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Abstract

Mathematical programs whose formulation is symmetric often take a long time to solve using Branch-and-

Bound type algorithms, because of the several symmetric optima. A simple technique used in these cases is to

adjoin symmetry breaking constraints to the formulation before solving the problem. These constraints: (a) aim

to guarantee that at least one optimum is feasible, whilst making some of the symmetric optima infeasible; and (b)

are usually associated to the different orbits of the action of the formulation group on the set of variable indices.

In general, one cannot adjoin symmetry breaking constraints from more than one orbit. In [13], some (restrictive)

sufficient conditions are presented which make it possible to adjoin such constraints from several orbits at the

same time. In this paper we present a new, less restrictive method for the same task, and show it performs better

computationally.

Keywords: mathematical programming, static symmetry breaking, MILP, MINLP.

1 Introduction

It is well known that Mathematical Programs (MP) with nontrivial symmetry on the decision variables may take

Branch-and-Bound (BB) type solvers a very long time to prove the optimality of a solution, due to the many

symmetric optima in the leaves of the BB tree [18, 14]. Two strategies are available to address this issue: static

and dynamic symmetry breaking [18]. The former usually consists of adjoining new constraints to the formulation

in order to make some symmetric optima infeasible, it is very easy to deploy, and is the object of the current

contribution. Examples of the latter are isomorphism pruning [17] and orbital branching [21]; dynamic strategies

usually require more involved implementations, but often also end up being more effective. The occurrence of

symmetry in MP is far from rare: the computational experiments in [13] show that 18% of the instances in the

MIPLib3 [2], MIPLib2003 [19], GlobalLib [3], MINLPLib public instance libraries have a nontrivial formulation

group (defined below in Sect. 2).

Static symmetry breaking consists in adjoining some symmetry breaking constraints (SBC) to the problem

formulation, yielding a reformulation which is guaranteed to keep at least one symmetric optimum feasible (such

reformulations are called narrowings [12]). Several SBCs can be found in the literature for specific problems

(such as, e.g., the Quadratic Assignment Problem [7], the Kissing Number Problem [14], the problem of Packing

Equal Circles in a Square [6]), or specific symmetry groups (such as the full symmetric group [23]). Several SBC

classes for MILPs are surveyed in [18]. Some general-purpose SBCs that work in the full Mixed-Integer Nonlinear

Programming (MINLP) framework (which also includes the case of continuous Nonlinear Programs (NLP) and

Mixed-Integer Quadratic Programs (MIQP)) are discussed in [13].

Although there appears to be no clearly defined relation between how large a formulation group is and how

hard it is to solve the corresponding MP in practice, there are two common sense arguments motivating the study



2 BACKGROUND AND NOTATION 2

of symmetries in MP, having to do with two different algorithmic classes. When the MP is solved exactly (or

approximately) using BB algorithms (such as [9] when it is a MILP or [1] when it is a MINLP) and only one

global optimum is required, then multiple symmetric global optima generally yield larger BB trees, and therefore

longer solution processes. When heuristic or meta-heuristic algorithms (e.g. [16]) are used in order to find good

solutions of P, the picture is often reversed: if the algorithm stochastically explores the neighbourhood of the most

recent (or best) found local optimum, having more optima prevents the algorithm from getting stuck early on in

the search [14].

In this paper we address a limitation of the SBC generation method proposed in [13]. SBCs can be derived from

each orbit of the action of the formulation group on the set of variable indices. In general, however, only SBCs

referring to a single orbit can be adjoined to the formulation. If the formulation group has several orbits (as is the

case in practice), however, the improvement on the BB solution time will be moderate if SBCs breaking symmetry

for only one orbit are adjoined. This limitation was partly overcome in [13] by specifying sufficient conditions

on subsets of orbits which makes it possible to simultaneously adjoin to the formulation SBCs from each orbit in

the subset. These sufficient conditions, however, are too restrictive in practice. This paper discusses a different

method for generating SBCs that can all simultaneously be adjoined to the formulation: we pick an orbit, generate

the corresponding SBCs, then update the group with the orbit stabilizer; we repeat this procedure until the latter

becomes trivial. We show empirically that the three proposed variants of this new method outperforms the old

one on several MP instances (both MILP and MINLP) drawn from the literature, as well as on some intentionally

generated MILP and MIQP edge coloring problems.

The rest of this paper is organized as follows. We give background material, formal definitions and notation in

Sect. 2, present the new method and its variants in Sect. 3, and discuss the computational results in 4.

2 Background and notation

First, we give a formal definition of the type of MPs we consider. We then recall some group definitions, including

the formulation group of a MP and of a graph, and finally formally introduce SBCs.

2.1 A formal definition for MP

Mathematical Programming (MP) is a formal language for describing optimization problems of the form:

min{ f (x) | g(x)≤ 0∧ x ∈ X}, (1)

where x ∈ Rn is a vector of decision variables, X ⊆ Rn might include bounds and integrality constraints on sub-

sequences of x, and f : Rn → R and g : Rn → Rm are functions that can be written as strings of a formal lan-

guage E on the alphabet A = O ∪Q∪V , where V = {xi | i ∈ N} and O = {+,−,×,÷,(·)(·), log,exp,(,)}. The

strings of E are only and all those that can be obtained by the recursive application of the following rules [6]: (a)

∀s ∈Q∪V (s ∈ E ); (b) ∀⊗ ∈ O representing a k-ary operator and e1, . . . ,ek ∈ E , ⊗(e j | j ≤ k) is in E .

The recognition process (or parsing) of a valid string h ∈ E naturally yields a directed graph D(h) whose leaf

nodes are elements of Q∪V and whose non-leaf nodes are elements of O [6]. Every P ∈ MP has a Directed

Acyclic Graph (DAG) representation D(P) obtained as a minor of D( f )∪
⋃

i≤m D(gi) by contracting all equal leaf

nodes [6].

For P ∈ MP, let G (P) be the set of globally optimal solutions of P.

2.2 Solution and formulation groups

Let [n] = {1, . . . ,n}. For any vector v ∈ Rn and a subset B ⊆ [n], we let v[B] be the vector consisting of the

components of v indexed by elements of B.
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A group G is generated by elements of a set S (denoted G = 〈S〉) when G is the closure of S with respect to the

group product. For a group G acting on X , we let Gx = {gx | g ∈ G} be the orbit of x in G for all x ∈ X ; for any

Y ⊆ X we let stab(Y,G) = {g ∈ G | ∀y ∈Y (gy ∈Y )} be the setwise stabilizer and GY = {g ∈ G | ∀y ∈Y (gy = y)}
be the pointwise stabilizer of Y w.r.t. G. For a permutation π ∈ Sn let Γ(π) be the set of all the cycles in its (unique)

disjoint cycle representation. For N ⊆ [n] we define π [N] = ∏σ∈Γ(π)∩stab(N,Sn) σ to be the restriction of π to N. If

π1, . . . ,πk ∈ G ≤ Sn are generators for G (i.e. G = 〈π j | j ≤ k〉) we define G[N] = 〈π j[N] | j ≤ k〉 to be the restriction

of G to N. If N is an orbit of the action of G on [n] then G[N] is a transitive constituent of G w.r.t. N. By [5], p. 35,

for each orbit ω of G, the (right) map ·[ω ] : G → G[ω ] given by π → π [ω ] is a group homomorphism whose kernel

is the pointwise stabilizer Gω , which is therefore a normal subgroup of G.

We remark that stabilizers are usually denoted by GY rather than GY , and transitive constituents by GN [5,

22]. Our nonstandard notation allows us to disambiguate expressions such as GP as concerns the two possible

interpretations “the formulation group of P” and “the stabilizer of the set P in G”.

We consider the action of G ≤ Sn on X given by πx = (xπ−1(i) | i ≤ n). This action induces a right action

P 7→ Pπ (where π ∈ G) on MP by replacing x with πx everywhere in (1). Sm also induces a left action P 7→ σP

(where σ ∈ Sm) given by replacing g = (g1, . . . ,gm) by σg = (gσ−1( j)| j ≤ m). Because optimization problems (1)

are independent of the order of the constraint sequence g, the two problems σP and P have the same feasible region

and optima (both local and global) for all σ ∈ Sm, which implies that (σP)π and Pπ also have the same feasible

region and optima for σ ∈ Sm,π ∈ Sn, whence ∀σ ∈ Sm,π ∈ Sn (σP)π = σ(Pπ).

We define the solution group G∗(P)= stab(G (P),Sn) and the formulation group GP = 〈π ∈ Sn | ∃σ ∈ Sm (σPπ =
P)〉 of a MP formulation P given by (1); it is easy to show that GP ≤ G∗(P). Computing the solution group in

general requires aprioristic knowledge of G (P), which is usually the ultimate aim when considering and solv-

ing MPs, and is therefore impractical. Since deciding whether two function encodings h1,h2 ∈ E are equal has

linear complexity in |D(P)|, computing generators for GP is a decidable problem [13] that can be solved once

the formulation of P is known. By choosing an appropriate colouring γ : D(P) → N of the vertices of D(P) (in

order to avoid permutations of nodes of different types, e.g., operator nodes with variable nodes), we show that

GP = Aut(D(P),γ)[N], where Aut(G ,δ ) is the group of automorphisms of the graph G which stabilizes each

equivalence class given by the vertex colouring δ setwise [13].

2.3 Symmetry breaking constraints

Formally, a symmetry breaking constraint (SBC) for problem P and a group G ≤ GP is a set of constraints g(x)≤ 0

(where g : Rn → Rp for some p ∈ N) such that there exists an optimum y ∈ G (P) and π ∈ G with g(πy)≤ 0 [13].

Strictly speaking, this definition does not force SBCs to actually break any symmetry, but only to keep at least one

optimum feasible; this ensures the definition also works with optima y which are invariant to all permutations. In

practice, however, SBCs are constructed in such a way that g(σy)> 0 for as many σ ∈ G as possible, so as to make

as many symmetric optima in G (P) as possible infeasible in the narrowing [11]. If g(x) ≤ 0 are SBCs involving

only variables x j with j in a given set B, we emphasize this by writing g[B](x)≤ 0, and say g(x)≤ 0 are SBCs with

respect to B. G is taken to be the whole of GP unless specified otherwise.

In [13], new methods were presented in order to break symmetries with two types of general-purpose SBC

derived from the set Ω of orbits of the action of GP on the variable index set [n]. Specifically, for a nontrivial

orbit ω ∈ Ω, if the transitive constituent GP[ω ] can be ascertained to be isomorphic to the full symmetric group

Sym(ω) on ω , then a unique order can be imposed on the variables indexed by ω by adjoining the following linear

inequalities to P:

∀ j ∈ ω r {maxω} x j ≤ x j+ , (2)

where j+ is the successor of j in ω . Otherwise, for any structure GP[ω ] might have, one can always choose a

variable (for example xminω ) that should have minimum values among all those indexed by ω :

∀ j ∈ ω r {minω} xminω ≤ x j. (3)

We remark that the choices of maxω and j+, which define the orbit order, and of minω , which defines the element

having minimum value in the orbit, are arbitrary.
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In general, if ω ,θ ∈ Ω with ω 6= θ and gω(x)≤ 0 and gθ (x)≤ 0 are SBCs with respect to, respectively, ω and

θ , adjoining both gω(x)≤ 0 and gθ (x)≤ 0 to P may not yield a valid narrowing of P, as Example 2.1 shows.

Example 2.1 Let P be the following MILP:

min
x∈{0,1}4

x1 + x2 + 2x3 + 2x4









−1 −1 0 0

0 0 −1 −1

1 0 1 0

0 1 0 1

















x1

x2

x3

x4









≥









−1

−1

1

1









.



























Its formulation group is GP = 〈(1,2)(3,4)〉 ∼=C2, with two orbits ω1 = {1,2} and ω2 = {3,4} and optima G (P) =
{(0,1,1,0),(1,0,0,1)}. Valid SBCs for ω1 (resp. ω2) are x1 ≤ x2 (resp. x3 ≤ x4). Whereas adjoining either of the

two SBCs leads to a valid narrowing, adjoining both at the same time results in an infeasible problem.

2.4 Coprime orbits narrowing

We showed in [13] some sufficient conditions by which SBCs originating from different orbits could be combined

into a valid narrowing of P. By Cor. 14 in [13], this holds if:

• GP[ω ∪θ ] contains a subgroup H such that H[ω ] ∼= C|ω| and H[θ ] ∼= C|θ | (where Cp is the cyclic group of

order p for all p ∈N);

• gcd(|ω |, |θ |) = 1.

Adjoining such SBCs to the original formulation results into a reformulation which we call the coprime orbits

narrowing.

We remark that these conditions are restrictive but not necessary, as Example 2.2 shows.

Example 2.2 The problem P ≡ min{∑ j≤6 x j | x1 + x2 + 2∑3≤ j≤6 x j ≥ 3 ∧ x ∈ {0,1}6} has formulation group

GP = 〈(1,2),(3,4),(4,5),(5,6)〉. The action of G on {1, . . . ,6} has the two orbits ω1 = {1,2} and ω2 = {3,4,5,6},

yielding SBCs x1 ≤ x2 and, respectively, x3 ≤ x4, x3 ≤ x5, x3 ≤ x6. These two sets of SBCs can both be adjoined to

P at the same time, even though gcd(|ω1|, |ω2|) = 2 6= 1.

3 A new method for SBC generation

Consider the SBC set C generated by Alg. 1. This algorithm iteratively builds a sequence ω1, . . . ,ωk of subsets of

Algorithm 1 Orbit stabilizer based SBC generator

1: Let G = GP and C =∅;

2: repeat

3: Let Ω be the set of orbits of the action of G on [n];
4: Choose an orbit ω ∈ Ω;

5: Let g[ω ](x)≤ 0 be some SBCs for P and G w.r.t. ω ;

6: Let C =C∪{g[ω ](x)≤ 0};

7: Replace G with the (pointwise) stabilizer Gω of ω
8: until G = {e}
9: Return C.
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[n] with associated SBCs gℓ[ωℓ](x)≤ 0, and a chain of normal subgroups

GP = G1 ✄G
ω1
1 = G2 ✄ . . .✄G

ωk−1

k−1 = Gk ✄G
ωk

k = {e}. (4)

It is easy to see that Gℓ = G
⋃

i<ℓ ωi

P for each ℓ ≤ k, i.e. permutations in Gℓ stabilize all elements of the orbits

ω1, . . . ,ωℓ−1 pointwise.

Theorem 3.1 The constraint set Ck = {gℓ[ωℓ](x)≤ 0 | ℓ≤ k} is an SBC system for P.

Proof. If P is infeasible then adjoining the constraints in C to P does not change its infeasibility, so assume P

is feasible. We prove the result by induction on k. When k = 1 the result trivially holds because g1[ω1](x) ≤ 0

are SBCs for P by construction. Let P′ be like P with all the constraints in Ck−1 adjoined to it. By the induction

hypothesis Ck−1 is an SBC set for P, so G (P′) ⊆ G (P) is non-empty; and since k− 1 is not the last iteration of

the algorithm, Gk is a nontrivial group. Since gk[ωk](x) ≤ 0 are SBCs for P′ and Gk with respect to ωk, there exist

y ∈ G (P′) and π ∈ Gk such that gk[ωk](πy)≤ 0. Since π ∈ Gk, it stabilizes the orbits ω1, . . . ,ωk−1 pointwise, which

implies that (πy)[ωℓ] = y[ωℓ] for all ℓ < k. Since y ∈ G (P′), y is feasible in P′, so it satisfies all constraints in Ck−1:

this means ∀ℓ < k g[ωℓ](πy)≤ 0, which concludes the proof. ✷

Adjoining C to the original formulation yields a reformulation which we call the orbit stabilizer narrowing.

We remark that there is a choice of ω in Step 4 which guarantees that the stabilizer narrowing is always

“stronger” than the coprime orbits one: i.e., by choosing coprime orbits first. The notion of strength we consider

here is based on the ⊆ relation on the sets of SBCs generated by the two narrowings: a set S is stronger than S′

if S′ ⊆ S. It was observed empirically, however, that best results are obtained when ω is chosen as the orbit of

smallest cardinality in Ω (intuitively, this is likely to increase the length of the chain in Eq. (4) and therefore the

size of the SBC set), which is the policy we follow below.

3.1 Variants

We propose two variants of Alg. 1 that exploit the structure of the SBCs (2)-(3).

First observe that whenever the structure of the transitive constituent G[ω ] is unknown, we employ SBCs (3).

Their effect is weak, in the sense that we only impose that xminω takes minimum value among all x j (for j ∈ ω).

Any permutation π in the stabilizer G[ω ]minω of the variable index minω will still yield several symmetric optima.

This suggests a variant to Alg. 1 where Gω appearing in Step 7 is replaced by Gminω , i.e. at each iteration G is

assigned the stabilizer of the index minω instead of the whole orbit stabilizer. This leads to longer chains (4) and

hopefully larger SBC sets C. Adjoining C so the original formulation yields a reformulation which we call the

point stabilizer narrowing.

Now suppose G[ω ] ∼= Sym(ω), where ω = {ı1, . . . , ih} is assumed to be sorted. Applying the point stabilizer

narrowing will result in the following SBCs: xi1 ≤ xi2 , . . . ,xi1 ≤ xih from GP, xi2 ≤ xi3 , . . . ,xi2 ≤ xih from G
i1
P ,

xi3 ≤ xi4 , . . . ,xi3 ≤ xih from G
i2
P , and so on, up to xih−1

≤ xih . In other words, we obtain SBCs (2) plus a set of

several other dominated constraints. It is more efficient to detect whether G[ω ] ∼= Sym(ω) and, if so, generate

SBCs (2) in Step 5. Step 7 is adjusted as follows: we replace G by Gω whenever we generate SBCs (2), and by

Gminω if we generate SBCs (3) in Step 5. The resulting reformulation is called hybrid stabilizer narrowing.

The proofs that both these variants yield valid narrowings are very similar to that of Thm. 3.1.

4 Computational results

We compare the effect that the coprime orbits narrowing (Sect. 2.4) and the stabilizer based narrowings (Sect. 3)

have on BB. We present two sets of tests: one on MILPs, NLPs and MINLPs from public instance libraries, and
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another one on MILP and MINLP edge coloring problems defined on flower snark graphs [10]. All results were

obtained on a quad-CPU Intel Xeon at 2.66 GHz with 24GB RAM. Automatic group detection has been carried out

using the ROSE reformulator [15] and nauty [20]. Other group computations have been carried out using GAP

v. 4.4.10 [8].

It turns out that the new methods for generating SBCs outperform the old one. The difference is particularly

striking when BB is used to detect infeasibility of symmetric MILPs.

4.1 Publically available instances

Our test set consists of symmetric MILPs taken from François Margot’s symmetric MILP repository http:

//wpweb2.tepper.cmu.edu/fmargot/prob_inst.html, symmetric NLPs taken from the GlobalLib [3] and

symmetric MINLPs taken from the MINLPLib [4]. We solve MILPs using CPLEX 12.2 [9], and NLP/MINLPs

using COUENNE 0.4. Both solvers are configured using their default settings. The time limit was set to 1800s of

user CPU time. The time data are those reported by the operating system. For CPLEX, these take into account the

time taken by all CPUs (since CPLEX 12.2 runs in parallel by default), which is usually close to 7000s.

We benchmark four SBC-based narrowings against the original formulation: coprime orbits, orbit, point, and

hybrid stabilizer. In each instance of Table 1 we report: the best optimum value found, the CPU time, the gap

still open at termination, and the solution status (opt=optimum found, inf=infeasible instance, lim=time limit

reached). Best values are emphasized in boldface. We remark that all instances for which all formulations found

global optima in CPU times differing by less than 1s were discarded from Table 1.

It appears clear that the hybrid stabilizer narrowing is best on MILP and performs well on NLP (the MINLP

test set is too small to draw any conclusion). It is interesting to remark that the original formulation spectacularly

beats the others, CPU time-wise, in two MILP formulations: cov1053 and pa57245. We think the reason for

these occurrences is due to all our reformulations containing some arbitrary choices (e.g. we arbitrarily decide to

employ minω in (3), when in fact any index in ω would do). This unduly influences CPLEX’s branching decisions,

resulting in poor performance. This seems to be an inherent limitation of all SBCs in the literature.

In Table 2 we present aggregated statistics: the global CPU time ∆CPU saved (or wasted, if negative) by a given

reformulation with respect to the original one, and the number of instances on which the reformulation is best, by

best optimum value found, CPU time, closed gap or preferable solution status (e.g. opt is better than lim). The

aggregated statistics confirm the superiority of the hybdrid stabilizer based narrowing with respect to the others.

4.2 Edge coloring problems on flower snarks

The stabilizer-based SBC generation method described in Sect. 3 (and its variants, Sect. 3.1) exploits stabilizer

chains such as the one given in Eq. (4) in order to generate SBCs, a set thereof per stabilized element (either

orbit or point). It should be intuitively clear, then, that the algorithm stands a greater chance of success on MPs

whose formulation group has long stabilizer chains. Flower snarks, first defined in [10], form an infinite family of

biconnected cubic graphs whose automorphism groups usually contain long stabilizer chains. Flower snark graphs

are denoted by Jk, for k ≥ 3, and are constructed in the following way (see en.wikipedia.org/wiki/Flower_

snark):

1. draw k copies of a star on four vertices

2. label the vertices with star size 3 by O1, . . . ,Ok

3. label the other vertices as A1, . . . ,Ak, B1, . . . ,Bk, C1, . . . ,Ck

4. draw an n-cycle A1, . . . ,Ak

5. draw a 2n-cycle B1, . . . ,Bk,C1, . . . ,Ck.



4 COMPUTATIONAL RESULTS 7

O
ri

g
in

al
C

o
p

ri
m

e
o

rb
it

s
O

rb
it

st
ab

il
iz

er
P

o
in

t
st

ab
il

iz
er

H
y

b
ri

d
st

ab
il

iz
er

In
st

a
n

ce
B

es
t

T
im

e
G

a
p

S
t.

B
es

t
T

im
e

G
a

p
S

t.
B

es
t

T
im

e
G

a
p

S
t.

B
es

t
T

im
e

G
a

p
S

t.
B

es
t

T
im

e
G

a
p

S
t.

M
IL

P

O
4
3
5

∞
0

.1
1

∞
i
n
f

∞
2

2
7

.6
5

∞
i
n
f

∞
2

2
8

.1
8

∞
i
n
f

∞
1

.6
8

∞
i
n
f

∞
0

.0
8

∞
i
n
f

c
a
5
7
2
4
5

8
2

3
5

7
.4

5
0

%
o
p
t

8
2

1
0

4
.2

7
0

%
o
p
t

8
2

1
0

4
.2

2
0

%
o
p
t

8
2

7
0

.5
6

0
%

o
p
t

8
2

1
0

5
.1

7
0

%
o
p
t

c
a
7
7
2
4
7

1
1

3
4

3
2

.7
6

0
%

o
p
t

1
1

3
3

0
9

.1
4

0
%

o
p
t

1
1

3
3

0
9

.2
6

0
%

o
p
t

1
1

3
5

1
.1

8
0

%
o
p
t

1
1

3
3

6
.4

5
0

%
o
p
t

c
o
d
1
0
5

-1
2

1
0

4
.1

2
0

%
o
p
t

-1
2

1
0

4
.1

5
0

%
o
p
t

-1
2

1
0

4
.1

9
0

%
o
p
t

-1
2

1
4

9
4

.2
5

0
%

o
p
t

-1
2

1
4

1
3

.8
6

0
%

o
p
t

c
o
d
1
0
5
r

-1
1

1
7

.5
2

0
%

o
p
t

-1
1

1
7

.6
1

0
%

o
p
t

-1
1

2
7

.8
2

0
%

o
p
t

-1
1

4
1

4
.5

1
0

%
o
p
t

-1
1

2
7

.8
3

0
%

o
p
t

c
o
d
8
3

-2
0

8
1

.0
2

0
%

o
p
t

-2
0

8
1

.0
8

0
%

o
p
t

-2
0

8
1

.0
5

0
%

o
p
t

-2
0

2
9

3
.4

3
0

%
o
p
t

-2
0

2
6

6
.2

3
0

%
o
p
t

c
o
d
8
3
r

-1
9

3
9

.1
8

0
%

o
p
t

-1
9

2
8

.6
6

0
%

o
p
t

-1
9

2
7

.0
3

0
%

o
p
t

-1
9

9
3

8
.9

3
0

%
o
p
t

-1
9

2
7

.0
6

0
%

o
p
t

c
o
d
9
3

-4
0

6
7

0
6

.0
1

1
0

.1
7

%
l
i
m

-4
0

6
7

0
5

.4
4

1
0

.1
7

%
l
i
m

-4
0

6
6

9
9

.3
3

1
0

.1
7

%
l
i
m

-4
0

6
6

9
0

.0
6

1
0

.1
2

%
l
i
m

-4
0

6
6

9
0

.3
2

1
0

.1
2

%
l
i
m

c
o
d
9
3
r

-3
9

6
9

4
4

.7
2

4
.8

2
%

l
i
m

-3
9

6
9

1
6

.9
3

6
.9

2
%

l
i
m

-3
9

4
6

9
7

.7
5

0
%

o
p
t

-3
9

6
6

3
3

.2
7

1
0

.9
4

%
l
i
m

-3
9

4
7

0
5

.7
4

0
%

o
p
t

c
o
v
1
0
5
3

1
7

1
7

0
3

.2
3

0
%

o
p
t

1
7

3
7

5
7

.5
7

0
%

o
p
t

1
7

3
7

4
9

.7
1

0
%

o
p
t

1
7

6
9

5
2

.4
9

5
.8

8
%

l
i
m

1
7

6
9

4
1

.9
6

5
.8

8
%

l
i
m

c
o
v
1
0
5
4

5
1

6
9

2
2

.2
5

1
.9

6
%

l
i
m

5
1

6
9

1
7

.5
8

1
.9

6
%

l
i
m

5
1

6
9

0
6

.6
9

1
.9

6
%

l
i
m

5
1

6
9

7
2

.7
6

1
.9

6
%

l
i
m

5
1

6
9

3
5

.2
4

1
.9

6
%

l
i
m

c
o
v
1
0
7
5

2
0

3
4

.7
0

0
%

o
p
t

2
0

1
9

.4
6

0
%

o
p
t

2
0

1
9

.3
8

0
%

o
p
t

2
0

2
7

6
.4

0
0

%
o
p
t

2
0

2
9

9
.5

2
0

%
o
p
t

c
o
v
1
0
7
6

4
5

6
7

0
4

.6
3

3
.0

3
%

l
i
m

4
5

6
8

4
7

.3
8

2
.6

4
%

l
i
m

4
5

6
8

1
3

.2
2

2
.6

4
%

l
i
m

4
5

1
6

5
0

.5
9

0
%

o
p
t

4
5

1
0

2
9

.9
6

0
%

o
p
t

c
o
v
1
1
7
4

1
7

6
6

0
9

.1
4

7
.5

6
%

l
i
m

1
7

6
5

6
3

.1
5

7
.5

6
%

l
i
m

1
7

6
5

7
4

.3
1

7
.5

6
%

l
i
m

1
7

6
5

9
0

.6
4

7
.5

6
%

l
i
m

1
7

6
5

4
9

.6
0

7
.5

6
%

l
i
m

c
o
v
9
5
4

3
0

3
.7

1
0

%
o
p
t

3
0

3
.1

1
0

%
o
p
t

3
0

3
.0

8
0

%
o
p
t

3
0

4
.4

3
0

%
o
p
t

3
0

4
.8

5
0

%
o
p
t

f
l
o
s
n
5
2

∞
6

.3
2

∞
i
n
f

∞
1

1
.5

8
∞

i
n
f

∞
0

.0
0

∞
i
n
f

∞
0

.0
1

∞
i
n
f

∞
0

.0
0

∞
i
n
f

f
l
o
s
n
6
0

∞
1

6
.4

8
∞

i
n
f

∞
4

0
.4

4
∞

i
n
f

∞
0

.0
0

∞
i
n
f

∞
0

.0
1

∞
i
n
f

∞
0

.0
1

∞
i
n
f

j
g
t
3
0

∞
5

7
.7

8
∞

i
n
f

∞
2

0
9

.2
9

∞
i
n
f

∞
1

3
1

.7
7

∞
i
n
f

∞
1

2
0

.4
2

∞
i
n
f

∞
1

3
1

.6
7

∞
i
n
f

m
e
r
e
d

∞
1

.6
3

∞
i
n
f

∞
8

.8
0

∞
i
n
f

∞
0

.9
8

∞
i
n
f

∞
5

.8
9

∞
i
n
f

∞
1

.7
8

∞
i
n
f

o
a
3
6
2
4
3

∞
0

.2
2

∞
i
n
f

∞
1

.2
5

∞
i
n
f

∞
1

.1
9

∞
i
n
f

∞
0

.9
2

∞
i
n
f

∞
0

.1
4

∞
i
n
f

o
a
5
7
2
4
5

∞
0

.4
7

∞
i
n
f

∞
2

.9
8

∞
i
n
f

∞
2

.9
7

∞
i
n
f

∞
3

.7
4

∞
i
n
f

∞
3

.2
9

∞
i
n
f

o
a
7
7
2
4
7

∞
1

4
3

.8
8

∞
i
n
f

∞
4

.4
0

∞
i
n
f

∞
4

.4
0

∞
i
n
f

∞
6

.9
2

∞
i
n
f

∞
1

0
.2

4
∞

i
n
f

o
f
s
u
b
9

∞
3

8
2

.3
6

∞
i
n
f

∞
1

4
4

.1
0

∞
i
n
f

∞
2

8
8

.7
3

∞
i
n
f

∞
8

0
.7

4
∞

i
n
f

∞
5

1
.2

8
∞

i
n
f

p
a
5
7
2
4
5

-7
6

4
7

6
.1

9
0

%
o
p
t

-7
6

4
3

8
2

.1
7

0
%

o
p
t

-7
6

4
3

8
4

.6
9

0
%

o
p
t

-7
6

1
4

2
1

.9
9

0
%

o
p
t

-7
6

2
3

0
1

.6
0

0
%

o
p
t

p
a
7
7
2
4
7

-1
0

8
6

6
3

7
.2

5
2

.3
7

%
l
i
m

-1
0

8
6

6
1

2
.1

5
2

.2
4

%
l
i
m

-1
0

8
6

6
1

3
.1

5
2

.2
4

%
l
i
m

-1
0

8
6

6
4

2
.5

4
2

.3
4

%
l
i
m

-1
0

8
6

6
1

2
.4

8
2

.3
6

%
l
i
m

s
t
s
4
5

3
0

1
0

.2
5

0
%

o
p
t

3
0

1
0

.2
8

0
%

o
p
t

3
0

1
0

.2
3

0
%

o
p
t

3
0

7
.5

1
0

%
o
p
t

3
0

7
.4

9
0

%
o
p
t

s
t
s
6
3

4
5

8
7

2
.6

6
0

%
o
p
t

4
5

8
7

5
.1

4
0

%
o
p
t

4
5

8
7

4
.4

4
0

%
o
p
t

4
5

1
1

6
.6

7
0

%
o
p
t

4
5

1
1

7
.1

2
0

%
o
p
t

s
t
s
8
1

6
1

5
6

5
1

.0
1

1
3

.9
3

%
l
i
m

6
1

5
9

1
9

.9
5

1
3

.6
6

%
l
i
m

6
1

5
9

1
1

.7
7

1
3

.6
6

%
l
i
m

6
1

5
0

3
.3

0
0

%
o
p
t

6
1

5
0

2
.5

3
0

%
o
p
t

s
t
s
1
3
5

1
0

5
6

4
4

1
.9

5
2

6
.1

9
%

l
i
m

1
0

4
6

1
2

8
.6

8
2

5
.8

0
%

l
i
m

1
0

4
6

1
7

9
.6

4
2

5
.7

9
%

l
i
m

1
0

4
4

2
6

1
.4

8
2

4
.5

2
%

l
i
m

1
0

4
4

3
0

5
.3

7
2

4
.3

6
%

l
i
m

N
L

P

e
x
5
2
5

-3
.5

e3
1

.8
e3

8
9

%
l
i
m

-3
.5

e3
1

.8
e3

8
2

%
l
i
m

-3
.5

e3
1

.8
e3

8
2

%
l
i
m

-3
.5

e3
1

.8
e3

8
6

%
l
i
m

-3
.5

e3
1

.8
e3

8
2

%
l
i
m

e
x
6
1
1

-0
.0

2
8

5
0

%
o
p
t

-0
.0

2
2

2
0

%
o
p
t

-0
.0

2
2

2
0

%
o
p
t

-0
.0

2
2

2
0

%
o
p
t

-0
.0

2
2

2
0

%
o
p
t

e
x
6
1
3

-0
.3

5
3

.5
e2

0
%

o
p
t

-0
.3

5
1

.9
e2

0
%

o
p
t

-0
.3

5
1

.9
e2

0
%

o
p
t

-0
.3

5
1

.9
e2

0
%

o
p
t

-0
.3

5
1

.9
e2

0
%

o
p
t

e
x
6
2
9

-0
.0

3
5

2
.2

e2
0

%
o
p
t

-0
.0

3
5

6
3

0
%

o
p
t

-0
.0

3
5

6
3

0
%

o
p
t

-0
.0

3
5

6
3

0
%

o
p
t

-0
.0

3
5

6
3

0
%

o
p
t

e
x
6
2
1
0

-3
.1

1
.8

e3
2

.9
e2

%
l
i
m

-3
.1

1
.8

e3
1

.2
e2

%
l
i
m

-3
.1

1
.8

e3
1

.2
e2

%
l
i
m

-3
.1

1
.8

e3
1

.2
e2

%
l
i
m

-3
.1

1
.8

e3
1

.2
e2

%
l
i
m

e
x
6
2
1
2

0
.2

9
4

7
0

%
o
p
t

0
.2

9
1

6
0

%
o
p
t

0
.2

9
1

6
0

%
o
p
t

0
.2

9
1

6
0

%
o
p
t

0
.2

9
1

6
0

%
o
p
t

e
x
6
2
1
3

-0
.2

2
1

.8
e3

7
.2

e2
%

l
i
m

-0
.2

2
1

.8
e3

2
.8

e2
%

l
i
m

-0
.2

2
1

.8
e3

2
.8

e2
%

l
i
m

-0
.2

2
1

.8
e3

2
.8

e2
%

l
i
m

-0
.2

2
1

.8
e3

2
.8

e2
%

l
i
m

e
x
6
2
1
4

-0
.7

7
.9

0
%

o
p
t

-0
.7

3
.1

0
%

o
p
t

-0
.7

3
.2

0
%

o
p
t

-0
.7

3
.2

0
%

o
p
t

-0
.7

3
.2

0
%

o
p
t

e
x
8
3
1
2

-8
.8

e-
0

6
1

.8
e3

1
.3

e8
%

l
i
m

-0
.0

0
0

5
4

1
.8

e3
1

.9
e6

%
l
i
m

-0
.7

9
1

.8
e3

1
.2

e3
%

l
i
m

-0
.9

3
1

.5
e3

9
.7

e2
%

l
i
m

-0
.7

9
1

.8
e3

1
.2

e3
%

l
i
m

e
x
9
1
8

-3
.2

3
.6

0
%

o
p
t

-3
.2

0
.0

5
5

0
%

o
p
t

-3
.2

0
.0

5
3

0
%

o
p
t

-3
.2

0
.0

5
5

0
%

o
p
t

-3
.2

0
.0

5
8

0
%

o
p
t

e
x
9
1
1
0

-3
.2

3
.6

0
%

o
p
t

-3
.2

0
.0

5
6

0
%

o
p
t

-3
.2

0
.0

5
6

0
%

o
p
t

-3
.2

0
.0

5
6

0
%

o
p
t

-3
.2

0
.0

5
7

0
%

o
p
t

s
t
r
v
9

-1
.2

e2
5

.3
0

%
o
p
t

-1
.2

e2
4

.4
0

%
o
p
t

-1
.2

e2
3

.2
0

%
o
p
t

-1
.2

e2
3

.2
0

%
o
p
t

-1
.2

e2
3

.2
0

%
o
p
t

M
IN

L
P

e
l
f

0
.1

9
5

.7
0

%
o
p
t

0
.1

9
1

.7
0

%
o
p
t

0
.1

9
1

.7
0

%
o
p
t

0
.1

9
1

.7
0

%
o
p
t

0
.1

9
1

.7
0

%
o
p
t

s
y
n
h
e
a
t

∞
1

.8
e3

∞
l
i
m

1
.5

e5
1

.8
e3

6
.6

%
l
i
m

1
.5

e5
1

.8
e3

6
.6

%
l
i
m

1
.5

e5
1

.8
e3

6
.4

%
l
i
m

1
.5

e5
1

.8
e3

6
.6

%
l
i
m

T
ab

le
1

:
M

IL
P

re
su

lt
s

o
b

ta
in

ed
u

si
n

g
C

P
L

E
X

,
N

L
P

/M
IN

L
P

u
si

n
g

C
O

U
E

N
N

E
.



REFERENCES 8

Original Coprime orbits Orbit stabilizer Point stabilizer Hybrid stabilizer

Dataset # Best ∆CPU # Best ∆CPU # Best ∆CPU # Best ∆CPU # Best

MILP 8 -5601 2 -3390 8 5151 3 8280 10

NLP 2 423 9 425 9 724 9 425 8

MINLP 0 4 2 0 2 0 2 0 2

Total 10 -5173 13 -2965 19 5876 15 8705 20

Table 2: Aggregated solution statistics (the higher, the better). Negative ∆CPU: reformulation performance is slower

by given amount.

It was shown in [10] that it takes four colors to color the edges of flower snarks of odd order k in such a way that no

two adjacent edges are assigned the same color ℓ. An edge coloring problem on odd flower snarks with maximum

edge chromatic number 3 therefore yields infeasible instances.

In this section we present computational results of two types over the flower snarks Jk = (V,E).

• A feasibility edge-coloring problem on a graph G = (V,E) colored with 3 colours (the index ℓ ranges over

{1,2,3}):

∀u ∈V, ℓ≤ 3 ∑
{u,v}∈E

xuvc ≤ 1

∀{u,v} ∈ E ∑
ℓ≤3

xuvc = 1.







(5)

• A nonlinear cost edge-coloring problem where we pay quadratically for the number of edges colored with

the fourth color (the index ℓ may range over {1, . . . ,4}):

min
x∈{0,1}4|E|

∑
{u,v}∈E

∑
ℓ≤3

xuvc +

(

∑
{u,v}∈E

∑
ℓ≤4

xuvc

)2

∀u ∈V, ℓ≤ 3 ∑
{u,v}∈E

xuvc ≤ 1

∀{u,v} ∈ E ∑
ℓ≤3

xuvc = 1.































(6)

Problem (5) (which the instances flosn52, flosn60 that appear in Table 1 belong to) is infeasible on all flower

snarks of odd order. Since detecting infeasibility is a typical task that BB solvers are used for, (5) provides an

interesting MILP test for our method. Problem (6) consists of a set of feasible (convex) MIQP instances. Both

problems were solved using CPLEX 12.2. The results are reported in Tables 3.

The reason for the stunning success of the stabilizer-based reformulation on the infeasibility detection test is

that, in each case, the set of generated SBCs was rich enough for CPLEX to detect infeasibility at the presolver

stage, i.e. no branching was involved.
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