RC25381 (WAT1305-062) May 20, 2013
M athematics

|BM Resear ch Report

Stabilizer-Based Symmetry Breaking Constraints
for Mathematical Programs

L eo Liberti
IBM Research Division
Thomas J. Watson Research Center
P.O. Box 208
Y orktown Heights, NY 10598
USA
and
LIX
Ecole Polytechnique
F-91128 Palaiseau
France

James Ostrowski
Department of Industrial and Information Engineering
University of Tennessee
Knoxville, TN 37996-0700
USA

——=—= Research Division
S S=E55= Almaden- Austin - Beijing - Cambridge - Haifa - India- T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
0. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on theinternet at http://domino.watson.ibm.com/library/CyberDig.nsf/home.

Stabilizer-based symmetry breaking constraints for
mathematical programs

LEO LIBERTI"Z, JAMES OSTROWSKI?

U IBM “T.J. Watson” Research Center, Yorktown Heights, NY 10598, USA
Email:1eoliberti@us.ibm.com

2 LIX, Ecole Polytechnique, F-91128 Palaiseau, France
Email:1liberti@lix.polytechnique.fr

3 Dept. of Industrial and Information Engineering, University of Tennessee, Knoxville TN 37996-0700, USA
Email: jostrows@utk.edu

May 24, 2013

Abstract

Mathematical programs whose formulation is symmetric often take a long time to solve using Branch-and-
Bound type algorithms, because of the several symmetric optima. A simple technique used in these cases is to
adjoin symmetry breaking constraints to the formulation before solving the problem. These constraints: (a) aim
to guarantee that at least one optimum is feasible, whilst making some of the symmetric optima infeasible; and (b)
are usually associated to the different orbits of the action of the formulation group on the set of variable indices.
In general, one cannot adjoin symmetry breaking constraints from more than one orbit. In [13], some (restrictive)
sufficient conditions are presented which make it possible to adjoin such constraints from several orbits at the
same time. In this paper we present a new, less restrictive method for the same task, and show it performs better
computationally.

Keywords: mathematical programming, static symmetry breaking, MILP, MINLP.

1 Introduction

It is well known that Mathematical Programs (MP) with nontrivial symmetry on the decision variables may take
Branch-and-Bound (BB) type solvers a very long time to prove the optimality of a solution, due to the many
symmetric optima in the leaves of the BB tree [18, 14]. Two strategies are available to address this issue: static
and dynamic symmetry breaking [18]. The former usually consists of adjoining new constraints to the formulation
in order to make some symmetric optima infeasible, it is very easy to deploy, and is the object of the current
contribution. Examples of the latter are isomorphism pruning [17] and orbital branching [21]; dynamic strategies
usually require more involved implementations, but often also end up being more effective. The occurrence of
symmetry in MP is far from rare: the computational experiments in [13] show that 18% of the instances in the
MIPLib3 [2], MIPLib2003 [19], GlobalLib [3], MINLPLib public instance libraries have a nontrivial formulation
group (defined below in Sect. 2).

Static symmetry breaking consists in adjoining some symmetry breaking constraints (SBC) to the problem
formulation, yielding a reformulation which is guaranteed to keep at least one symmetric optimum feasible (such
reformulations are called narrowings [12]). Several SBCs can be found in the literature for specific problems
(such as, e.g., the Quadratic Assignment Problem [7], the Kissing Number Problem [14], the problem of Packing
Equal Circles in a Square [6]), or specific symmetry groups (such as the full symmetric group [23]). Several SBC
classes for MILPs are surveyed in [18]. Some general-purpose SBCs that work in the full Mixed-Integer Nonlinear
Programming (MINLP) framework (which also includes the case of continuous Nonlinear Programs (NLP) and
Mixed-Integer Quadratic Programs (MIQP)) are discussed in [13].

Although there appears to be no clearly defined relation between how large a formulation group is and how
hard it is to solve the corresponding MP in practice, there are two common sense arguments motivating the study

2 BACKGROUND AND NOTATION 2

of symmetries in MP, having to do with two different algorithmic classes. When the MP is solved exactly (or
approximately) using BB algorithms (such as [9] when it is a MILP or [1] when it is a MINLP) and only one
global optimum is required, then multiple symmetric global optima generally yield larger BB trees, and therefore
longer solution processes. When heuristic or meta-heuristic algorithms (e.g. [16]) are used in order to find good
solutions of P, the picture is often reversed: if the algorithm stochastically explores the neighbourhood of the most
recent (or best) found local optimum, having more optima prevents the algorithm from getting stuck early on in
the search [14].

In this paper we address a limitation of the SBC generation method proposed in [13]. SBCs can be derived from
each orbit of the action of the formulation group on the set of variable indices. In general, however, only SBCs
referring to a single orbit can be adjoined to the formulation. If the formulation group has several orbits (as is the
case in practice), however, the improvement on the BB solution time will be moderate if SBCs breaking symmetry
for only one orbit are adjoined. This limitation was partly overcome in [13] by specifying sufficient conditions
on subsets of orbits which makes it possible to simultaneously adjoin to the formulation SBCs from each orbit in
the subset. These sufficient conditions, however, are too restrictive in practice. This paper discusses a different
method for generating SBCs that can all simultaneously be adjoined to the formulation: we pick an orbit, generate
the corresponding SBCs, then update the group with the orbit stabilizer; we repeat this procedure until the latter
becomes trivial. We show empirically that the three proposed variants of this new method outperforms the old
one on several MP instances (both MILP and MINLP) drawn from the literature, as well as on some intentionally
generated MILP and MIQP edge coloring problems.

The rest of this paper is organized as follows. We give background material, formal definitions and notation in
Sect. 2, present the new method and its variants in Sect. 3, and discuss the computational results in 4.

2 Background and notation

First, we give a formal definition of the type of MPs we consider. We then recall some group definitions, including
the formulation group of a MP and of a graph, and finally formally introduce SBCs.

2.1 A formal definition for MP

Mathematical Programming (MP) is a formal language for describing optimization problems of the form:
min{f(x) | g(x) <OAx€ X}, (1

where x € R" is a vector of decision variables, X C R” might include bounds and integrality constraints on sub-
sequences of x, and f : R” — R and g : R” — R™ are functions that can be written as strings of a formal lan-
guage & on the alphabet &/ = 6 UQU ¥, where ¥ = {x; | i € N} and € = {+,—, x,+,(-)"),log,exp, (,)}. The
strings of & are only and all those that can be obtained by the recursive application of the following rules [6]: (a)
Vs e QUY (s € &); (b) Y® € O representing a k-ary operator and eq,...,ex € &, ®(e; | j < k) isin &.

The recognition process (or parsing) of a valid string & € & naturally yields a directed graph D(h) whose leaf
nodes are elements of QU ¥ and whose non-leaf nodes are elements of & [6]. Every P € MP has a Directed
Acyclic Graph (DAG) representation D(P) obtained as a minor of D(f) UU;<,, D(gi) by contracting all equal leaf
nodes [6].

For P € MP, let ¢(P) be the set of globally optimal solutions of P.
2.2 Solution and formulation groups

Let [n] = {1,...,n}. For any vector v € R" and a subset B C [n], we let v[B] be the vector consisting of the
components of v indexed by elements of B.

2 BACKGROUND AND NOTATION 3

A group G is generated by elements of a set S (denoted G = (S)) when G is the closure of S with respect to the
group product. For a group G acting on X, we let Gx = {gx | g € G} be the orbit of x in G for all x € X; for any
Y C X weletstab(Y,G) = {g€ G|Vy €Y (gy€Y)} be the setwise stabilizerand G¥ = {g€ G|Vy €Y (gy=y)}
be the pointwise stabilizer of ¥ w.r.t. G. For a permutation 7 € S, let I'(r) be the set of all the cycles in its (unique)
disjoint cycle representation. For N C [n] we define 7T[N] = [Iscr(z)nstab(w,s,) O to be the restriction of 7 to N. If
mi,...,m € G < S, are generators for G (i.e. G = (7 | j < k)) we define G[N] = (x;[N] | j < k) to be the restriction
of Gto N. If N is an orbit of the action of G on [n] then G[N] is a transitive constituent of G w.r.t. N. By [5], p. 35,
for each orbit @ of G, the (right) map -[®] : G — G[w] given by T — 7[®] is a group homomorphism whose kernel
is the pointwise stabilizer G®, which is therefore a normal subgroup of G.

We remark that stabilizers are usually denoted by Gy rather than GY, and transitive constituents by GV [5,
22]. Our nonstandard notation allows us to disambiguate expressions such as Gp as concerns the two possible
interpretations “the formulation group of P and “the stabilizer of the set P in G”.

We consider the action of G < §,, on X given by 7x = (x,r](,-) | i < n). This action induces a right action
P — Pm (where m € G) on MP by replacing x with 7x everywhere in (1). S, also induces a left action P — o P
(where o € S,,) given by replacing g = (g1,...,8m) by 0g = (g(rl(j) |/ < m). Because optimization problems (1)
are independent of the order of the constraint sequence g, the two problems P and P have the same feasible region
and optima (both local and global) for all o € S,,, which implies that (cP)7 and Pr also have the same feasible
region and optima for ¢ € S,,, w € S,,, whence Vo € S,,,w € S, (0P)n = 6(Pr).

We define the solution group G*(P) = stab(¥(P),S,) and the formulation group Gp = (n € S,,| o € S,, (P =
P)) of a MP formulation P given by (1); it is easy to show that Gp < G*(P). Computing the solution group in
general requires aprioristic knowledge of ¢(P), which is usually the ultimate aim when considering and solv-
ing MPs, and is therefore impractical. Since deciding whether two function encodings h;,h; € & are equal has
linear complexity in |D(P)|, computing generators for Gp is a decidable problem [13] that can be solved once
the formulation of P is known. By choosing an appropriate colouring y: D(P) — N of the vertices of D(P) (in
order to avoid permutations of nodes of different types, e.g., operator nodes with variable nodes), we show that
Gp = Aut(D(P),y)[N], where Aut(¥,0) is the group of automorphisms of the graph ¢ which stabilizes each
equivalence class given by the vertex colouring J setwise [13].

2.3 Symmetry breaking constraints

Formally, a symmetry breaking constraint (SBC) for problem P and a group G < Gp is a set of constraints g(x) <0
(where g : R" — R? for some p € N) such that there exists an optimum y € ¢ (P) and € G with g(my) <0 [13].
Strictly speaking, this definition does not force SBCs to actually break any symmetry, but only to keep at least one
optimum feasible; this ensures the definition also works with optima y which are invariant to all permutations. In
practice, however, SBCs are constructed in such a way that g(oy) > 0 for as many ¢ € G as possible, so as to make
as many symmetric optima in ¢ (P) as possible infeasible in the narrowing [11]. If g(x) < 0 are SBCs involving
only variables x; with j in a given set B, we emphasize this by writing g[B](x) < 0, and say g(x) < 0 are SBCs with
respect to B. G is taken to be the whole of Gp unless specified otherwise.

In [13], new methods were presented in order to break symmetries with two types of general-purpose SBC
derived from the set Q of orbits of the action of Gp on the variable index set [n]. Specifically, for a nontrivial
orbit @ € Q, if the transitive constituent Gp[®] can be ascertained to be isomorphic to the full symmetric group
Sym(w) on @, then a unique order can be imposed on the variables indexed by @ by adjoining the following linear
inequalities to P:

Vi€ o~ {maxo} x;<x;+, 2)

where j* is the successor of j in @. Otherwise, for any structure Gp|[®] might have, one can always choose a
variable (for example xpin o) that should have minimum values among all those indexed by :

Vjieo~{min®} xminw <x;. 3)

‘We remark that the choices of max w and j*, which define the orbit order, and of min @, which defines the element
having minimum value in the orbit, are arbitrary.

3 A NEW METHOD FOR SBC GENERATION 4

In general, if ®,0 € Q with ® # 6 and g®(x) < 0 and g? (x) < 0 are SBCs with respect to, respectively, @ and
6, adjoining both g®(x) < 0 and g° (x) < 0 to P may not yield a valid narrowing of P, as Example 2.1 shows.

Example 2.1 Let P be the following MILP:

min X1+ x4 2x3 4 2x4
x€{0,1}4
-1 -1 0 0 X1 —1
0 0o -1 -1 X2 S —1
1 0 1 0 X3 - 1
0 1 0 1 X4 1

Its formulation group is Gp = ((1,2)(3,4)) = Cy, with two orbits @; = {1,2} and & = {3,4} and optima 4 (P) =
{(0,1,1,0),(1,0,0,1)}. Valid SBCs for ®, (resp.) are x; < x; (resp. x3 < x4). Whereas adjoining either of the
two SBCs leads to a valid narrowing, adjoining both at the same time results in an infeasible problem.

2.4 Coprime orbits narrowing

We showed in [13] some sufficient conditions by which SBCs originating from different orbits could be combined
into a valid narrowing of P. By Cor. 14 in [13], this holds if:

e Gp[®wU 6] contains a subgroup H such that H[w] = C, and H[0] = C|g| (where C,, is the cyclic group of
order p for all p € N);
e ged(|o],|6]) = 1.
Adjoining such SBCs to the original formulation results into a reformulation which we call the coprime orbits
narrowing.

We remark that these conditions are restrictive but not necessary, as Example 2.2 shows.
Example 2.2 The problem P = min{Y;<¢x; | x1 +x2 +2Y3<;<¢X; > 3Ax € {0, 1Y%} has formulation group
Gp=1{(1,2),(3,4),(4,5),(5,6)). The actionof Gon {1,...,6} has the two orbits & = {1,2} and & = {3,4,5,6},

vielding SBCs x1 < xp and, respectively, x3 < x4, x3 < x5, x3 < x6. These two sets of SBCs can both be adjoined to
P at the same time, even though ged(|oy |, |02]) =2 # 1.

3 A new method for SBC generation

Consider the SBC set C generated by Alg. 1. This algorithm iteratively builds a sequence @y, ..., @y of subsets of

Algorithm 1 Orbit stabilizer based SBC generator

1: Let G=Gpand C = &;

2: repeat

3. Let Q be the set of orbits of the action of G on [n];
Choose an orbit ® € Q;
Let g[o](x) < 0 be some SBCs for P and G w.r.t. @;
Let C =CU{glw](x) <0};
Replace G with the (pointwise) stabilizer G® of ®
8: until G = {e}
9: Return C.

AN

4 COMPUTATIONAL RESULTS 5

[n] with associated SBCs g¢[@y](x) < 0, and a chain of normal subgroups
Gp=G >G =Gr>...> G = Gy > G = {e}. 4)

It is easy to see that Gy = Gg"d “ for each ¢ < k, i.e. permutations in G, stabilize all elements of the orbits
oy, ...,0_1 pointwise.

Theorem 3.1 The constraint set Cy, = {gs[@y](x) < 0| ¢ <k} is an SBC system for P.

Proof. 1If P is infeasible then adjoining the constraints in C to P does not change its infeasibility, so assume P
is feasible. We prove the result by induction on k. When k = 1 the result trivially holds because g;[@;](x) <0
are SBCs for P by construction. Let P’ be like P with all the constraints in C;_1 adjoined to it. By the induction
hypothesis C;_; is an SBC set for P, so ¢4(P') C ¢(P) is non-empty; and since k — 1 is not the last iteration of
the algorithm, Gy is a nontrivial group. Since gi[@](x) < 0 are SBCs for P’ and G with respect to @, there exist

y €9 (P") and w € Gy such that gx[w;](my) < 0. Since 7 € Gy, it stabilizes the orbits @y, ..., w,_; pointwise, which
implies that (7y)[ey] = y[wy] for all £ < k. Since y € 4(P’), y is feasible in P, so it satisfies all constraints in Cy_;:
this means V¢ < k g[oy](my) < 0, which concludes the proof. O

Adjoining C to the original formulation yields a reformulation which we call the orbit stabilizer narrowing.

We remark that there is a choice of @ in Step 4 which guarantees that the stabilizer narrowing is always
“stronger” than the coprime orbits one: i.e., by choosing coprime orbits first. The notion of strength we consider
here is based on the C relation on the sets of SBCs generated by the two narrowings: a set S is stronger than S’
if § C S. It was observed empirically, however, that best results are obtained when @ is chosen as the orbit of
smallest cardinality in Q (intuitively, this is likely to increase the length of the chain in Eq. (4) and therefore the
size of the SBC set), which is the policy we follow below.

3.1 Variants

We propose two variants of Alg. 1 that exploit the structure of the SBCs (2)-(3).

First observe that whenever the structure of the transitive constituent G[®] is unknown, we employ SBCs (3).
Their effect is weak, in the sense that we only impose that Xy takes minimum value among all x; (for j € ®).
Any permutation 7 in the stabilizer G[@]™"® of the variable index min @ will still yield several symmetric optima.
This suggests a variant to Alg. 1 where G® appearing in Step 7 is replaced by G™"® i.e. at each iteration G is
assigned the stabilizer of the index min @ instead of the whole orbit stabilizer. This leads to longer chains (4) and
hopefully larger SBC sets C. Adjoining C so the original formulation yields a reformulation which we call the
point stabilizer narrowing.

Now suppose G[®w] = Sym(w), where @ = {11,...,i,} is assumed to be sorted. Applying the point stabilizer
narrowing will result in the following SBCs: x;; < xj,,...,%; < x;, from Gp, xi, < Xj5,...,%;, < Xx;, from G}‘,
Xiy < Xigy ..oy Xiy < X, from G?, and so on, up to x;, , <x;,. In other words, we obtain SBCs (2) plus a set of
several other dominated constraints. It is more efficient to detect whether G[®w] = Sym(®) and, if so, generate
SBCs (2) in Step 5. Step 7 is adjusted as follows: we replace G by G® whenever we generate SBCs (2), and by
G™n® if we generate SBCs (3) in Step 5. The resulting reformulation is called hybrid stabilizer narrowing.

The proofs that both these variants yield valid narrowings are very similar to that of Thm. 3.1.

4 Computational results

We compare the effect that the coprime orbits narrowing (Sect. 2.4) and the stabilizer based narrowings (Sect. 3)
have on BB. We present two sets of tests: one on MILPs, NLPs and MINLPs from public instance libraries, and

4 COMPUTATIONAL RESULTS 6

another one on MILP and MINLP edge coloring problems defined on flower snark graphs [10]. All results were
obtained on a quad-CPU Intel Xeon at 2.66 GHz with 24GB RAM. Automatic group detection has been carried out
using the ROSE reformulator [15] and nauty [20]. Other group computations have been carried out using GAP
v.4.4.10 [8].

It turns out that the new methods for generating SBCs outperform the old one. The difference is particularly
striking when BB is used to detect infeasibility of symmetric MILPs.

4.1 Publically available instances

Our test set consists of symmetric MILPs taken from Frangois Margot’s symmetric MILP repository http:
//wpweb2.tepper.cmu.edu/fmargot/prob_inst.html, symmetric NLPs taken from the GlobalLib [3] and
symmetric MINLPs taken from the MINLPLib [4]. We solve MILPs using CPLEX 12.2 [9], and NLP/MINLPs
using COUENNE 0.4. Both solvers are configured using their default settings. The time limit was set to 1800s of
user CPU time. The time data are those reported by the operating system. For CPLEX, these take into account the
time taken by all CPUs (since CPLEX 12.2 runs in parallel by default), which is usually close to 7000s.

We benchmark four SBC-based narrowings against the original formulation: coprime orbits, orbit, point, and
hybrid stabilizer. In each instance of Table 1 we report: the best optimum value found, the CPU time, the gap
still open at termination, and the solution status (opt=optimum found, inf=infeasible instance, 1im=time limit
reached). Best values are emphasized in boldface. We remark that all instances for which all formulations found
global optima in CPU times differing by less than Is were discarded from Table 1.

It appears clear that the hybrid stabilizer narrowing is best on MILP and performs well on NLP (the MINLP
test set is too small to draw any conclusion). It is interesting to remark that the original formulation spectacularly
beats the others, CPU time-wise, in two MILP formulations: cov1053 and pa57245. We think the reason for
these occurrences is due to all our reformulations containing some arbitrary choices (e.g. we arbitrarily decide to
employ min w in (3), when in fact any index in @ would do). This unduly influences CPLEX’s branching decisions,
resulting in poor performance. This seems to be an inherent limitation of all SBCs in the literature.

In Table 2 we present aggregated statistics: the global CPU time A, saved (or wasted, if negative) by a given
reformulation with respect to the original one, and the number of instances on which the reformulation is best, by
best optimum value found, CPU time, closed gap or preferable solution status (e.g. opt is better than 1im). The
aggregated statistics confirm the superiority of the hybdrid stabilizer based narrowing with respect to the others.

4.2 Edge coloring problems on flower snarks

The stabilizer-based SBC generation method described in Sect. 3 (and its variants, Sect. 3.1) exploits stabilizer
chains such as the one given in Eq. (4) in order to generate SBCs, a set thereof per stabilized element (either
orbit or point). It should be intuitively clear, then, that the algorithm stands a greater chance of success on MPs
whose formulation group has long stabilizer chains. Flower snarks, first defined in [10], form an infinite family of
biconnected cubic graphs whose automorphism groups usually contain long stabilizer chains. Flower snark graphs
are denoted by Ji, for k > 3, and are constructed in the following way (see en.wikipedia.org/wiki/Flower_
snark):

1. draw k copies of a star on four vertices
2. label the vertices with star size 3 by Oy, ...,0y
3. label the other vertices as Ay, ..., A, By,...,By, C1,...,Ck

4. draw an n-cycle Ay, ..., A

5. draw a 2n-cycle By,...,By,Cy,...,Cy.

4 COMPUTATIONAL RESULTS

"ANNIN0D Sursn JININ/JIN ‘XA 1dD Sutsn paureiqo synsa1 JTIA 1 S1qeL

uTy %99 €981 S wry %19 €8' ST _ wIT %99 €g' ST uty %99 €8' SS'T Wiy e €81 B Jeequis
ado %0 L1 610 ado %0 L1 610 ado %0 L1 610 ado %0 L1 610 ado %0 LS 610 310
JINIA
ado %0 [43 [EaN ado %0 (3 [EaN ado %0 (53 Tl ado %0 a4 Tl ado %0 €5 Tl 6AT3S
ado %0 LS00 e ado %0 950°0 e ado %0 950'0 e ado %0 950'0 e ado 0 9¢ T 017176%2
ado %0 8500 e ado %0 500 e ado %0 £50°0 e ado %0 S50°0 e ado %0 9¢ e g 176%0
ury %ET'T €8'1 6L0- wry %L €61 £6°0- wIT o 9%€97] €g'1 6L°0- ury %996'1 €81 $S000°0- | wrT %8E'T €981 90-98'8- | z17eT8¥e
ado %0 43 Lo ado %0 43 Lo ado %0 43 Lo ado %0 e Lo ado 90 6L Lo jagartsl
ury %T/T €8' o wry %T/T €8' o wry %HTYT 8] o uty %HTRT €Y1 wo wry BTTL €981 o £17¢9%0
ado %0 91 670 ado %0 91 620 ado %0 91 620 ado %0 91 620 ado %0 Ly 620 [axa iy
wrt %L €981 e wry %1 €981 e wry %L €381 e uty %L €981 e Wit %796T €381 e 017z 9xe
ado %0 €9 SE0°0- ado %0 €9 €00 ado %0 €9 €00 ado %0 €9 SE0°0- ado %0 [erad SE0°0- 67¢9%8
ado 90 61 SE°0- ado 90 961 SE°0- ado 90 96T SE0- ado 90 61 SE0- ado o0 (S €0 €179%e
ado %0 44 200" ado %0 44 20°0- ado %0 (44 00" ado %0 w 200" ado %0 <8 00" TTTg%e
urt %78 £8'1 €¢¢- | Wit %98 £8'1 €¢¢- | Wit %8 €981 £ | wrt %8 €981 £96°¢- wIT %68 €981 £96°¢- §z-gxe
JIN
wit %9EYT LESOEE Ol It %IShe 8r'19cr 01 It %6L'ST PO6LI9 HOI wIT %08'ST 898719 101 Wit %619 S6IPK9 SOl geTsas
ado 90 £5°708 19 ado o0 0£°€0S 19 Wt %99°€] LLTT6S 19 Wt %99°€1 S6'6168 19 wIT o 9%g6El 101598 19 18818
ado %0 TrLn st ado %0 LYOTT st ado %0 PrpLY St ado %0 P1I°SL8 St ado %0 99°TL8 St £osas
ado %0 6L 0g ado %0 1SL 0g ado %0 €201 o€ ado %0 8TO1 0€ ado %0 sTol 0€ gpsas
ury %9ET 8Y'TI99 801~ wIT 9%bET PSTH99 801 wry BYTT SI'€199 801~ wry BYTT SITI99 80l WIT 9LET STLE9Y 80l LvgLred
ado %0 09'10€C 9L~ ado %0 66°1TH1 9L~ ado %0 69¥8er 9L ado %0 L1T8Er 9L ado %0 6T'9LY 9L~ svz.ged
ur e 8TIS o Fut o vL'08 o ur e €L'88T o ur e o1yl o ut o 9€°T8E o sansyo
Jut L vT0l L Jut L w69 ©o Jut L o'y oo Jut L oy ©o Jut L 8¢l oo L¥TLLRO
Fut bl 6T'¢ ©o Jut L vLE o Jut oo L6T oo Jut L 86'C ©o Jut L LYo bl SyTLSeO
Jut L 10 o Jut L w60 ©o Jut L 611 L Jut oo STl L Jut L w0 bl €ycogeo
Jut L L1 ©o Jut L 68°C L Jut L 860 oo Jut L 088 o Jut L €91 L pazouw
Jut o LYTET oo Jut o wozl oo Jut oo LLTET o Fut oo 62°60T o0 Jut o SL'LS oo oeasl
Jut oo 100 ©o Jut oo 100 ©o Jut L 000 oo Jut oo haaid ©o Jut L 8¥91 L o9usoTF
ur e 000 o ut o 100 o ur e 00°0 o ur e 811 o ut o €9 o zgusoTy
ado %0 8 i3 ado %0 a4 i3 ado %0 80°€ 0€ ado %0 e i3 ado %0 e 0€ 756400
Wit %96, 09°6tS9 L1 wIT %96 $9°0659 LI wIT 996 1€9L59 L1 ury %95'L SIE9s9 LI wIT 995 PI6099 L1 L7800
ado %0 96°6701 st ado %0 650591 st Wit %p9T w1y st wry %Y 8ELYRY S WIT 9%E0€ €9P0L9 Sp 9207402
ado %0 T°66T [i14 ado %0 or9LT [i14 ado %0 8E°61 0T ado %0 961 0z ado %0 oL've 0z §L0TA02
ury %96'1 YTSE69 IS wIT %961 9L°TL69 IS wIT %961 699069 Is wry %96'1 8S°L169 IS wIT 9961 STTT69 IS 7507402
WIT 988°C 961769 L1 wIT 988 6vTS69 LI ado %0 ebLe L1 ado %0 LSLSLE L1 ado %0 €TEOLT L1 £507409
ado %0 PLSOLY 65 It %b601 LT€E99 65" ado %0 SLL69Y 6§ i3 %69 €69169 6€ wIT T8y LYP6Y 6 2g6p02
ury %BTIUOT TE0699 Op- wry %BTIUOT 900699 O~ wrT o %L1l €6°6699 O ury %BLI01 PrS0L9 O wrT o %L1l 1090L9 0~ £6P02
ado %0 90°LT 61- ado %0 £6'866 61- ado %0 £0°LT 61- ado %0 99°8T 61- ado %0 81°6€ 61- 1g8p0d
ado %0 £2°99C 0z ado %0 £P°E6T 0T ado %0 S8 0z ado %0 80'18 0z ado %0 018 0z £8p0>
ado %0 €8'LT - ado %0 ISPIy - ado %0 LT - ado %0 19°L1 - ado %0 TSLL - 2507p02
ado %0 98°€IPI Tl ado %0 STH6PI - ado %0 61701 - ado %0 STH01 T ado %0 P01 T S0TPOD
ado %0 St9€ €l ado %0 BRI €11 ado %0 9T°60€ €11 ado %0 P1'60€ €11 ado %0 9LTEY €11 1yTLLIed
ado 90 AR 4] ado o0 95'0L 4] ado 90 ol 4 ado 90 LTHOL 4] ado 90 ShLsE 4 a72L9e0
Jut [d 80°0 o Jut [891 [Jut b 81°8CC o Jut oo S9°LTT o Jut [110 o SETY0
dTN
IS dpn iy 1598 IS dpny ouny 1598 _ IS dpny auiy 1528 IS dpny iy 1598 IS dpny iy 1528 _ 20uDISU
1071[1q®1s pLUQAH 1071[1qR1S JUI0] | 1Z11qRIS 1110 511910 owitido)) [euISLQ |

REFERENCES

Original | Coprime orbits | Orbit stabilizer | Point stabilizer | Hybrid stabilizer
Dataset # Best Acpy #Best | Acpy #Best | Acpy #Best | Acpy # Best
MILP 8 -5601 2 -3390 8 5151 3 8280 10
NLP 2 423 9 425 9 724 9 425 8
MINLP 0 4 2 0 2 0 2 0 2
Total 10 -5173 13 -2965 19 5876 15 8705 20

Table 2: Aggregated solution statistics (the higher, the better). Negative Acp,: reformulation performance is slower
by given amount.

It was shown in [10] that it takes four colors to color the edges of flower snarks of odd order & in such a way that no
two adjacent edges are assigned the same color . An edge coloring problem on odd flower snarks with maximum
edge chromatic number 3 therefore yields infeasible instances.

In this section we present computational results of two types over the flower snarks J;, = (V, E).

e A feasibility edge-coloring problem on a graph G = (V, E) colored with 3 colours (the index ¢ ranges over

{1,2,3}):
VMGV,€§3 Z Xwe <1
{uy}eE (5)
V{u,v} €E Y xpe = 1.
(<3

e A nonlinear cost edge-coloring problem where we pay quadratically for the number of edges colored with
the fourth color (the index ¢ may range over {1,...,4}):

2
Y ¥ Xuet < Y X xuvc)
{u,v}eE (<3 {uy}eE (<4

min
xe{0,1}4E|
YueVv, (<3 Yo oxme < 1 (6)
{uv}cE
V{u,v} €E Y xpe = 1
(<3

Problem (5) (which the instances flosn52, £1osn60 that appear in Table 1 belong to) is infeasible on all flower
snarks of odd order. Since detecting infeasibility is a typical task that BB solvers are used for, (5) provides an
interesting MILP test for our method. Problem (6) consists of a set of feasible (convex) MIQP instances. Both
problems were solved using CPLEX 12.2. The results are reported in Tables 3.

The reason for the stunning success of the stabilizer-based reformulation on the infeasibility detection test is
that, in each case, the set of generated SBCs was rich enough for CPLEX to detect infeasibility at the presolver
stage, i.e. no branching was involved.

Acknowledgments

The first author was partially supported by Digiteo Chair grant 2009-14D “RMNCCO” and Digiteo Emergence
grant 2009-55D “ARM”.

References

[1] P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wichter. Branching and bounds tightening techniques for
non-convex MINLP. Optimization Methods and Software, 24(4):597-634, 2009.

REFERENCES

‘sydeas yreus 1omop uo JOTIA 21q1Isea) pue JITIA 2[qISeau] :¢ 9[qe],

1do %0 68887 9¢ 1do b0 YLY9E 9¢ 1do B0 ST'LY8 9¢ 1do %0 10°€L0T 9¢ 1do BO 08°66¥C 9¢ - IeUSISNOTF
1do %0 01’89 144 1do b0 SP'T9 lad 1do B0 65011 lad 1do %0 ¥S981 lad 1do BO LT'EPE lad L-YTeusIsnoly
1do %0 €L9 (43 1do %0 w©s (43 1do %0 0€91 (43 1do %0 wLe 43 1do B0 81'8T (43 G- TeusIsnory
dOIN
Jur 90°0 bt 60°0 et Jur e 100 o wiy o 657980L o Jut e PETOST o €C-HIRUSIBNOTT
Jur 00 bt 00 et Jur e 100 o Jur o SLYIIS o Jut o C8L8L o Tg-NIeusIsnoty
Jur €00 bt SO0 et Jur e 100 o Jur o 1T6vs1T o Jut o 0T6ST o 6T-HIBUSISNOTT
Jur w00 bt 00 et Jur e 100 o Jur o 1evre o Jut b 96°CL o LT-YTeusIsnoly
Jur w00 oo w00 o Jur o 0070 o Jur o 08°LL o Jur oo 9€'L oo §T-YIeusILonOTF
Jur 100 o 100 o Jur o 100 o Jur o 60°0T oo Jur o €Ly oo E£T-IRUSIBNOTT
Jur 100 oo 100 o Jur o 100 o Jur o LO'S o Jur oo €Ll oo TI-YIeusILBMOTF
Jur 610 el 61°0 ol Jur ol sl Jur o LLT o Jur el 620 o 6-}IRUSISMOTT
dTIN
IS o], ssog | g isog | s sog | s dvoy o], sog | s dvny ouin] isog | 2oupIsuf
218 PLQAH | 1qe)1S U104 | | 511910 owitido)) | [puISLQ |

REFERENCES 10

[2] R. Bixby, S. Ceria, C. McZeal, and M. Savelsbergh. An updated mixed integer programming library: Miplib
3. Technical Report TR98-03, Rice University, 1998.

[3] M. Bussieck. Globallib — a collection of nonlinear programming problems, 2004.
(http://www.gamsworld.org/global/globallib.htm).

[4] M. Bussieck, A. Drud, and A. Meeraus. MINLPLib — A collection of test models for mixed-integer nonlinear
programming. INFORMS Journal on Computing, 15(1), 2003.

[5] P. Cameron. Polynomial aspects of codes, matroids and permutation groups, online. Lecture notes.

[6] A. Costa, P. Hansen, and L. Liberti. Formulation symmetries in circle packing. In R. Mahjoub, editor,
Proceedings of the International Symposium on Combinatorial Optimization, volume 36 of Electronic Notes
in Discrete Mathematics, pages 1303—1310, Amsterdam, 2010. Elsevier.

[7]1 M. Fischetti, M. Monaci, and D. Salvagnin. Three ideas for the quadratic assignment problem. Operations
Research, 60:954-964,2012.

[8] The GAP Group. GAP — Groups, Algorithms, and Programming, Version 4.4.10, 2007.
[9] IBM. ILOG CPLEX 12.2 User’s Manual. IBM, 2010.

[10] R.Isaacs. Infinite families of nontrivial trivalent graphs which are not Tait colorable. American Mathematical
Monthly, 82(3):221-239, 1975.

[11] L. Liberti. Automatic generation of symmetry-breaking constraints. In B. Yang, D.-Z. Du, and C.A. Wang,
editors, Combinatorial Optimization, Constraints and Applications (COCOAOS), volume 5165 of LNCS,
pages 328-338, Berlin, 2008. Springer.

[12] L. Liberti. Reformulations in mathematical programming: Definitions and systematics. RAIRO-RO,
43(1):55-86, 2009.

[13] L. Liberti. Reformulations in mathematical programming: Automatic symmetry detection and exploitation.
Mathematical Programming A, 131:273-304, 2012.

[14] L. Liberti. Symmetry in mathematical programming. In J. Lee and S. Leyffer, editors, Mixed Integer Nonlin-
ear Programming, volume 154 of IMA, pages 263-286. Springer, New York, 2012.

[15] L. Liberti, S. Cafieri, and D. Savourey. Reformulation optimization software engine. In K. Fukuda, J. van der
Hoeven, M. Joswig, and N. Takayama, editors, Mathematical Software, volume 6327 of LNCS, pages 303—
314, New York, 2010. Springer.

[16] L. Liberti, N. Mladenovi¢, and G. Nannicini. A good recipe for solving MINLPs. In V. Maniezzo, T. Stiitzle,
and S. VoB, editors, Hybridizing metaheuristics and mathematical programming, volume 10 of Annals of
Information Systems, pages 231-244, New York, 2009. Springer.

[17] E Margot. Pruning by isomorphism in branch-and-cut. Mathematical Programming, 94:71-90, 2002.

[18] F. Margot. Symmetry in integer linear programming. In M. Jiinger, T. Liebling, D. Naddef, G. Nemhauser,
W. Pulleyblank, G. Reinelt, G. Rinaldi, and L. Wolsey, editors, 50 Years of Integer Programming, pages
647-681. Springer, Berlin, 2010.

[19] A. Martin, T. Achterberg, and T. Koch. Miplib 2003. Technical Report 05-28, ZIB, 2005.

[20] B. McKay. nauty User’s Guide (Version 2.4). Computer Science Dept. , Australian National University,
2007.

[21] J. Ostrowski, J. Linderoth, F. Rossi, and S. Smriglio. Orbital branching. Mathematical Programming,
126:147-178,2011.

[22] A. Seress. Permutation Group Algorithms. Cambridge University Press, Cambridge, 2003.

[23] H. Sherali and C. Smith. Improving discrete model representations via symmetry considerations. Manage-
ment Science, 47(10):1396-1407,2001.

