are such that (3) holds but are independent
of the random choices of d0,d1, . . . . Let ρ = maxl

{
1
n

∑n
r=1 |Alr|

}
. Provided that 2ρτ < 1, the following

holds:

(a) For every m ≥ log(1/2)
log(1−λmax/n)

≈ 0.693n
λmax

we have

Em ≤
(

1− (1− 2ρτ)

2κ

)
E0 .

(b) Let T0 =
⌈

log(1/2)
log(1−λmax/n)

⌉
and T = T0 + τ . For every m ≥ rT (r = 1, 2, . . . ) we have

Em ≤ (1− (1− 2ρτ)

2κ
)(1− (1− 2ρτ)(1− λmax/n)τ

2κ
+ χ)r−1E0

where

χ =
ρτ2λmax(1− λmax/n)−2τ

n
.

Proof. In the proof we use the following abbreviations:

ντ = 1− 2ρτ δmin =
ντλmin

n
δmax = 1− λmax

n
.

Simple algebraic manipulations show that (see appendix for details):

‖xj+1 − x?‖2A = ‖xj − x?‖2A − (xk(j) − x?,dj)
2
A − 2(xk(j) − x?,dj)A(xj − xk(j),dj)A . (5)

We see that the error decreases by a “progress term” ((xk(j) − x?,dj)
2
A) which is always positive, and

changes by an additional term (2(xk(j) − x?,dj)A(xk(j) − xj ,dj)A) which might be positive or negative.
When the iterations are synchronized (k(j) = j) there is no additional term, and the analysis reduces to the
analysis of synchronous randomized Gauss-Seidel. We first bound the additional term:

2(xk(j) − x?,dj)A(xj − xk(j),dj)A = 2(xk(j) − x?,dj)A(

j−1∑
t=k(j)

γtdt,dj)A

=

j−1∑
t=k(j)

2(xk(j) − x?,dj)A(x? − xk(t),dt)A(dt,dj)A (6)

≥ −
j−1∑
t=k(j)

[
(xk(j) − x?,dj)

2
A |(dt,dj)A|+ (xk(t) − x?,dt)

2
A |(dt,dj)A|

]
.
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Since k(j) ≤ t < j:

E
[
(xk(j) − x?,dj)

2
A |(dt,dj)A|

]
= E

[
E
[
(xk(j) − x?,dj)

2
A |(dt,dj)A|

∣∣d0, . . . ,dt−1
]]

= E

[
1

n2

n∑
l=1

n∑
r=1

(xk(j) − x?, e(l))2A

∣∣∣(e(l), e(r))A∣∣∣
]

= E

[
1

n2

n∑
l=1

n∑
r=1

(xk(j) − x?, e(l))2A |Alr|

]

≤ ρE

[
1

n

n∑
l=1

(xk(j) − x?, e(l))2A

]
= ρE

[
(xk(j) − x?,dj)

2
A

]
.

Similarly, E
[
(xk(t) − x?,dt)

2
A |(dt,dj)A|

]
≤ ρE

[
(xk(t) − x?,dt)

2
A

]
. Taking expectation of (6) and ap-

plying the last inequality we find that

E
[
2(xk(j) − x?,dj)A(xj − xk(j),dj)A

]
≥ −ρ

j−1∑
t=k(j)

[
E
[
(xk(j) − x?,dj)

2
A

]
+ E

[
(xk(t) − x?,dt)

2
A

]]
= −ρ|j − k(j)|E

[
(xk(j) − x?,dj)

2
A

]
− ρ

j−1∑
t=k(j)

E
[
(xk(t) − x?,dt)

2
A

]
≥ −ρτE

[
(xk(j) − x?,dj)

2
A

]
− ρ

j−1∑
t=k(j)

E
[
(xk(t) − x?,dt)

2
A

]
.

Taking expectation of (5), and plugging in the last inequality, we find that

Ej+1 ≤ Ej − (1− ρτ)E
[
(xk(j) − x?,dj)

2
A

]
+ ρ

j−1∑
t=k(j)

E
[
(xk(t) − x?,dt)

2
A

]
. (7)

Unrolling the recursion, we find that for every m:

Em ≤ E0 − (1− ρτ)

m−1∑
i=0

E
[
(xk(i) − x?,di)

2
A

]
+ ρ

m−1∑
i=0

i−1∑
t=k(i)

E
[
(xk(t) − x?,dt)

2
A

]
.

In the last sum of the previous inequality (ρ
∑m−1

i=0

∑i−1
t=k(i) E

[
(xk(t) − x?,dt)

2
A

]
), each term of the form

E
[
(xk(r) − x?,dr)

2
A

]
appears at most τ times, each time with a coefficient ρ, so

Em ≤ E0 − (1− 2ρτ)
m−1∑
i=0

E
[
(xk(i) − x?,di)

2
A

]
.

We now apply the bound E
[
(xk(i) − x?,di)

2
A

]
≥ (λmin/n)Ek(i) (Lemma 2.1), to find that

Em ≤ E0 − δmin

m−1∑
i=0

Ek(i) . (8)
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Proof of (a). Lemma 2.1 implies that for any b ≥ a we have Eb ≥ δb−amaxEa(see proof in Appendix), so in
particular since i ≥ k(i),

Ek(i) ≥ δk(i)maxE0 ≥ δimaxE0 . (9)

Plugging (9) into (8) we get the following inequality, which leads immediately to assertion (a):

Em ≤

(
1− δmin

m−1∑
i=0

δimax

)
E0 =

(
1− δmin(1− δmmax)

1− δmax

)
E0 = (1− ντκ−1(1− δmmax))E0 .

Proof of (b).Let
Ci = {rT + i− τ ≤ t ≤ rT + i− 1 : t ≥ rT}

and
Di = {rT + i− τ ≤ t ≤ rT + i− 1 : t < rT} .

Unrolling the recursion in equation (7) starting at rT , we find that for r ≥ 1 and w ≥ 0

E(r+1)T+w ≤ ErT − (1− ρτ)
T−1+w∑
i=0

E
[
(xk(rT+i) − x?,drT+i)

2
A

]
+ ρ

T−1+w∑
i=0

rT+i−1∑
t=k(rT+i)

E
[
(xk(t) − x?,dt)

2
A

]
≤ ErT − (1− ρτ)

T−1+w∑
i=0

E
[
(xk(rT+i) − x?,drT+i)

2
A

]
+ ρ

T−1+w∑
i=0

rT+i−1∑
t=rT+i−τ

E
[
(xk(t) − x?,dt)

2
A

]
≤ ErT − (1− ρτ)

T−1+w∑
i=0

E
[
(xk(rT+i) − x?,drT+i)

2
A

]
+ ρ

T−1+w∑
i=0

∑
t∈Ci

E
[
(xk(t) − x?,dt)

2
A

]
+ρ

T−1+w∑
i=0

∑
t∈Di

E
[
(xk(t) − x?,dt)

2
A

]
≤ ErT − (1− 2ρτ)

T−1+w∑
i=0

E
[
(xk(rT+i) − x?,drT+i)

2
A

]
+ ρ

τ−1∑
i=0

∑
t∈Di

E
[
(xk(t) − x?,dt)

2
A

]
.

≤ ErT − (1− 2ρτ)

T−1+w∑
i=τ

E
[
(xk(rT+i) − x?,drT+i)

2
A

]
+ ρ

τ−1∑
i=0

∑
t∈Di

E
[
(xk(t) − x?,dt)

2
A

]
. (10)

The second-to-last inequality follows from the fact that each term of the form E
[
(xk(l) − x?,dl)

2
A

]
appears

at most τ times in ρ
∑T−1+w

i=0

∑
t∈Ci E

[
(xk(t) − x?,dt)

2
A

]
. We also use the fact that for i ≥ τ we trivially

have Di = ∅.
We first bound ErT − (1− 2ρτ)

∑T−1+w
i=τ E

[
(xk(rT+i) − x?,drT+i)

2
A

]
. Using Lemma 2.1,

ErT − (1− 2ρτ)

T−1+w∑
i=τ

E
[
(xk(rT+i) − x?,drT+i)

2
A

]
≤ ErT − δmin

T−1+w∑
i=τ

Ek(rT+i) .

Since i ≥ τ we have k(kT + i) ≥ kT so Ek(rT+i) ≥ δ
k(rT+i)−rT
max ErT ≥ δimaxErT . Therefore

ErT − (1− 2ρτ)

T−1+w∑
i=τ

E
[
(xk(rT+i) − x?,drT+i)

2
A

]
≤ (1− δminδ

τ
max

T−1+w−τ∑
i=0

δimax)ErT .
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Noticing that T − 1 +w− τ = T0 − 1 +w and bounding the geometric sum as in assertion (a), we find that
(1− δminδ

τ
max

∑T−1+w−τ
i=0 δimax) ≤ (1− δτmaxντ

2κ ), so

ErT − (1− 2ρτ)
T−1+w∑
i=τ

E
[
(xk(rT+i) − x?,drT+i)

2
A

]
≤ (1− δτmaxντ

2κ
)ErT . (11)

We now bound ρ
∑τ−1

i=0

∑
t∈Di E

[
(xk(t) − x?,dt)

2
A

]
. Recall that for every b ≥ a we have Eb ≥ δb−amaxEa,

so, for i = 0, . . . , τ − 1 and t ∈ Di we have

Ek(t) ≤ δk(t)−rTmax ErT ≤ δ−2τmaxErT .

The last inequality follows from the fact that for t ∈ Di, k(t)− rT ≥ −2τ and δmax < 1. We now bound

ρ

τ−1∑
i=0

∑
t∈Di

E
[
(xk(t) − x?,dt)

2
A

]
≤ ρ

τ−1∑
i=0

∑
t∈Di

λmaxδ
−2τ
max

n
ErT ≤

ρτ2λmaxδ
−2τ
max

n
ErT = χErT .

Combine the last inequality with (11) and assertion (a) to complete the proof of assertion (b). ut

Discussion:

• Assertion (a) shows that after we perform enough asynchronous iterations, we are guaranteed to reduce
the expected error by a constant factor. In order to drive the expected error down to an arbitrary fraction
of the input error, we can adopt the following scheme. We start with asynchronous iterations. After
n iterations have been completed we synchronize the threads and restart the iterations. The matrix A
has unit diagonal, so λmax ≥ 1. Therefore, by performing k ≥ n iterations, we are guaranteeing a
1 − ντ/2κ factor reduction in the expected error. We then continue to iterate and synchronize until
the expected error is guaranteed to be small enough. The number of outer iterations until convergence
(reduction of error by a predetermined factor) is O(κ/ντ ). This is also the number of synchronization
points. When ντ is close to one, the number of synchronization points is asymptotically the same as in
Jacobi, but the convergence rate is that of Gauss-Seidel. Furthermore, we do not need to really divide
the iterations between processors (basically, every processor can do as many iterations as it can, until
synchronization) and it is not important to synchronize exactly after n iterations. So, from a practical
perspective, a time based scheme for synchronizing the processors should be sufficient, and will not
suffer from large wait times due to load imbalance.

• Assertion (b) shows that even if we do not occasionally synchronize the threads, we still get long-term
linear convergence, but at a slower rate. We say convergence is linear in the long term since we cannot
guarantee a diminishing bound in every iteration, but we can prove a constant factor reduction over a
large enough amount of iterations.

• The terms δτmax and δ−2τmax that appear in assertion (b) might seem problematic as they are exponential
in the number of processors (because τ = Ω(P )). However, in our reference scenario this is not an
issue since in that scenario λmax = O(1) and P and τ are much smaller than n, so δτmax and δ−2τmax are
actually very close to 1.

9



• The number of iterations to guarantee a 1− ντ/2κ reduction of expected error (as in assertion (a)) in
synchronous randomized Gauss-Seidel is approximately ντn/2λmax.

• Consider our reference scenario in a weak-scaling regime (i.e., P ≈ cn for a very small c). In that
case ντ is constant and close to one, so if we occasionally synchronize the threads we have a constant
percent increase in the number of iterations due to asynchronism. That is, the asynchronous phases do
not violate the weak-scaling (but the number of iterations can increase due to λmin becoming smaller).
As for the case where only asynchronous iterations are used, we have χ ≈ c2λ2max. So, χ itself exhibits
weak scaling. However, its value should be interpreted with respect to κ−1. If λmin shrinks as n grows,
as is the case in many applications, then the relative size of χ grows and we do not have weak scaling.

5 Improving Scalability By Controlling Step-Size

The bound in Theorem 4.1 requires 2ρτ < 1. In this section we show that by introducing a step-size we can
have a convergent method for any delay (as long as we set the step size small enough). By optimizing the
step-size we can also improve the scaling (dependence on τ ) in our bounds.

The idea in introducing a step-size is that instead of taking a full step, we take a partial step by multiplying
it by a step-size β. That is, we now consider the iteration

xj+1 = xj + βγjdj

(γj is defined as before). Again, simple algebraic manipulations show that (see appendix for details):

‖xj+1−x?‖2A = ‖xj−x?‖2A−β(2−β)(xk(j)−x?,dj)
2
A−2β(xk(j)−x?,dj)A(xj−xk(j),dj)A . (12)

As before, we continue with bounding the additional term.

2β(xk(j) − x?,dj)A(xj − xk(j),dj)A = 2β(xk(j) − x?,dj)A(

j−1∑
t=k(j)

βγtdt,dj)A (13)

= β2
j−1∑
t=k(j)

2(xk(j) − x?,dj)A(x? − xk(t),dt)A(dt,dj)A

≥ −β2
j−1∑
t=k(j)

[
(xk(j) − x?,dj)

2
A |(dt,dj)A| +(xk(t) − x?,dt)

2
A |(dt,dj)A|

]
.

We see that the progress term is O(β), but the additional term is O(β2). In synchronous randomized
Gauss-Seidel the best bound on the expected error is achieved with β = 1, but for an asynchronous compu-
tation the best bound is achieved with some β < 1 (depending on τ ). Continuing along the lines of the proof
of Theorem 4.1 (we omit the details), we find the following modified bounds:

(a) : Em ≤
(

1− ντ (β)

2κ

)
E0, (b) : Em ≤ (1− ντ (β)

2κ
)(1− ντ (β)δτmax

2κ
+ χ(β))r−1E0

where

ντ (β) = 2β − β2 − 2ρτβ2 χ(β) =
ρτ2β2λmaxδ

−2τ
max

n
.

Discussion:

10



• We see that for a sufficiently small β both bounds are useful, but the computation of the optimal β for
assertion (b) (in terms of the bound) requires some approximation of the condition number.

• Alternatively, we can optimize only the value of ντ (β). The optimum of that term is achieved at
β̃ = 1/(1 + 2ρτ) and yields ντ (β̃) = 1/(1 + 2ρτ). It is also the case that χ(β̃) < χ(1), so both
bounds are improved. From a practical perspective, the challenge of setting the step size to β̃ is that
τ might not be known. However, under normal circumstances (and in the reference scenario) we have
τ = O(P ), which can provide a general guideline for setting the step-size.

6 Convergence Bound With Inconsistent Reads

We now analyze a model without consistent read (without assumption 3.2). To show convergence, we must
use a step size, so we analyze the following iteration:

γj = (x? − xK(j),dj)A

xj+1 = xj + βγjdj .
(14)

The rate of convergence is slower, and the scalability is worse as the dependence on τ is worse.

Theorem 6.1. Consider iteration (14) for some 0 ≤ β < 1 and an arbitrary starting vector x0, where
d0,d1, . . . are i.i.d. vectors that take e(1), . . . , e(n) with equal probability, andK(0),K(1), . . . are such that
equation (4) holds but are independent of the random choices of d0,d1, . . . . Let ρ2 = maxl

{
1
n

∑n
r=1A

2
lr

}
.

Provided that 2β(1− β − ρ2τ2β/2) < 1, the following holds:

(a) For every m ≥ log(1/2)
log(1−λmax/n)

≈ 0.693n
λmax

we have

Em ≤
(

1− β(1− β − ρ2τ2β/2)

κ

)
E0 .

(b) Let T0 =
⌈

log(1/2)
log(1−λmax/n)

⌉
and T = T0 + τ . For every m ≥ rT (r = 1, 2, . . . ) we have

Em ≤ (1− 2β(1− β − ρ2τ2β/2)

2κ
)(1− 2β(1− β − ρ2τ2β/2)(1− λmax/n)τ

2κ
+ χ)r−1E0

where

χ =
ρ2τ

3β2λmax(1− λmax/n)−2τ

n
.

Most of the proof is analogous to the proof of Theorem 4.1, so we give only a sketch of the proof that focuses
on the unique parts. Proof. (Sketch) As before:

‖xj+1 − x?‖2A = ‖xj − x?‖2A − β(2− β)(xK(j) − x?,dj)
2
A − 2β(xK(j) − x?,dj)A(xj − xK(j),dj)A .

11



We now bound the additional term:

2β(xK(j) − x?,dj)A(xj − xK(j),dj)A = 2β(xK(j) − x?,dj)A(
∑

t∈K−(j)

βγtdt,dj)A

= 2β2(xK(j) − x?,dj)A(
∑

t∈K−(j)

γtdt,dj)A

≥ −β2
(xK(j) − x?,dj)

2
A + (

∑
t∈K−(j)

γtdt,dj)
2
A

 (15)

≥ −β2
[
(xK(j) − x?,dj)

2
A+

|K−(j)|
∑

t∈K−(j)

(xK(t) − x?,dt)
2
A(dt,dj)

2
A


≥ −β2

(xK(j) − x?,dj)
2
A + τ

∑
t∈K−(j)

(xK(t) − x?,dt)
2
A(dt,dj)

2
A


where K−(j) = {0, . . . , j − 1} −K(j). Since xK(t) does not depend on dt or dj , we can bound as before,

E
[
(xK(t) − x?,dt)

2
A(dt,dj)

2
A

]
≤ ρ2E

[
(xK(t) − x?,dt)

2
A

]
.

Therefore,

Ej+1 ≤ Ej − 2β(1− β)E
[
(xK(j) − x?,dj)

2
A

]
+ ρ2τβ

2
∑

t∈K−(j)

E
[
(xK(t) − x?,dt)

2
A

]
.

After we unroll the recursion, we find that

Ek ≤ E0 − 2β(1− β − ρ2τ2β/2)

k−1∑
i=0

E
[
(xK(i) − x?,di)

2
A

]
.

We can now continue to bound as in the proof of Theorem 4.1. The crucial observation is that xK(i) is the

result of |K(i)| random single coordinate steps, so E
[
‖xK(i) − x?‖2A

]
≥ δ|K(i)|

max E0 ≥ δimaxE0. ut

Remark 6.2. One might ask why we did not simply adapt equation (13) for the inconsistent read iteration, and
instead developed equation (15). We could certainly adapt equation (13). The problem is that if we follow
that path, we get expressions of the form (xK(j) − x?,dj)

2
A |(dt,dj)A| for t ∈ K−(j). This expression is

hard to analyze since xK(j) can depend of dt . An example is K(j) = {0, . . . , j − 3, j − 1} and t = j − 2
(for some j ≥ 3).

7 Related Work and Concluding Remarks

Asynchronous methods were first suggested by Chazan and Miranker [4] in their pioneering paper on chaotic
relaxation. The theory and application of asynchronous iterations has since been studied and used by many
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authors. Noteworthy is the seminal text by Bertsekas and Tsitsiklis [2]. A more recent review is by Frommer
and Szyld [6].

Historically, work on asynchronous methods focused on proving that the methods converge in the limit,
and not on convergence rate analysis. In particular, the relation to the convergence rate of synchronous
counterparts, and the scaling of these methods, were seldom studied. We are aware of only two exceptions,
but the results are quite unsatisfactory. Baudet [1] proves a theorem that can be used to analyze the rate of
convergence of asynchronous iterations of contracting operators, so they are applicable to the solution of only
certain types of linear systems. In addition, his theorem can be used to analyze the convergence of a specific
instantiation, and not the worst case behavior of an asynchronous method. Bertsekas and Tsitsiklis [2,
Section 7.2, Exercise 1.2] prove a linear convergence rate of certain asynchronous iterations for some classes
of matrices (like weakly diagonally dominant matrices), but analyze how the rate of convergence depends
on the measure of asynchronism only under very restrictive conditions and in a hard to interpret manner [2,
Section 6.3.5].

Randomization is frequently used as an algorithmic tool in non-numerical asynchronous algorithms.
However, until recently, it was not used as an algorithmic tool for asynchronous numerical computation (al-
though, there is work on using asynchronous computation for inherently randomized methods like stochastic
gradient descent [2]). Recently, two new articles suggested asynchronous algorithms whose provable con-
vergence rates rely on randomization. Freris and Zouzias [5] suggested the use of an asynchronous variant
of randomized Kaczmarz [10] to synchronize clocks in a wireless network. They analyze the convergence
rate in a semi-asynchronous model that is suitable for wireless networks, but not for shared-memory numer-
ical computations. Niu et al. [9] recently proposed and analyzed “Hogwild!”, an asynchronous approach for
parallelizing stochastic gradient descent.

Our work is very much inspired by “Hogwild!”, but we study a different problem and our proof technique
is different. In fact, requiring atomic writes and consistent reads and consequently writing the iteration as
equation (2) is a direct descendant of Niu et al.’s [9] analysis. However, our analysis makes several significant
improvement over simply applying the “Hogwild!” analysis to the solution of linear systems (linear systems
can be solved using stochastic gradient descent):

1. We treat parallelism in a much more principled manner; we explicitly lay out the assumptions made
by the algorithm, and study different read models. In particular, we analyze both a consistent and an
inconsistent read model, while Niu et al. analyze only a consistent read model.

2. We prove a linear convergence rate, vs. a sub-linear convergence rate for “Hogwild!”.

3. The analysis of “Hogwild!” assumes bounded stochastic gradients. This assumption is not realistic
when stochastic gradient descent is used to solve symmetric positive definite systems.

4. Our dependence on τ is much better: “Hogwild!”’s analysis has a O(τ4) dependence.

There are several questions that remain unanswered and are worthy of future work. Is that gap in the bound
for consistent and inconsistent reads inherent, or an improved analysis will remove or narrow it? Is it possible
to obtain comparable bounds when we allow k(j) or K(j) to depend on d0, . . . ,dj? In our reference sce-
nario, we show weak-scaling only if we periodically synchronize the threads. Is the periodic synchronization
essential, or is it an artifact of the analysis?
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8 Appendix

8.1 Proof of Lemma 2.1

Let B be the unique symmetric positive matrix such that A = B2.

E
[
(x− x?,d)2A

]
= E

[
E
[
(x− x?,d)2A

]∣∣x]
= E

[
1

n

n∑
i=1

(x− x?, ei)
2
A

]

=
1

n
E
[
‖A(x− x?)‖22

]
=

1

n
E
[
(x− x?)TA2(x− x?)

]
=

1

n
E
[

(x− x?)TBAB(x− x?)

(x− x?)TBB(x− x?)
· (x− x?)TBB(x− x?)

]
=

1

n
E
[

(x− x?)TBAB(x− x?)

(x− x?)TBB(x− x?)
· ‖x− x?‖2A

]
.

According to the Courant-Fischer theorem, for every vector y 6= 0 we have

λmin ≤
yTAy

yTy
≤ λmax .

Applying the last inequality to the previous equality with y = B(x− x?) completes the proof.

8.2 Proof of Equations (5) and (12)

We prove equation (12). Equation (5) follows by setting β = 1.

‖xj+1 − x?‖2A = ‖xj + βγjdj − x?‖2A
= ‖xj − x?‖2A + ‖βγjdj‖2A + 2(xj − x?, βγjdj)A

= ‖xj − x?‖2A + β2γ2j + 2βγj(xj − x?,dj)A

= ‖xj − x?‖2A + β2(xk(j) − x?,dj)
2
A − 2β(xk(j) − x?,dj)A(xj − x?,dj)A

= ‖xj − x?‖2A + β2(xk(j) − x?,dj)
2
A

−2β(xk(j) − x?,dj)A
[
(xj − xk(j),dj)A + (xk(j) − x?,dj)A

]
= ‖xj − x?‖2A − β(2− β)(xk(j) − x?,dj)

2
A − 2β(xk(j) − x?,dj)A(xj − xk(j),dj)A

In the above we use the fact that A has unit diagonal, so (di,di)A = 1 for all i.

8.3 Proof that Eb ≥ δb−amaxEa for b ≥ a

We prove that Ej+1 ≥ δmaxEj for the iteration involving the step size (xj+1 = xj + βγjdj , Section 5), and
that automatically implies the inequality for b ≥ a and for β = 1 (which is the case considered in Section 4).
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First notice that

xj+1 = xj + βγjdj

= xj + β(x? − xk(j),dj)Adj

= xj + (βx? − βxk(j),dj)Adj

= xj + (x? − y,dj)Adj

where y = (1− β)x? + xk(j). Denote γ̃j = (x? − y,dj)A. Now,

‖xj+1 − x?‖2A = ‖xj + γ̃jdj − x?‖2A
= ‖xj − x?‖2A + ‖γ̃jdj‖2A + 2(xj − x?, γ̃jdj)A

= ‖xj − x?‖2A + γ̃2j + 2γ̃j(xj − x?,dj)A

= ‖xj − x?‖2A + (y − x?,dj)
2
A − 2(y − x?,dj)A(xj − x?,dj)A

= ‖xj − x?‖2A + (y − xj + xj − x?,dj)
2
A − 2(y − x?,dj)A(xj − x?,dj)A

= ‖xj − x?‖2A + (xj − x?,dj)
2
A + (y − xj ,dj)

2
A

+2(xj − x?,dj)A(y − xj ,dj)A

−2(y − x?,dj)A(xj − x?,dj)A

= ‖xj − x?‖2A + (xj − x?,dj)
2
A + (y − xj ,dj)

2
A

−2(xj − x?,dj)A(xj − x?,dj)A

= ‖xj − x?‖2A − (xj − x?,dj)
2
A + (y − xj ,dj)

2
A

≥ ‖xj − x?‖2A − (xj − x?,dj)
2
A .

Taking expectation and applying Lemma 2.1 (notice that y is independent of dj), we find that E
[
‖xj+1 − x?‖2A

]
≥

(1− λmax/n)E
[
‖xj − x?‖2A

]
.

8.4 Proof of Equation (10)

Let
Ci = {rT + i− τ ≤ t ≤ rT + i− 1 : t ≥ rT}

and
Di = {rT + i− τ ≤ t ≤ rT + i− 1 : t < rT} .

Unrolling the recursion in equation (7) starting at rT , we find that for r ≥ 1 and w ≥ 0
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E(r+1)T+w ≤ ErT − (1− ρτ)
T−1+w∑
i=0

E
[
(xk(rT+i) − x?,drT+i)

2
A

]
+ ρ

T−1+w∑
i=0

rT+i−1∑
t=k(rT+i)

E
[
(xk(t) − x?,dt)

2
A

]
≤ ErT − (1− ρτ)

T−1+w∑
i=0

E
[
(xk(rT+i) − x?,drT+i)

2
A

]
+ ρ

T−1+w∑
i=0

rT+i−1∑
t=rT+i−τ

E
[
(xk(t) − x?,dt)

2
A

]
≤ ErT − (1− ρτ)

T−1+w∑
i=0

E
[
(xk(rT+i) − x?,drT+i)

2
A

]
+ ρ

T−1+w∑
i=0

∑
t∈Ci

E
[
(xk(t) − x?,dt)

2
A

]
+ρ

T−1+w∑
i=0

∑
t∈Di

E
[
(xk(t) − x?,dt)

2
A

]
≤ ErT − (1− 2ρτ)

T−1+w∑
i=0

E
[
(xk(rT+i) − x?,drT+i)

2
A

]
+ ρ

τ−1∑
i=0

∑
t∈Di

E
[
(xk(t) − x?,dt)

2
A

]
.

≤ ErT − (1− 2ρτ)
T−1+w∑
i=τ

E
[
(xk(rT+i) − x?,drT+i)

2
A

]
+ ρ

τ−1∑
i=0

∑
t∈Di

E
[
(xk(t) − x?,dt)

2
A

]
.

The second-to-last inequality follows from the fact that each term of the form E
[
(xk(l) − x?,dl)

2
A

]
appears

at most τ times in ρ
∑T−1+w

i=0

∑
t∈Ci E

[
(xk(t) − x?,dt)

2
A

]
. We also use the fact that for i ≥ τ we trivially

have Di = ∅.

17


