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Sample Complexity of Risk-averse Bandit-arm Selection

Jia Yuan Yu∗ and Evdokia Nikolova†

Abstract
We consider stochastic multiarmed bandit prob-
lems where each arm generates i.i.d. rewards ac-
cording to an unknown distribution. Whereas clas-
sical bandit solutions only maximize the expected
reward, we consider the problem of minimizing
risk using notions such as the value-at-risk, the
average value-at-risk, and the mean-variance risk.
We present algorithms to minimize the risk over a
single and multiple time periods, along with PAC
accuracy guarantees given a finite number of re-
ward samples. In the single-period case, we show
that finding the arm with least risk requires not
many more samples than the arm with highest ex-
pected reward. Although minimizing the multi-
period value-at-risk is known to be hard, we present
an algorithm with comparable sample complexity
under additional assumptions.

1 Introduction
Multiarmed bandit problems arise in diverse applications
such as tuning parameters, Internet advertisement, auction
mechanisms, adaptive routing in networks, project manage-
ment, and clinical trials. The goal is typically to find a policy,
that is, a sequence of decisions, that maximizes the cumula-
tive expected reward [Lai and Robbins, 1985]. The essence
of the problem, and its principal challenge, lies in the uncer-
tainty of rewards. Due to the risk-averse nature of users in
many applications, a solution with guarantees in expectation
is often unsatisfactory, i.e., the best solution may be the one
with smallest risk as opposed to highest mean.

Risk measures have recently received renewed attention in
the financial mathematics and optimization literature [Artzner
et al., 1999; Rockafellar, 2007]. However, until now, these
risk measures have been rarely applied to multiarmed bandit
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problems. One reason is that risk analysis often assumes dis-
tributional knowledge of the underlying uncertainty, whereas
in bandit models, this knowledge is unavailable a priori. The
uncertainty must be estimated before making risk-averse de-
cisions. Another reason is that the complexity of estimat-
ing risk associated with sequential decision-making increases
greatly as the number of decisions increases. This work ad-
dresses both of these challenges.

Although the underlying randomness is a priori unknown
in many real problems, it is useful to consider notions of risk
measures with respect to this unknown randomness. In this
work, we consider a data-driven approach to risk aversion,
wherein we estimate the true risk measure from a sequence
of observations of the randomness. One of our contributions
is to quantify the effect of finite samples on the residual risk.
We do so for modern and traditional risk measures: the value-
at-risk (V@R), the average value-at-risk1 (AV@R), and the
mean-variance risk. This work is the first to apply the AV@R
to bandit problems, which is widely used elsewhere because
an important class of convex risk measures can be expressed
as its integral. Our notion of risk is defined differently from
previous work on risk-averse bandits.

When the objective is the expected reward—as in most of
the literature on bandit problems, by linearity of expectation,
the cumulative expected reward is simply the sum of single-
period expected rewards. In contrast, the instantaneous or
single-period risk and cumulative or multi-period risk can
vary greatly in complexity. A risk-averse objective is nonlin-
ear and does not typically decompose into a sum over single-
period risks. When comparing different arms, it is natural
to compare their single-period risks; however, these will not
always imply the correct preference with respect to a multi-
period risk objective.

Example 1.1 below gives insight into the subtlety of mea-
suring risk over multiple periods. It demonstrates the follow-
ing counter-intuitive fact: one arm may be better than another
in terms of the single period risk , while it may be worse over
two or more periods. In addition, even if arm 1 is better than
arm 2 in a single period, pulling arm 1 twice may be worse
than consecutively pulling arm 1 and arm 2. In contrast to the
expected reward criterion, one cannot infer multi-period risk

1The average value-at-risk is also called expected shortfall and
conditional value-at-risk.



bounds from single-period risk bounds.
Example 1.1 (Lack of translation symmetry). Consider two
arms and two periods. The first arm has rewards X1, X2

in periods 1, 2 respectively and the second arm has rewards
Y1, Y2. LetX1, X2 be independent and identically distributed
according to the normal distribution N (µ1, σ

2
1), whereas

Y1, Y2 are i.i.d. N (µ2, σ
2
2). For normal random variables,

both the V@Rβ and the AV@Rβ , with probability level β >
0.5, reduce to a linear combination of mean and standard de-
viation: ρ(X) = −E[X] + λ

√
VAR[X], where λ is only a

function of β (cf. [Rockafellar and Uryasev, 2000, Proof of
Proposition 1]). Thus, the single period risk measures are
ρ(X1) = −µ1 + λσ1 for arm 1 and ρ(Y1) = −µ2 + λσ2 for
arm 2.

Let ε > 0 be fixed. Suppose that σ1 = 1, σ2 = 2, and
µ1 = λ, µ2 = 2λ−ε, then we have ρ(X1) = −µ1 +λσ1 = 0
and ρ(Y1) = −µ2 + λσ2 = ε. Moreover, by independence,
we have ρ(Y1 + Y2) = −2µ2 + λ

√
2σ2

2 = 2(
√

2− 2)λ+ 2ε,
ρ(X1 + Y2) = −µ1 − µ2 + λ

√
σ2
1 + σ2

2 = (
√

5− 3)λ+ ε,
ρ(X1 + X2) = −2µ1 + λ

√
2σ2

1 = (
√

2 − 2)λ. It is easy to
verify that, for all ε > 0 and λ > 6ε, we have ρ(X1) < ρ(Y1)
and ρ(X1 +X2) > ρ(X1 + Y2) > ρ(Y1 + Y2). We conclude
that for two periods, we incur less risk (V@R and AV@R)
by choosing arm 2 twice; whereas for a single period, it is
preferable to choose arm 1.

The following is an engineering example of a bandit prob-
lem where risk is important.
Example 1.2 (Communication channel selection). Consider
a transmitter with access to a number of communication chan-
nels (e.g., different media and spectrum frequencies). Its task
is to choose a single channel to transmit one important mes-
sage so as to minimize the risk corresponding to the prob-
ability that the error rate exceeds a threshold λ—instead of
minimizing the expected error rate. The channel error rates
are random with unknown distribution, but can be sampled.
The question is: How many samples are required to find a
channel satisfying some prescribed confidence guarantees on
its risk?

We proceed as follows. In Sections 2 and 3, we present our
bandit model and discuss it with respect to related literature.
In Section 4, we present PAC bounds on the single-period
risk of a greedy arm-selection policy with respect to an ap-
propriate risk estimate. Section 5 presents our main result: a
PAC bound for multi-period risk using a new algorithm and
under an additional assumption. Section 6 illustrates empiri-
cally the distinction between risk-averse and expected-reward
bandit problems. We discuss open problems in Section 7.

2 Problem formulation
Let {1, . . . , n} denote a set of arms—or possible choices of
actions. Let {Xi

t : i = 1, . . . , n, t = 1, 2, . . .} denote the
real-valued rewards for pulling the arms i = 1, . . . , n at time
instants t = 1, 2, . . . Let d1, . . . , dn denote time-invariant
probability density functions. We assume that for every fixed
arm i, the rewards {Xi

1, X
i
2, . . .} are independent and iden-

tically distributed according to di. Let (Ω,F ,P) denote the
probability space generated by the arm rewards. In contrast

to most of the literature on risk measures, we assume that P—
likewise the densities d1, . . . , dn—are fixed but unknown.

Let it denote the action chosen by the decision-maker at
time t. Let µi denote the expected reward of arm i—with
density di. In the traditional bandit problem formulation, we
are interested in algorithms for choosing the sequence of arms
{it} with expected regret guarantees of the form∣∣∣∣∣ max

i=1,...,n
µi − E

1

T

T∑
t=1

Xit
t

∣∣∣∣∣ ∈ o
(

log T

T

)
.

Let Y denote the set of bounded random variables, and let
ρ : Y → R denote a risk measure. We discuss specific types
of risk measures in the coming sections. We are interested
in a risk-averse version of bandit problems, where one ob-
jective is to give a PAC bound on the single-period risk error∣∣∣minj=1,...,n ρ(Xj

1)− ρ(Xi∗

1 )
∣∣∣ of the chosen arm i∗. Another

objective is to give a PAC bound on the multi-period risk er-
ror of a sequence of actions i1, . . . , iτ :∣∣∣∣∣ min

(a1,...,aτ )∈[n]τ
ρ

(
τ∑
t=1

Xat
t

)
− ρ

(
τ∑
t=1

Xit
t

)∣∣∣∣∣ . (1)

In this paper, our notion of multi-period risk assumes that
the arm choices for time instants 1, . . . , τ are made at time 1,
while ignoring outcomes after time 1. An alternative would
be to consider risk associated with policies that act at time t
according to all observed outcomes up to time t − 1. Under
some assumptions—particularly, when the decision horizon
τ is short compared to the number of past observations, these
risk measures are close.
Remark 1 (Notation). Since {Xi

1, X
i
2, . . .} are identically dis-

tributed, we have ρ(Xi
1) = ρ(Xi

2) = . . ., and we write ρ(i)
to denote ρ(Xi

1).
For every fixed arm i, let X i denote a set of observations

or samples of the rewards of arm i. Throughout the paper, we
assume that these sets contain the same number N of sam-
ples, i.e.,

∣∣X 1
∣∣ = . . . = |Xn| = N . The number N is called

the sample complexity; it represents the number of samples
that is sufficient to give a certain guarantee.

3 Related work
The notion of risk has been widely studied in finance, engi-
neering, and optimization, yet there is no single agreed-upon
definition for it. It is generally meant to express and quan-
tify one’s preferences over a set of random outcomes. Two
main approaches to modeling risk have been via utility func-
tions [Neumann and Morgenstern, 1944] and via the mean-
variance framework [Markowitz, 1952]. More recently, due
to a variety of paradoxes and pitfalls of the traditional ap-
proaches, an axiomatic approach to risk has been proposed
for applications in finance [Artzner et al., 1999]. This ap-
proach to risk-aversion spans both static and sequential de-
cision problems, such as [Artzner et al., 1999] in financial
hedging; [Le Tallec, 2007; Osogami, 2011] in Markov de-
cision problems; [Shapiro and Ahmed, 2004] in stochastic
and robust optimization. Both the traditional and modern ap-
proaches have been comprehensively described in multiple
surveys (cf. [Schied, 2006; Rockafellar, 2007]).



Multiarmed bandit problems have been studied in a va-
riety of settings, including the Markovian (rested and rest-
less), stochastic and adversarial settings. For surveys on ban-
dit problems, we refer the reader to [Gittins et al., 2011;
Cesa-Bianchi and Lugosi, 2003]. Two types of results are
found in the literature: results on the average regret (i.e., in
a regret-minimization setting [Lai and Robbins, 1985]) and
results on the sample complexity (i.e., in a pure-exploration
setting [Even-Dar et al., 2002; Bubeck et al., 2011]). Our
work is of the second type. It is related to work on sample
complexity of bandit arm-selection [Even-Dar et al., 2002;
Kalyana et al., 2012], which is also known as pure ex-
ploration or best-arm identification [Audibert et al., 2010;
Gabillon et al., 2012].

As far as we know, this is the first work to consider the
sample complexity of bandit arm-selection in a risk-averse
setting. Risk aversion in bandit problems has previously been
studied in two settings, Markovian [Gittins et al., 2011] and
stochastic [Lai and Robbins, 1985]. In the Markovian set-
ting, [Denardo et al., 2007; Chancelier et al., 2009] consider
a one-armed bandit problem in the setting of Gittins indices
and model risk with concave utility functions. In the stochas-
tic setting, the notion of risk has been limited to empirical
variance [Audibert et al., 2009; Sani et al., 2012]. Besides
this limitation, our notion of risk is also very different from
this previous work in its definition. In [Audibert et al., 2009;
Sani et al., 2012], the risk measure assigns real values to the
decision-maker’s policies (i.e., confidence-bound algorithms)
and guarantees are given for the regret in retrospect. Our risk
measure assigns a real value to random variables, i.e., rewards
of individual arms or deterministic sequences of arm choices,
and guarantees are given on the sample complexity of various
estimators. This is more in line with the risk notions of the
finance and optimization literature. Our results on the sample
complexity of estimating the V@R and the AV@R are new.
Our results on the mean-variance risk complement those of
[Sani et al., 2012].

Our notion of data-driven risk, estimated using random
samples, is similar to [Jones and Zitikis, 2003; Brown, 2007;
Kim and Hardy, 2009]: [Jones and Zitikis, 2003] presents an
empirical study of bootstrapped risk estimators; we present
an alternative AV@R estimator to that of [Brown, 2007]
that has comparable sample-complexity guarantees, but is
more efficient by virtue of not solving a minimization prob-
lem; [Kim and Hardy, 2009] estimate tail-deviation risk mea-
sures using L-statistics and show asymptotic properties of
the estimators. In this paper, we consider different risk
measures and present non-asymptotic results. Our sample
complexity results on estimating risk measures is also rem-
iniscent of black-box models [Shmoys and Swamy, 2006;
Nemirovski and Shapiro, 2006]. However, the notion of
risk-aversion in [Shmoys and Swamy, 2006] is limited to
V@R and the setting is that of the two-stage recourse model.
For [Nemirovski and Shapiro, 2006], the setting is chance-
constrained optimization and the sample complexity is ana-
lyzed for given confidence and reliability parameters.

Even when the underlying probability distribution is
known, some risk measures are hard to compute and approx-
imations are used. For instance, methods such as parametric

estimation, Monte Carlo simulation, etc. have been used ex-
tensively to approximate the risk measures (cf. [Kreinin et
al., 1998]). [Vanduffel et al., 2002] presents techniques for
approximating risk measures of a sum of random variables
with known lognormal distributions. In our setting, the multi-
period risk is defined for random variables with arbitrary and
unknown distributions.

In this paper, we first want to raise awareness of the need
to incorporate risk in machine learning problems—the ex-
periments of Section 6 illustrate this. Secondly, we inves-
tigate how risk affects the underlying theory compared to
the classical expected-reward setting. We show where ex-
isting techniques can give sample complexity guarantees in
the new risk-averse formulations and where new techniques
are needed. In particular, we present the gap in complexity
between the single-period and the multi-period risk-averse
bandit problems. The latter is hard even with an additional
assumption of independence between arms. Our main contri-
bution is to present an arm-selection algorithm (the CuRisk
algorithm) with a PAC guarantee on its multi-period risk.

4 Single-period risk
In this section, we present results on the sample complexity
of estimating single-period risk, and derive PAC bounds for
the single-period best-arm identification problem. The results
for the mean-variance risk can be deduced from well-known
results in the literature. We present them separately because
they do not require an assumption of independence between
arms (cf. Assumption 5.1). We consider the multi-period case
in the next section.

4.1 Value-at-risk
Let λ be given and fixed. In this section, we consider the
value-at-risk, for every arm i:

ρVλ (i) = V@Rλ(i) = −qi(λ),

where qi is the right-continuous quantile function2 of Xi
1.

Suppose that up to time T , each arm is sampled N times.
Let Xi

1, . . . , X
i
N denote the sequence of rewards generated

by arm i. Let Xi
(1) 6 . . . 6 Xi

(N) denote a reordering of
the random variables {Xi

1, . . . , X
i
N}, where Xi

(k) is the k-th
order statistic of the sequence {Xi

1, . . . , X
i
N}. We consider

the following V@R estimators for all i:

ρ̂Vλ (i) , −X̂i
λ,

where each X̂i
λ is the following λ-quantile estimator3:

X̂i
λ , Xi

(dλNe). (2)

We define our V@R estimator as ρ̂Vλ (i) = −X̂i
λ.

Assumption 4.1 (Differentiable reward density). For each
arm i, the reward probability density functions di are con-
tinuously differentiable.

2Formally, qi(λ) = inf{x ∈ R : Fi(x) > λ}, where Fi is the
distribution function of Xi

1.
3 With slight modifications, we can derive similar results with

other quantile estimators, such as the Wilks estimator.



Next, we bound the single-period risk error of the arm-
choice i∗ ∈ arg mini=1,...,n ρ

V
λ (i). Recall that although

ρVλ (i) is a scalar for every fixed i, the arm-choice i∗ is a ran-
dom variable and ρVλ (i∗) is a function of i∗. All proofs appear
in the appendix of [Yu and Nikolova, 2013].

Theorem 4.1 (V@R PAC bound). Suppose that Assump-
tion 4.1 holds. Suppose that there exist D and D′ such that
di(z) 6 D and d′i(z) 6 D′ for all z ∈ R and all i, and that

N > max

{
2nλ(1− λ)

δε2 D2
,

√
16C2n

δε2
,

2λ(1− λ)D′

ε D3
,

√
4C1

ε

}
.

If i∗ ∈ arg mini=1,...,n ρ̂
V
λ (i), then arm i∗ is (ε, δ)-

optimal with respect to the V@R risk measure, i.e.,∣∣minj=1,...,n ρ
V
λ (j)− ρVλ (i∗)

∣∣ 6 ε w.p. 1− δ.

Remark 2. In Theorem 4.1, the sample complexity T is of
the order of Ω(nε−2δ−1). By comparison, the sample com-
plexity for the bandit problem with expected rewards is of the
order of Ω(ε−2 log(δ−1)) [Even-Dar et al., 2002]. We can
easily improve the suboptimal dependence in the number of
arms n by using the arm-elimination method of [Even-Dar
et al., 2002]. Our V@R estimator is very distinct from the
empirical mean or distribution estimates in [Even-Dar et al.,
2002] and elsewhere in the literature, which allow the use of
particular concentration inequalities to obtain a logarithmic
dependence in δ−1.
Remark 3 (Lower bound). If X is a Bernoulli random vari-
able with mean p, then the λ-quantile of X is qX(λ) =
1[λ>p], so that estimating the quantile is at least as hard as
estimating the mean p. Hence, we can derive a lower bound
of Ω(nε−2 log δ−1) on the sample complexity by using the
approach of [Mannor and Tsitsiklis, 2004].

4.2 Average value-at-risk
Modern approaches to risk measures [Artzner et al., 1999] ad-
vocate the use of convex risk measures, which capture the fact
that diversification helps reduce risk. In this section, we con-
sider only one instance of convex risk measures: the average
value-at-risk. Nonetheless, it can be shown that an important
subset of convex risk measures (i.e., those continuous from
above, law invariant, and coherent) can be expressed as an
integral of the AV@R (cf. [Schied, 2006]). Guarantees can
be obtained for those risk measures by using the approach of
this section.

The AV@R has the following two equivalent definitions—
first, as an integral of V@R:

ρAλ (X) = AV@Rλ(X) =
1

λ

∫ λ

0

V@Rφ(X)dφ,

and second, as a maximum over a set of distributions:
ρAλ (X) = maxQ∈Qλ(P)−EQX , where Qλ(P) is the set of
probability measures {Q : dQ

dP 6 1/λ}. Depending on the
choice of definition, we can estimate the AV@R either via
quantile estimation or density estimation. In this section, we
adopt the first definition and introduce the following estima-

tor using a Riemann sum of quantile estimator of (2):

Ŷ iλ ,
1

λ

bλNc−1∑
j=0

1

N
Xi

(j+1) +

(
λ− bλNc

N

)
Xi

(dλNe)

 .

We define our AV@R estimator as ρ̂Aλ (i) = −Ŷ iλ . Our es-
timator is distinct from and computationally more efficient
than the one introduced in [Brown, 2007].

The following result bounds the single-period risk of a sim-
ple arm-selection policy.
Theorem 4.2 (AV@R PAC bound). Suppose that the as-
sumptions of Theorem 4.1 hold. Suppose that the rewards are
bounded such that

∣∣Xi
t

∣∣ 6 M almost surely, for every arm i
and time t. Suppose that

N > max

{
32λ′M2

ε2λ2
log(4n/δ),

(1/6)D′/D3 + 2C1λ
′

ελ
, 2

}
,

where λ′ denotes the smallest real number greater than λ
such that λ′N is an integer. If i∗ ∈ arg mini=1,...,n ρ̂

A
λ (i),

then arm i∗ is (ε, δ)-optimal with respect to the AV@R risk
measure, i.e.,

∣∣minj=1,...,n ρ
A
λ (j)− ρAλ (i∗)

∣∣ 6 ε w.p. 1−δ.

4.3 Mean-variance risk
In this section, we consider the mean-variance risk measure

ρMλ (i) = −µ(i) + λσ2(i),

where µ(i) and σ2(i) denote the mean and variance of arm i.
The mean-variance risk measure has been used in risk-averse
problem formulations in a variety of applications in finance
and reinforcement learning [Markowitz, 1952; Mannor and
Tsitsiklis, 2011; Sani et al., 2012].

Let λ be given and fixed. We assume that we are given N
samples Xi

1, . . . , X
i
N for every arm i. We look at the mean-

variance risk measure. We employ the risk estimate

ρ̂Mλ (i) = −µ̂(i) + λσ̂2(i),

where µ̂(i) and σ̂2(i) denote the sample-mean and the unbi-
ased variance estimator σ̂2(i) = 1

N−1
∑N
k=1(Xi

k − µ̂(i))2.
The following theorem gives a single-period risk error

bound for the arm-choice i∗ ∈ arg mini=1,...,n ρ̂
M
λ (i).

Theorem 4.3 (MV PAC bound). Suppose that there exist
A,B such that P(Xi

t ∈ [A,B]) = 1 for all i. Suppose that N
is at least

max

{
(B −A)2

2ε2
log(8n/δ),

(B −A)4λ2

ε2
log(8n/δ) + 1

}
.

If i∗ ∈ arg mini=1,...,n ρ̂
M
λ (i), then arm i∗ is (ε, δ)-

optimal with respect to the mean-variance risk, i.e.,∣∣minj=1,...,n ρ
M
λ (j)− ρMλ (i∗)

∣∣ 6 ε w.p. 1− δ.

5 From single- to multi-period risk
Obtaining multi-period risk bound estimates from single-
period risk is not obvious (cf. Example 1.1). We present
in this section multi-period risk bounds for the V@R. The
same method can be extended to other risk measures. For



instance, by employing the averaging and Riemann approx-
imation method of Section 4.2, we can obtain multi-period
risk bounds for the AV@R.

One naive approach to compare the risk of two consecu-
tive actions is to estimate ρ(X1 + . . .+Xτ ) for all sequences
of arm-choices, but this method requires a number of sam-
ples exponential in the time-horizon. We can drastically cut
the number of samples when the arms’ rewards are mutu-
ally independent. In that case, we can estimate the density of
X1 + . . . + Xτ by constructing histogram density estimates
for each Xi individually, performing the convolution of these
histograms (in the transform domain) to obtain a density es-
timate for X1 + . . . + Xτ , and then computing quantile es-
timates from the latter. Hence, in this section, we make the
additional assumption that the rewards are independent across
different arms. The exposition is also simplified by assuming
that the rewards take a finite number of values instead of As-
sumption 4.1.
Assumption 5.1 (Arm-wise independence). For every fixed
time t, the arms rewards {X1

t , . . . , X
n
t } are independent.

Assumption 5.2 (Discrete-valued rewards). Let K be a fixed
integer. For every arm i, the rewardsXi

t take values in a finite
set {vk ∈ R : k = 1, . . . ,K} and there exists a constant
γ , γK > 0 such that the probability mass function satisfies
di(k) > γ for all k = 1, . . . ,K.

The results of this section extend easily to the case where
the rewards take values in interval [A,B]; in this case, we par-
tition the subset [A,B] into K intervals u1, . . . , uK such that
each interval has length |B −A| /K, and take the midpoint
of each interval.

We begin by considering the special case of the mean-
variance risk measure ρMλ . We can easily derive a multi-
period PAC risk bound, provided that the rewards are inde-
pendent between different arms.
Corollary 5.1 (Multi-period MV PAC bound). Suppose that
the assumptions of Theorem 4.3 hold. Suppose further that
Assumption 5.1 holds. If the arm i∗ ∈ arg mini=1,...,n ρ

M
λ (i)

is chosen repeatedly at time periods 1, . . . , τ , then, with prob-
ability 1− δ, we have∣∣∣∣∣ min

(a1,...,aτ )∈[n]τ
ρMλ

(
τ∑
t=1

Xat
t

)
− ρMλ

(
τ∑
t=1

Xi∗

t

)∣∣∣∣∣ 6 τε.

However, for more general risk measures, more complex
techniques are needed to bound the multi-period risk. For the
case of the V@R risk measure, we present the CuRisk Algo-
rithm of Figure 1. This algorithm first estimates the proba-
bility density of each arm’s reward, then solves an allocation
problem with respect to the risk measure of interest. The al-
gorithm can be adapted to other risk measures by replacing
the ALC-VAR step with corresponding allocation problems.
For instance, we can modify the CuRisk Algorithm to tackle
the case of the AV@R risk measure using the method of Sec-
tion 4.2.

The CuRisk Algorithm works as follows. For every arm
i, d̂i denotes the empirical probability mass function or his-
togram. The function D̂j in Eq. (3) denotes the probability-
generating function of Xj

1 , which is the z-transform of the

1: Input: A set of arms {1, . . . , n}, integers N > 0 and
K > 0, scalar r ∈ (0, 1), and sets of reward samples
X 1, . . . ,Xn.

2: Output: Arm choices i1, . . . , iτ .
3: for all i = 1, . . . , n do
4: Compute empirical histogram estimates d̂i:

d̂i(k) =
1

|X i|
∑
X∈X i

1[X∈uk], for all k = 1, . . . ,K.

5: end for
6: Solve the allocation problem (ALC-VAR):

max
m1,...,mn∈N+

sup
x∈R

x

s.t.
bxKc∑
k=1

1

2krk

2k∑
j=1

(−1)j<

[
n∏
`=1

D̂m`
` (reιjπ/k)

]
6 λ,

m1 + . . .+mn = τ,

where ι =
√
−1, < denotes the real-part operator, and

D̂` is the z-transform:

D̂`(z) ,
K∑
k=1

d̂`(k)zk, for all z ∈ C. (3)

7: for t = 1, . . . , τ do
8: Output each arm j exactly m∗j times, where

(m∗1, . . . ,m
∗
n) is a solution to ALC-VAR.

9: end for

Figure 1: CuRisk Algorithm for V@R

probability-mass function d̂j . The decision variables of the
optimization problem ALC-VAR are integers m1, . . . ,mn

and a real number x. The damping parameter r of the CuRisk
Algorithm affords a trade-off between round-off errors in the
constraints of ALC-VAR and the generality of the following
multi-period risk bound.

One of the features of the CuRisk Algorithm is that it does
not estimate the risk for each possible sequence of actions ~a,
since this would require a number of times exponential in the
length of ~a. Instead, the CuRisk Algorithm solves an opti-
mization problem ALC-VAR. Another important feature of
the CuRisk Algorithm is that the computational complexity
does not increase with the time horizon τ , which is guaran-
teed in the following theorem. This feature comes from the
use of the product of probability-generating functions to ap-
proximate a convolution of τ probability mass functions.

Theorem 5.2 (Multi-period V@R PAC bound). Suppose that
Assumptions 5.1 and 5.2 hold, and that

K >
(λ+ γ)(1− r2)2 + 2

εγ(1− r2)2
,

N >
32τ2

(Kγε− λ− γ)2
log

(
4 · 2Kτnτ

δ

)
.

Suppose that the arm choices i1, . . . , iτ follow the CuRisk Al-



gorithm. Then, with probability 1− δ, we have∣∣∣∣∣ min
(a1,...,aτ )∈[n]τ

ρVλ

(
τ∑
t=1

Xat
t

)
− ρVλ

(
τ∑
t=1

Xit
t

)∣∣∣∣∣ 6 2ε.

Although we have bounded the sample-complexity of the
multi-period problem, the computational complexity remains
high due to the non-linear constraint and integer-valued deci-
sion variables of ALC-VAR. A possible relaxation is to first
solve the real-valued problem and follow-up by rounding.

6 Empirical results
In this section, we first show how different risk measures
induce different optimal decisions in the single-period case.
Then, we illustrate the complexity of the multi-period case.
Details of these examples appear in the appendix of [Yu and
Nikolova, 2013].

For the single-period case, we consider a set of five
arms with different reward distributions, but the same mean.
The reward distributions are: uniform, normal, exponential,
Pareto, and Beta. Figure 2 illustrates the convergence of the
single-period AV@R estimates for an arm with Pareto reward
distributions. Figure 3 shows how different arms are optimal
for a single period with respect to different risk measures.
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Figure 2: Convergence of the AV@R estimator ρ̂Aλ for Pareto
rewards with error bars at one standard-deviation.

Next, we consider a three-period case with three arms. The
first arm generates i.i.d. rewards with values −10 and −20
with probabilities 0.9 and 0.1; the second arm values −5
and −15 with equal probability 0.5; the third arm generates
a deterministic reward −14. Figure 4 shows that choosing
each of the three arms once minimizes the V@R for a pa-
rameter λ ∈ (0.05, 0.1). This shows that non-intuitive solu-
tions can arise from even the simplest of multi-period risk-
minimization problems.

7 Discussion
To summarize, for single-period risk, Ω(n2δ−1ε−2) sam-
ples are sufficient for a simple policy to find an (ε, δ)-
optimal arm with respect to the V@R and AV@R. With
respect to the mean-variance risk, Ω(n log(nδ−1)ε−2) sam-
ples are sufficient. For the multi-period risk over τ peri-
ods, Ω(nτ2 log(τnτδ−1)ε−2) samples are sufficient for the
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Figure 3: Single-period risk of different arms for different
risk measures with λ = 0.1.
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Figure 4: Each bar corresponds to one of ten possible selec-
tions among three arms over three periods; the height of each
bar corresponds to the associated V@R risk with λ = 0.07.
Each point (a, b) in the (x, y)-plane corresponds to selecting
the first, second, and third arm a, b , and 3 − a − b times re-
spectively. The least V@R selection of arms corresponds to
selecting each arm once (i.e., the point (1, 1) in the plane).

CuRisk Algorithm to find an (ε, δ)-optimal sequence of τ arm
choices. Using sampling methods that quickly eliminate arms
with high risk and low variance [Even-Dar et al., 2002], it is
possible to reduce the dependence in the number n of arms.

A number of questions remain open. Is it possible to devise
an algorithm with similar PAC risk bounds that do not depend
on the problem parameters D and D′ of Theorem 4.1? This
could, for instance, be achieved by estimating these parame-
ters in parallel. What are lower bounds on the sample com-
plexity for various risk measure estimates? Can we extend
our results for V@R and AV@R to the setting of [Sani et al.,
2012], where risk measures are associated with policies in-
stead of fixed sequences of actions? A natural policy is one
to act greedily according to risk estimates that are updated
after each reward observation.

In our analysis, we consider separately the risk due to ex-
ploration (or estimation) and the risk due to randomness. It
would be interesting to introduce a new notion of risk that
combines the two risks. For example, we can define a new
risk measure as a weighted sum of two components: the risk
with respect to an estimated distribution and the risk of the
estimation error.
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A Details of empirical results

A.1 Single-period example

For the single-period example of Section 6, the density func-
tions of the distributions are shown in Figure 5.
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Figure 5: Reward probability density functions.

A.2 Two arms over two periods

We now give an example in which a mix of arms minimizes
the V@R risk in multi-period arm-selection. Consider two
arms: at every time t, arm 1 generates an independent reward
Xt with the following Bernoulli distribution:

Xt =

{
10, w.p. 0.1,
15, w.p. 0.9.

Arm 2 generates a deterministic reward Yt = 14 at every time
t.

In two periods, we have the following distributions for the
three distinct arm-selections.

X1 +X2 =

{
20, w.p. 0.01,
25, w.p. 0.18,
30, w.p. 0.81.

X1 + Y2 =

{
24, w.p. 0.1,
29, w.p. 0.9.

Y1 + Y2 = 28.

Recall that for a random variable Z, we have V@Rλ(Z) =
−qZ(λ), where q is the right-continuous quantile function:
q(λ) = inf{x ∈ R : FZ(x) > λ}. It is then easy to verify, by
drawing the distribution functions for each of the three sums
of random variables, that for λ ∈ (0.1, 0.19), we have

V@Rλ(X1 +X2) = −25,

V@Rλ(X1 + Y2) = −29,

V@Rλ(Y1 + Y2) = −28,

so that choosing arms 1 and 2 once each minimizes the V@R
risk.



A.3 Three-period example
For the multi-period example of Section 6, we consider three
arms with the following rewards. At every time t, arm 1 gen-
erates an independent cost Xt with the following Bernoulli
distribution:

Xt =

{
−10, w.p. 0.9,
−20, w.p. 0.1.

At every time t, arm 2 generates an independent cost Yt with
the following Bernoulli distribution:

Yt =

{
−5, w.p. 0.5,
−15, w.p. 0.5.

Arm 3 generates a deterministic reward Zt = −14 at every
time t. We will show that over three periods, the V@R at
λ = 0.95 is lowest when we pull each arm once.

There are ten possible combinations of arms that can be
pulled in the three periods:

X1 +X2 +X3 =


−30, w.p. 0.729,
−40, w.p. 0.243,
−50, w.p. 0.027,
−60, w.p. 0.001

⇒ V@Rλ = 40.

Y1 + Y2 + Y3 =


−15, w.p. 0.125,
−25, w.p. 0.375,
−35, w.p. 0.375,
−45, w.p. 0.125.

⇒ V@Rλ = 45.

Z1 + Z2 + Z3 = 42, w.p. 1. ⇒ V@Rλ = 42.

X1 +X2 + Y3 =


−25, w.p. 0.405,
−35, w.p. 0.495,
−45, w.p. 0.095,
−55, w.p. 0.005.

⇒ V@Rλ = 45.

X1 + Y2 + Y3 =


−20, w.p. 0.225,
−30, w.p. 0.475,
−40, w.p. 0.275,
−50, w.p. 0.025.

⇒ V@Rλ = 40.

X1 +X2 + Z3 =

{ −34, w.p. 0.81,
−44, w.p. 0.18,
−54, w.p. 0.01.

⇒ V@Rλ = 44.

X1 + Z2 + Z3 =

{
−38, w.p. 0.9,
−48, w.p. 0.1.

⇒ V@Rλ = 48.

Y1 + Y2 + Z3 =

{ −24, w.p. 0.25,
−34, w.p. 0.5,
−44, w.p. 0.25.

⇒ V@Rλ = 44.

Y1 + Z2 + Z3 =

{
−33, w.p. 0.5,
−43, w.p. 0.5.

⇒ V@Rλ = 43.

X1 + Y2 + Z3 =

{ −29, w.p. 0.45,
−39, w.p. 0.5,
−49, w.p. 0.05.

⇒ V@Rλ = 39.

Clearly, the minimum V@R risk is incurred when pulling
each arm once.

B Proofs
B.1 Value-at-risk
The following theorem from the theory of order statistics es-
tablishes the convergence of the quantile estimator.
Theorem B.1. [David and Nagaraja, 2003] Suppose that As-
sumption 4.1 holds. Let d′i denote the derivative of di. There
exist constants C1, C2 > 0 and scalars V iN and W i

N∣∣V iN ∣∣ 6 ∣∣∣∣ λ(1− λ)d′i(qi(λ))

2(N + 2)d3i (qi(λ))

∣∣∣∣+ C1/N
2,

W i
N 6

λ(1− λ)

(N + 2)d2i (qi(λ))
+ C2/N

2

such that
EX̂i

λ = qi(λ) + V iN ,

VAR X̂i
λ = E(X̂i

λ − EX̂i
λ)2 = W i

N .

The following theorem uses a result from order statistics to
derive a PAC sample complexity bound on our estimator.
Theorem B.2 (V@R sample complexity). Suppose that As-
sumption 4.1 holds. Suppose that the number N of samples
of each arm is at least

max

{
λ(1− λ)

δε2 d2i (qi(λ))
,

√
8C2

δε2
,

2λ(1− λ)d′i(qi(λ))

ε d3i (qi(λ))
,

√
4C1

ε

}
.

Then, we have, for every arm i:

P
(∣∣∣X̂i

λ − qi(λ)
∣∣∣ 6 ε

)
> 1− δ.

Proof of Theorem B.2. We can verify by algebra that the as-
sumption on N = N(ε, δ) satisfies

∣∣V iN ∣∣ 6 ε/2 and W i
N 6

δε2/4. By Theorem B.1, we have∣∣∣EX̂i
λ − qi(λ)

∣∣∣ =
∣∣V iN ∣∣ . (4)

By the Triangle Inequality, Equation (4), and Chebyshev’s
Inequality, we have

P
(∣∣∣X̂i

λ − qi(λ)
∣∣∣ > ε

)
6 P

(∣∣∣X̂i
λ − EX̂i

λ

∣∣∣+
∣∣∣EX̂i

λ − qi(λ)
∣∣∣ > ε

)
6 P

(∣∣∣X̂i
λ − EX̂i

λ

∣∣∣ > ε−
∣∣V iN ∣∣)

6
VAR X̂i

λ

(ε−
∣∣V iN ∣∣)2 6

VAR X̂i
λ

ε2/4
=
W i
N

ε2/4
6 δ,

where the last two inequalities follow by the assumption on
N = N(ε, δ).

Proof of Theorem 4.1. Let i∗ denote an arm with minimum
V@R, i.e., i∗ ∈ arg minj ρ

V
λ (j). Consider an arm i such that

ρVλ (i) < minj ρ
V
λ (j) + ε. We bound the probability of the

event {ρ̂Vλ (i) > ρ̂Vλ (i∗)} as follows:

P(ρ̂Vλ (i) > ρ̂Vλ (i∗)) 6 P(ρ̂Vλ (i) < ρVλ (i)− ε/2)

+ P(ρ̂Vλ (i∗) > ρVλ (i∗) + ε/2)

(Thm B.2) 6
δ

2n
+

δ

2n
.

Since there are at most (n−1) possible choices for arm i, the
claim follows by a union bound.



B.2 Average value-at-risk
Theorem B.3 (AV@R sample complexity). Suppose that the
assumptions of Theorem 4.1 hold. Suppose that the rewards
are bounded such that

∣∣Xi
t

∣∣ 6 M almost surely, for every
arm i and time t. Suppose that

N > max

{
32λ′M2

ε2λ2
log(2/δ),

(1/6)D′/D3 + 2C1λ
′

ελ
, 2

}
,

where λ′ denotes the smallest real number greater than λ
such that λ′N is an integer. Then, we have, for every arm
i, ∣∣∣ρAλ (Xi)− (−Ŷ iλ)

∣∣∣ 6 ε w.p. 1− δ.

Proof of Theorem B.3. By the definitions of ρAλ and Ŷ iλ , and
by the Triangle Inequality, we have

λ
∣∣∣ρAλ (Xi)− (−Ŷ iλ)

∣∣∣ =∣∣∣∣∣∣
∫ λ

0

qi(ξ) dξ −

bλNc−1∑
j=0

Xi
(j+1)

N
+

(
λ− bλNc

N

)
Xi

(dλNe)

∣∣∣∣∣∣
6

∣∣∣∣∣∣
∫ λ′

0

qi(ξ) dξ −

λ′N−1∑
j=0

1

N
Xi

(j+1)

∣∣∣∣∣∣
6

∣∣∣∣∣∣
∫ λ′

0

qi(ξ) dξ −

λ′N−1∑
j=0

1

N
EXi

(j+1)

∣∣∣∣∣∣︸ ︷︷ ︸
R

+

∣∣∣∣∣∣
λ′N−1∑

j=0

1

N
EXi

(j+1)

−
λ′N−1∑

j=0

1

N
Xi

(j+1)

∣∣∣∣∣∣︸ ︷︷ ︸
S

.

Observe that by Theorem B.1, we have

R 6

∣∣∣∣∣
∫ λ′

0

V iN (λ)dλ

∣∣∣∣∣
6
∫ λ′

0

(
λ(1− λ)D′

2D3(N + 2)
+
C1

N2

)
dλ

=
(λ′2/2− λ′3/3)D′

2D3(N + 2)
+
C1λ

′

N2
, Q.

By assumption on N , we can verify by simple algebra that
Q < λε/2.

Observe that

P
(∣∣∣ρAλ (Xi)− (−Ŷ iλ)

∣∣∣ > ε
)

6 P(R+ S > λε)

= P(S > λε−R)

6 P(S > λε−Q)

= P

∣∣∣∣∣∣
λ′N−1∑
j=0

1

N
EXi

(j+1) −
1

N
Xi

(j+1)

∣∣∣∣∣∣ > λε−Q


6 2 exp

(
− (λε−Q)2N2

2λ′N(2M)2

)
6 2 exp

(
− (λε/2)2N

8λ′M2

)
6 δ.

where the last two inequalities follow by Azuma’s Inequal-
ity for bounded-difference martingale sequences and the as-
sumption on N .

The proof of Theorem 4.2 is similar to that of Theorem 4.1.

B.3 Mean-variance risk
Theorem B.4 (MV sample complexity). Suppose that there
exist A,B such that P(Xi

t ∈ [A,B]) = 1 for all i. Suppose
that

N > max

{
(B −A)2

2ε2
log

(
4

δ

)
,

(B −A)4λ2

ε2
log

(
4

δ

)
+ 1

}
.

Then, we have, for every arm i:
P
(∣∣ρ̂Mλ (i)− ρMλ (i)

∣∣ 6 ε
)
> 1− δ.

Proof of Theorem B.4. Recall that µ̂(i) and σ̂2(i) are unbi-
ased estimators. By Hoeffding’s Inequality and the assump-
tion that N > (B−A)2

2ε2 log
(
4
δ

)
, we have

P(|µ̂(i)− µ(i)| > ε) 6 2 exp

(
− 2Nε2

(B −A)2

)
6 δ/2.

Observe that (Xi
k − µ̂(i))2 ∈ [0, (B − A)2] with probability

1. By the Triangle Inequality, Hoeffding’s Inequality, and the
assumption that N > (B−A)4λ2

ε2 log
(
4
δ

)
+ 1, we have

P
(∣∣σ̂2(i)− σ2(i)

∣∣ > ε/λ
)

6 2 exp

(
−

2N(N−1N ε/λ)2

(B −A)4

)
6 δ/2.

Observe that
{
∣∣−µ̂(i) + λσ̂2(i) + µ(i)− λσ2(i)

∣∣ > ε}
⊆ {|µ̂(i)− µ(i)|+

∣∣λσ̂2(i)− λσ2(i)
∣∣ > ε},

Hence, we have
P
(∣∣ρ̂Mλ (i)− ρMλ (i)

∣∣ > ε
)

= P(
∣∣−µ̂(i) + λσ̂2(i) + µ(i)− λσ2(i)

∣∣ > ε)

6 P(|µ̂(i)− µ(i)|+
∣∣λσ̂2(i)− λσ2(i)

∣∣ > ε)

6 P(|µ̂(i)− µ(i)| > ε) + P(
∣∣σ̂2(i)− σ2(i)

∣∣ > ε/λ) 6 δ,

where the last inequality follows from a union bound.

The proof of Theorem 4.3 is similar to that of Theorem 4.1.

B.4 Multi-period risk measures
Proof of Corollary 5.1. For the multi-period risk bound, ob-
serve that by independence, for all i 6= j and t 6= τ , we have
ρMλ (Xi

t +Xj
τ ) = ρMλ (Xi

t) + ρMλ (Xj
τ ). Hence,

min
(a1,...,aτ )∈[n]τ

ρMλ

(
τ∑
t=1

Xat
t

)

= min
(a1,...,aτ )∈[n]τ

τ∑
t=1

ρMλ (Xat
t )

= τ min
i∈[n]

ρMλ (i) .

The claim follows.



The proof of Theorem 5.2 uses two lemmas: Lemma B.5
bounds the error due to the approximate z-transform in the
optimization problem ALC-VAR; Lemma B.6 bounds the er-
ror due to histogram density estimation from a finite sam-
ple. First, we introduce the following notation. Let ~a ,
(a1, . . . , aτ ) ∈ [n]τ denote a sequence of τ arm choices. Let

S(~a) ,
τ∑
t=1

Xat
T+t

denote the sum of the rewards accumulated by the sequence
of arm choices ~a.
Lemma B.5 (Approximation error). Suppose that Assump-
tions 5.1 and 5.2 hold. Further, suppose that the histogram
estimates are exact, i.e., d̂i = di for all i. Let V ∗ denote the
optimal value of the optimization problem ALC-VAR. Then,∣∣∣∣V ∗ −min

~a
ρVλ (S(~a))

∣∣∣∣ 6 1

Kγ

(
λ+ γ + 2

K∑
k=1

r2k

1− r2k

)
.

Proof of Lemma B.5. The proof consists of three steps. We
first bound the error of the approximate inverse z-transform.
Then, we bound the error in the optimal values of two opti-
mization problems that define quantiles. Finally, we bound
the error in multi-period risk due to approximation by the
ALC-VAR optimization problem.

(Step 1) We bound the error due to the approximate in-
verse z-transform. Let d` : [K]→ [0, 1] denote the probabil-
ity mass function of the rewards {X`

t } of arm `, for every `.
Consider a fixed sequence of actions ~a. Denoting the convo-
lution operator by ∗, we define the probability mass function
dS(~a) and the cumulative distribution function FS(~a):

dS(~a) = da1 ∗ . . . ∗ daτ ,

FS(~a)(x) =

bxKc∑
k=1

dS(~a)(k), x ∈ R.

Let D` denote the z-transform of d`, for every `, and let D
denote the z-transform—or probability generating function—
of dS(~a), i.e.,

D(z) =

∞∑
k=1

dS(~a)(k)zk, for all z ∈ C.

By the convolution property of the z-transform, we have

D(z) =

τ∏
t=1

Dat(z) =

n∏
`=1

Dm`
` (z), for all z,

where m` counts the number of times arm ` is chosen in the
sequence ~a. Let

d̃(k) =
1

2krk

2k∑
j=1

(−1)j<[D(reιjπ/k)].

The sequence d̃ approximates the inverse z-transform, which
is a contour integral. By Theorem 1 of [Abate and Whitt,
1992], we have∣∣∣d̃(k)− dS(~a)(k)

∣∣∣ 6 r2k

1− r2k
. (5)

(Step 2) Next, we bound the difference in the optimal val-
ues of the following optimization problems:

P1 : x∗1 , sup
x∈R

x

s.t.
bxKc∑
k=1

dS(~a)(k) 6 λ.

and

P2 : x∗2 , sup
x∈R

x

s.t.
bxKc∑
k=1

d̃(k) 6 λ,

where x∗1 and x∗2 denote the optimal values of P1 and P2. We
have

∣∣∣∣∣∣
bxKc∑
k=1

dS(~a)(k)−
bxKc∑
k=1

d̃(k)

∣∣∣∣∣∣ 6
bxKc∑
k=1

∣∣∣d̃(k)− dS(~a)(k)
∣∣∣

6
bxKc∑
k=1

r2k

1− r2k
. (6)

First, we consider the case x∗1 > x∗2. By the definition of
P1 and P2, we clearly have

∣∣∣∣∣∣
bx∗1Kc∑
k=1

dS(~a)(k)−
bx∗2Kc∑
k=1

d̃(k)

∣∣∣∣∣∣
6

∣∣∣∣∣∣
bx∗1Kc∑
k=1

dS(~a)(k)−
bx∗2Kc∑
k=1

dS(~a)(k)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
bx∗2Kc∑
k=1

dS(~a)(k)−
bx∗2Kc∑
k=1

d̃(k)

∣∣∣∣∣∣ (7)

6 λ+

K∑
k=1

r2k

1− r2k
, (8)

where the last inequality follows from (5).



Observe that, by Assumption 5.2, we have

|x∗1 − x∗2|Kγ
6 |bx∗1Kc − bx∗2Kc| γ + γ

6

∣∣∣∣∣∣
bx∗1Kc∑
k=bx∗2Kc

dS(~a)(k)

∣∣∣∣∣∣+ γ

6

∣∣∣∣∣∣
bx∗1Kc∑
k=1

dS(~a)(k)−
bx∗2Kc∑
k=1

dS(~a)(k)

∣∣∣∣∣∣+ γ

6

∣∣∣∣∣∣
bx∗1Kc∑
k=1

dS(~a)(k)−
bx∗2Kc∑
k=1

d̃(k)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
bx∗2Kc∑
k=1

d̃(k)−
bx∗2Kc∑
k=1

dS(~a)(k)

∣∣∣∣∣∣+ γ

6 λ+ 2
K∑
k=1

r2k

1− r2k
+ γ,

where the third inequality follows from the Triangle Inequal-
ity, and the last inequality follows from (6) and (8). Combin-
ing the above two inequalities, we obtain

|x∗1 − x∗2| 6
1

Kγ

(
λ+ γ + 2

K∑
k=1

r2k

1− r2k

)
. (9)

For the case x∗1 6 x∗2, we obtain the same bound by a similar
argument: replacing x∗2 by x∗1 and dS(~a) by d̃ in the decom-
position (7).

(Step 3) By definition of the V@R,

min
~a
ρVλ (S(~a)) = min

~a
−qS(~a)(λ) = max

~a
qS(~a)(λ).

Moreover, by definition of the quantile function, we have

qS(~a)(λ) = sup{x ∈ R : FS(~a)(x) 6 λ},

which is the optimal value of P1. Hence, we have

min
~a
ρVλ (S(~a)) = max

~a
sup
x∈R

x

s.t.
bxKc∑
k=1

dS(~a)(k) 6 λ.

Observe that
∏τ
t=1Dat =

∏n
`=1D

M`

` where M` =∑τ
t=1 1[at=`]. Hence, by definition of d̃, the optimal value

of ALC-VAR can be written as

V ∗ = max
~a

sup
x∈R

x

s.t.
bxKc∑
k=1

d̃(k) 6 λ,

where the inner optimization is P2.

Observe that x∗1 = x∗1(~a) is a function of ~a, likewise for
x∗2. Hence, by the Triangle Inequality, we have∣∣∣∣V ∗ −min

~a
ρVλ (S(~a))

∣∣∣∣ =

∣∣∣∣max
~a

x∗1(~a)−max
~b

x∗2(~b)

∣∣∣∣
6 |x∗1(~a∗)− x∗2(~a∗)| ,

where ~a∗ , arg max~a x
∗
1(~a). The claim of Lemma B.5 fol-

lows since the bound of (9) holds uniformly for all ~a.

Next, we present Lemma B.6, which bounds the error due
to estimating each density function di with an empirical his-
togram d̂i.
Lemma B.6 (Estimation error). Suppose that Assump-
tions 5.1 and 5.2 hold. Suppose further that

K > (γ + λ)/(γε),

N >
32τ2

(Kγε− λ− γ)2
log

(
4 · 2Kτ
δ

)
.

Then, we have∣∣∣dS(~a) − d̂S(~a)∣∣∣ 6 ε, with probability 1− δ,

and∣∣ρVλ (S(~a))− ρ̂Vλ (S(~a))
∣∣ 6 ε, with probability 1− δ.

Proof of Lemma B.6. First, observe that the assumptions of
Lemma B.6 hold if the assumptions of Theorem 5.2 hold. The
proof proceeds in two steps. First, we bound the histogram
estimation error of a sum of independent random variables by
using an estimation result on a single random variable. Next,
we relate the quantile error to the histogram error and employ
a concentration inequality.

(Step 1) To simplify notation, we let S(~a) = X1 + . . . +
Xτ . First, we bound the error on a convolution of density
functions due to approximating each density function di by
d̂i. Suppose that, for all i = 1, . . . , τ ,∫ ∣∣∣d̂i − di∣∣∣ 6 δ.

Then, for the convolution of di and dj , we have∫ ∣∣∣d̂i(z) ∗ d̂j − di ∗ dj∣∣∣
6
∫ ∣∣∣∣∫ d̂i(z)d̂j(a− z)−

∫
di(z)dj(a− z)

∣∣∣∣
6
∫ ∫ ∣∣∣d̂i(z)d̂j(a− z)− di(z)dj(a− z)∣∣∣

6
∫ ∫

d̂i(z)
∣∣∣d̂j(a− z)− dj(a− z)∣∣∣

+ dj(a− z)
∣∣∣d̂i(z)− di(z)∣∣∣

6 2δ,

where the third inequality follows by the Triangle Inequality.
It follows by repeated convolution that∫ ∣∣∣d̂S(~a) − dS(~a)∣∣∣ 6 τδ. (10)



(Step 2) By applying the argument of Step 2 of the proof of
Lemma B.5 and letting x∗1 = ρVλ (S(~a)) and x∗2 = ρ̂Vλ (S(~a)),
we have for every realization of S(~a):∣∣ρVλ (S(~a))− ρ̂Vλ (S(~a))

∣∣Kγ
6

∣∣∣∣∣∣
bx∗1Kc∑
k=1

dS(~a)(k)−
bx∗2Kc∑
k=1

d̂S(~a)(k)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
bx∗2Kc∑
k=1

d̂S(~a)(k)−
bx∗2Kc∑
k=1

dS(~a)(k)

∣∣∣∣∣∣+ γ

6 λ+

K∑
k=1

∣∣∣dS(~a)(k)− d̂S(~a)(k)
∣∣∣+ γ

= λ+ γ +

∫ ∣∣∣dS(~a) − d̂S(~a)∣∣∣ ,
where the last inequality uses the integral bound and the fact
that ∣∣∣∣∣∣

bx∗1Kc∑
k=1

dS(~a)(k)−
bx∗2Kc∑
k=1

d̂S(~a)(k)

∣∣∣∣∣∣ 6 λ.

Recall that by assumption, we have Kγε − λ − γ > 0. In
turn, we obtain

P(
∣∣ρVλ (S(~a))− ρ̂Vλ (S(~a))

∣∣ > ε)

6 P
(∫ ∣∣∣dS(~a) − d̂S(~a)∣∣∣ > Kγε− λ− γ

)
(by (10)) 6 P

(
τ⋃
i=1

{∫ ∣∣∣di − d̂i∣∣∣ > Kγε− λ− γ
τ

})

6 τ · P
(∫ ∣∣∣di − d̂i∣∣∣ > Kγε− λ− γ

τ

)
(by VC) 6 4 · 2Kτ exp

(
−N(Kγε− λ− γ)2

32τ2

)
6 δ.

where the last line follows from a Vapnik-Chervonenkis In-
equality (cf. Lemma 1 of [Lugosi and Nobel, 1996]) and from
the assumptions.

By combining the above lemmas, we obtain the PAC multi-
period risk bound of Theorem 5.2.

Proof of Theorem 5.2. Observe that by combining Lem-
mas B.5 and B.6, and using a threshold δ/nτ in Lemma B.6
so that a union bound yields a probability δ, we obtain∣∣∣∣∣ min

(a1,...,aτ )∈[n]τ
ρVλ

(
τ∑
t=1

Xat
t

)
− ρVλ

(
nN+τ∑
t=nN+1

Xit
t

)∣∣∣∣∣
6 ε+

1

Kγ

(
λ+ γ + 2

K∑
k=1

r2k

1− r2k

)
with probability 1 − δ. Next, observe that, since r ∈ (0, 1),
we have

K∑
k=1

r2k

1− r2k
6

1

1− r2
K∑
k=1

r2k 6
1

1− r2
1

1− r2
.

where the last inequality uses the geometric series bound.
Hence, we have

1

Kγ

(
λ+ γ + 2

K∑
k=1

r2k

1− r2k

)
6

(λ+ γ)(1− r2)2 + 2

Kγ(1− r2)2

6 ε,

where the last inequality follows from the assumption on K.


