
RC25382 (WAT1305-032) May 8, 2013
Computer Science

IBM Research Report

Visualizing Jobs with Shared Resources in
Distributed Environments

Wim De Pauw, Joel Wolf
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 208

Yorktown Heights, NY 10598
USA

Andrey Balmin
IBM Research Division

Almaden Research Center
650 Harry Road

San Jose, CA 95120-6099
USA

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Visualizing Jobs with Shared Resources in
Distributed Environments

Wim De Pauw

IBM T.J. Watson Research
Yorktown Heights NY, USA

wim@us.ibm.com

Joel Wolf
IBM T.J. Watson Research

Yorktown Heights NY, USA
jlwolf@us.ibm.com

Andrey Balmin
IBM Almaden Research

Almaden CA, USA
abalmin@us.ibm.com

Abstract— In this paper we describe a visualization system that
shows the behavior of jobs in large, distributed computing
clusters. The system has been in use for two years, and is
sufficiently generic to be applied in two quite different domains:
a Hadoop MapReduce environment and the Watson DeepQA
DUCC cluster. Scalable and flexible data processing systems
typically run hundreds or more of simultaneous jobs. The
creation, termination, expansion and contraction of these jobs
can be very dynamic and transient, and it is difficult to
understand this behavior without showing its evolution over time.
While traditional monitoring tools typically show either
snapshots of the current load balancing or aggregate trends over
time, our new visualization technique shows the behavior of each
of the jobs over time in the context of the cluster, and in either a
real-time or post-mortem view. Its new algorithm runs in real-
time mode and can make retroactive adjustments to produce
smooth layouts. Moreover, our system allows users to drill down
to see details about individual jobs. The visualization has been
proven useful for administrators to see the overall occupancy,
trends and job allocations in the cluster, and for users to spot
errors or to monitor how many resources are given to their jobs.

Index Terms— Visualizing jobs, stacked charts, time graphs,

load balancing, MapReduce visualization, cluster management.

I. INTRODUCTION
Scalable and flexible data processing has been a

longstanding requirement for enterprises. In the past decade,
Web companies such as Google, Yahoo, Amazon and IBM
have pioneered new data processing platforms, such as
MapReduce [1,2] and Watson [3], which scale to clusters of
thousands of servers and have a capacity of many petabytes. In
this paper we will describe a new visualization tool that is
generic enough to work with several such platforms.

As a first example, the MapReduce framework, and its open
source implementation, Apache Hadoop, is being adopted
widely in industry and academia. A MapReduce cluster
consists of a coordinator node (the master) and many worker
nodes (slaves). Worker nodes are each configured with a
number of Map and Reduce “slots” specifying how many tasks
of a given type can run on the node concurrently. Cluster
administrators configure the number of slots per node based on
available resources (e.g. the number of cores and disks, the
amount of memory) and resource requirements of typical tasks.

 A MapReduce job consists of some number of independent
Map tasks and some number of independent Reduce tasks. A
Map task reads an amount of input data (called a split) from

disk, processes it, and writes its output to local disk. Once a
Map task is done, its output gets partitioned and sent to their
respective Reduce tasks, in a process called the shuffle. Once a
Reduce task receives its inputs from all the Map tasks, it can
perform its own processing, producing a partition of a job’s
final output. Thus, Map tasks start first, and once some fraction
of the job's Map tasks is done, the shuffle phase and the Reduce
tasks can begin.

 Since the cluster contains a finite number of slots,
simultaneous MapReduce jobs from multiple users will
compete for slots. Workload management is a key concern for
cluster administrators, who want to satisfy their users while
making effective use of resources. Our work on the FLEX
scheduler [4] motivated the need for sophisticated visualization
tools in order to see the effects of scheduling decisions on
Hadoop workloads and cluster resources. As we will illustrate
later, we observed that visualizing job behavior at a cluster
level and at a detailed level was useful not only for
administrators but also for MapReduce users and developers.

A second example of large-scale data processing is the
Distributed UIMA Cluster Computing (DUCC) that drives the
Watson DeepQA [5] infrastructure, used to develop Watson
algorithms. (Watson won the Jeopardy television quiz show
contest against world-class human opponents in 2011 [6].)
Similar to the MapReduce environment, DUCC can run
hundreds of jobs, submitted by different users. The
programming model is somewhat different from MapReduce,
but is similar in that its jobs exhibit a massive, embarrassingly
parallel character. As opposed to slots, the granularity of shared
resources is expressed in multiples of a “quantum” of RAM of
a server – typically 15 GB. A DUCC job can be configured to
run in Java Virtual Machines (JVMs), each using space that fits
in one or multiple quanta. For example, a cluster node with 60
GB of RAM available can run two JVMs using 30 GB, or 4
JVMs using 15 GB and so on. JVMs launched by a given job
will all be of the same size, but the cluster may have a
heterogeneous mix of JVM sizes for different jobs. In this
shared environment, a common job scheduler launches new
jobs, may expand and contract the number of JVMs for each
job, and terminates them. It is worth noticing that the expansion
and contraction of DUCC jobs may come at some application
level cost. Expanding a job not only involves launching new
JVMs, but also loading new data for the applications that are to
be run. Therefore, frequent switching of resources in the
Watson DeepQA environment is typically avoided.

Figure 1. The cluster view shows Watson DeepQA jobs colored by user, scrolling from right to left; the height of a job at any time indicates the number of resources
it is consuming then; the height of the view reflects the total capacity of the cluster; the thickness of the lines inside each job shows the size of JVMs.

In this paper we will present a new visualization tool that
shows how jobs consume shared resources (for these examples,
either MapReduce slots or DUCC JVMs) over time. Our initial
motivation was to visualize this behavior in order to support
load-balancing, correctness and performance analysis in large
scale computing. We noticed that the visualization tool was
sufficiently generic to be useful, with modest customization,
for both the MapReduce platform and the DUCC cluster in
Watson DeepQA, and presumably others.

The new visualization technique shows trends in multiple
variables over time much more clearly than standard time-
based graphs. Time is still depicted in the horizontal direction,
but as the example in Figure 1 illustrates, we depict jobs as
“floating” bundles with variable heights reflecting their
resource consumption over time. The absolute vertical position
of a job is merely used to enhance the layout.

The rest of the paper is organized as follows. In section II
we briefly describe existing visualization tools that show
resource usage. The requirements and the design of our new
visualization are described in section III. Section IV describes
how we applied this technology to these two domains. Section
V is about interacting with the visualization, and we validate
the proposed methods in section VI with use cases. Finally, we
describe the architecture in section VII and our design
methodology with user feedback in section VIII.

II. RELATED WORK
Stacked graphs are typically used to show the contribution

of multiple variables over time. Examples are Microsoft
Excel’s “Stacked Area Charts” [7] and Many Eyes’ “Stack
Graph for Categories” [8]. These charts are compact and can
clearly show the trend of the aggregation over all variables.
However, it may be difficult to discern the trend of individual
variables, especially when the slopes are steep. While the
layers in Stacked Graphs are arranged by downward gravity,

the ThemeRiver [9]) and Streamgraphs [10] visualizations let
the layers gravitate towards a center axis, usually a horizontal
straight line. This visualization suffers from the same problem:
the outer layers may fluctuate wildly, since their position
depends directly on the layers near the center. As a result,
observing the evolution of an individual layer can be tedious,
especially near the outer layers or when slopes are steep. Yau
offers an animated comparison on FlowingData [11] between
Streamgraphs and Stacked Graphs.

Another category of visualization focuses on the affinity
between different entities over time. Ogawa’s work [12]
illustrates participants of a software project over time as lines.
Lines for new participants are added close to lines for existing
participants, based on the degree of their mutual interaction.
When many new events occur, the outer lines can exhibit
significant fluctuations. Tanahashi and Ma [13] use a similar
theme of storylines, but achieve a more fluent layout by
rearranging and relaxing the lines, in addition to removing
white space. Neither of these visualizations, however, convey
any quantitative information attached to the participant entities.

Earlier tools help with monitoring key resources such as
CPU load and network traffic (e.g., Ganglia [14]), as well as
metrics that are specific to Hadoop’s workload [15,16].
However, such tools do not offer a sufficiently high-level
overview of cluster activity or reflect the behavior at the
conceptual level of MapReduce (i.e. jobs, Map and Reduce
tasks or workflows). The Ambrose [17] tool visualizes
MapReduce workflows but does not provide detailed
information about resource usage trends in clusters.

Visualization techniques in the domain of software
evolution often draw software entities and their attributes over
time. Lungu and Lanza use stacked charts in their work on
Software Ecosystems [18] to show dependencies between
software projects. Voinea and Telea [19] also propose time-
based charts to track software evolution, but they keep related

entities horizontal and group related entities together in their
‘cluster map’.

Bernadin et al. built Lumière [20], a visual tool to help
understand scheduling out-of-core algorithms. They use a
stacked graph visualization to track the performance of the
algorithms.

III. DESIGN OF A VISUALIZATION ENVIRONMENT

A. Design Requirements
Since the behavior of the jobs large computing platforms can

be very dynamic and we wanted to show this transient
behavior, we chose to use time as an explicit dimension. Time
‘now’ corresponds to the current time; the leftmost time
coordinate depends on a configurable time span parameter. So
the horizontal dimension in our visualization is essentially the
same as in standard time-based graphs. It is in the vertical
dimension that our tool is new. For example, techniques like
Stacked Graphs or Streamgraphs would organize jobs as layers
stacked on top of each other, with the height of a job at a given
time reflecting its resource consumption. However, the
variability of resource usage by jobs in a system usually makes
it hard to spot trends of individual jobs this way. We therefore
opted instead for a different vertical organization of the jobs.
Our goal was to be able to follow the trend of each individual
job easily, while still seeing the overall context. We still depict
the resource usage of a job at a given time as the height of the
job at this time coordinate. However, rather than packing the
jobs together by gravity towards the bottom (like Stacked
Graphs) or organized around a center axis (like Streamgraphs),
we let jobs “float” in the vertical dimension. The absolute
vertical position of a job does not carry any significance and is
just used to produce relatively stable bundles while allowing
for future expansion. This new degree of vertical freedom
allows us to better fulfill some of the original design
requirements, which were as follows.

1. Time should be laid out explicitly (horizontally) in order to
show trends and evolution.

2. The height of a job at a given time coordinate must
accurately reflect the number of resources it is using at that
time. This number will vary as the job uses more or fewer
resources.

3. Jobs should not overlap.
4. Jobs should vary as little and as stably as possible in the

vertical dimension over time, in order to easily see their
individual resource consumption trends. Some variation is
inevitable as jobs gain or lose resources, and because of new
jobs arriving, but unnecessary variation should be avoided.
(We will refer to this goal somewhat colloquially as
“minimizing the slope of the jobs”.)

5. The visualization should clearly illustrate the overall
aggregate resource utilization of the system.

6. The layout should cluster related jobs. For example, jobs
submitted by the same user should be shown vertically close
to each other at any given time coordinate and should not be
separated by jobs from another user. This allows for an easy

visual assessment of the aggregate resource consumption by
this user. Similarly, in a platform supporting workflows,
jobs in the same workflow should be drawn close together,
and as a bundle if they execute in parallel.

7. Ingesting, calculating, laying out and rendering of the
execution data should be performed in real-time, in order to
give users and administrators fresh and actionable
information.

8. Users should be able to request and receive more detailed
information about a specific job on demand.

9. In addition to showing live information, the visualization
environment should allow automatic archiving, so a user or
administrator can analyze past information if desired.

B. The cluster view
Figure 1 shows an example of the new visualization applied

to the Watson DeepQA DUCC domain. The horizontal
dimension is indicated by the timeline at the top, and current
time is shown on the right. The time span shown in the
visualization (30 minutes in this example) is entirely
adjustable. Shorter time spans give more detailed information
about recent behavior, while longer time spans give a broader
overview. The height of the view represents the total capacity
of the system in terms of resources (in this case, quanta).
Notice the absence of a vertical scale, since the absolute y-
coordinates in this view are only calculated to produce a stable,
more readable layout. Each job is shown as a connected
bundle, colored according to its user. At any given time the
height of a job bundle represents the total number of resources
it is using then. Since the number of resources used by all jobs
at a given time can never exceed the cluster capacity, it is
always possible to arrange the jobs without overlapping each
other. Empty (black) spaces between jobs at a given time
indicate idle resources. This allows an administrator to easily
observe the occupancy of the cluster.

C. Layout Algorithm
In order to realize the first four design requirements, we

used a combination of three methods to determine the y-
coordinates of the jobs. The view is organized in time slices
determined by the timestamps of incoming live execution
events, as shown in the hypothetical diagram of Figure 2.

Figure 2. Two forces in the layout model move the green job: overlap

avoidance and slope minimization

For a given time slice, we adjust the y-coordinates of each job
present at that time to avoid overlaps with other jobs above or
below and to optionally provide idle space (if possible)
surrounding the job. In this example, a sudden increase in
resources for the blue job causes an overlap between the green
and the blue job at time ‘now’ in the layout model, indicated by
the red area in the figure. The “overlap avoidance” forces will
result in coordinate adjustments to fix this, and this will
become apparent in Figure 3.

But merely avoiding overlapping jobs may still leave us
with uneven, less readable layouts. Therefore we apply a
second adjustment scheme (at a lower priority than the overlap
avoidance) to the vertical position of a job. For a given time
slice, this adjustment takes into account the job’s position in
the time slices immediately to the left and right, if applicable.
More specifically, we try to minimize the slopes of the
boundaries of the job bundles, as illustrated by the dark green
line in Figure 2. Again, we are trying to force the job bundle
boundaries to be as flat as is possible even with the growth or
shrinkage of resources of the job. We also want as little
perturbation as possible caused by other job bundles. The idea
can be thought of in terms of straightening the job shapes first
from right to left, then from left to right, and iterating. In the
process we remove irregularities as much as possible.

Figure 3. Same view as in Figure 2 after scrolling to the left, moving job b to

avoid overlap and to reduce its slope.

Our layout algorithm iterates within each time slice as well
as across time slices. Figure 3 shows the effect of a new event
(shifting all time slices to the left); the overlap avoidance
(moving job b up); and the slope minimization (job b is more
horizontal). When feeding this visualization with live data, new
events, and as a result, the largest changes, will appear on the
right side of the view. We therefore apply the coordinate
adjustments with stronger impact on the right side and decrease
the impact as we move left. As in force-directed graph drawing
algorithms, we repeat this two-dimensional iteration with
decreasing force until the coordinate changes become small.
This retroactive adjustment of vertical job positions
continuously tries to improve the overall layout, including past
time slices, as a response to new incoming events.

The third way to obtain smoother layouts is to position new
jobs (at time ‘now’) at a location where they have the most
room for future expansion, which is typically at the middle of
the largest vertical gap between jobs present at time ‘now’. We

say typically because we may have to take into account the 6th
design requirement about job clustering. We cannot insert a job
from a user in between two jobs from a different user. This
initial placement of jobs determines the vertical stacking order
of jobs at all subsequent times. Note that finding this is an on-
line problem, and there is no knowledge of the future, only the
past. The corresponding off-line problem, finding a truly
optimal set of job placements for any given time span in an
omniscient environment, is actually NP-hard. And, of course,
such knowledge is impossible. All told, this suggests a real-
time alternative such as our current iterative greedy algorithm.

Of course, obtaining smooth layouts becomes more difficult
as system utilization increases. For a system at 100% capacity,
the jobs saturate the system and cannot be moved up or down
to minimize the slopes.

D. Animating the cluster view
Animation may be used gratuitously, for effect. In our tool,

we use animation sparingly, to enable transitions. Recall first
that we wanted to observe the behavior of a cluster in real-time.
Since time is depicted as an explicit dimension, we let the
cluster view scroll to the left, in sync with the timestamps of
the incoming events. These can come at irregular intervals of a
few seconds and can be any of the following:

1. Creation of a new job
2. Termination of a job
3. Job expansion
4. Job contraction
5. A change of job attributes (e.g. errors)
The second way that we applied animation was to avoid

sudden transitions as a result of new, incoming events. Given
that we cannot predict future input, the layout calculated after
each new input can at best be optimal for the current set of
data. Rather than attempting an optimal layout quickly after a
new input event, we dampened the impact for the slope
minimization in the algorithm enough to slow down the
movement of jobs over multiple time intervals. As a result, the
jobs move up or down relatively more slowly, over multiple
time slices. While the sideways scrolling of the view in a
realistic setting is usually noticeable, the vertical change in job
position is slow enough not to distract, but still fast enough to
obtain near optimal layouts most of the time.

IV. DOMAIN ADAPTATION

Using this basic layout algorithm, we can fulfill the design
requirements listed in this section. But we can also tailor the
new visualization with domain specific concepts. For example,
MapReduce jobs have tasks of two different types (Map and
Reduce) within the same job. A DUCC job, on the other hand,
runs equally sized JVMs, but their memory size is configurable
on a per job basis.

These domain customizations also entailed defining and
implementing specific user interaction with the environment.
For example, MapReduce users were interested in seeing task
behavior for a single job, whereas Watson DeepQA developers
asked for detailed performance reports to be used for regression
testing.

Figure 4. The cluster view of the MapReduce System scrolls to the left as time proceeds; jobs are colored by user, their height at any time indicates the number of
slots in use; solid color areas indicate Map tasks, hatched patterns indicate Reduce tasks in a job. The line chart at the bottom shows the total Map slots and Reduce

slots utilizations.

A. MapReduce adaptation
A MapReduce job consists of some number of Map tasks

that process input data and some number of Reduce tasks that
process Map outputs. Reduce tasks start only after some
fraction of the job's Map tasks is complete. Thus, MapReduce
developers want to see not only when and how their jobs were
running, but also when and how many Map tasks versus
Reduce tasks were active. Showing individual slots used by
tasks in the overall cluster view would not scale well, since a
cluster can be configured with many thousands of slots. We
indicate instead the Map portion of a job in a solid color and
the Reduce portion of a job in a hatched pattern of the same
color, as shown in Figure 4 and in the zoomed-in detail in
Figure 5. This color is automatically determined by a color-
hashing scheme based on user name. When a job has both Map
and Reduce tasks active at the same time, we draw the Map
portion at the top.

Figure 5. Zoomed-in detail of the cluster view in Figure 4 shows the Map
activity of Job 17 in solid green, and the Reduce activity in the green hatched
pattern.

If a job layout is not constrained by other jobs, we draw the
portion that contains the active Map slots above and the portion
with the active Reduce slots below an imaginary horizontal
axis, as shown in Figures 4 and 5. Notice that the total number
of slots used by a job at any time is still reflected by the height
of the job at that time coordinate.

We adapted the slope minimization part in the layout
algorithm so that it minimizes the slope of the axis that divides
the Maps and Reduce slots. Of course, with other jobs
competing for space in this view, this axis may not always be
horizontal. One disadvantage of our “floating jobs” layout
compared to stacked charts is that the aggregate resource
consumption is reflected by the empty space in between jobs,
which is therefore not depicted in as clean a manner as does
Stacked Graphs. To address this shortcoming, we add a line
chart at the bottom of the visualization, shown in the gray area
below in Figure 4. It shares the time coordinate axis with the
cluster view above and has two standard graph lines revealing
the total utilization of Map slots and Reduce slots, aggregated
over all jobs. These are normalized to be between 0% and
100% utilization.

Jobs with errors or exceptions are easy to spot by their red
job labels, such as the dark gray job 0011 in Figure 4. The
locations where the errors or exceptions occurred are marked
with a small “e”, around 11:20:40 and 11:21:15 for this job
0011. Mousing over these red markers will reveal a tooltip with
more detailed information about the exception.

Figure 6. The single job view shows individual tasks with data-locality and
errors. We overlaid tooltips to illustrate different data localities for tasks.

A user at all times can click on a job in this view, to bring

up a “single job” view, as shown in Figure 6. We use the same
graphical syntax here, time proceeding horizontally and the
total height of this job bundle at any time reflecting the total
number of slots it is using. This single job view automatically
covers the time between job submission and either current time
or job completion. Individual Map tasks are now shown as
layered lines in the upper half, while individual Reduce tasks
are shown as layered lines in the lower half. By layering Map
task lines on top of each other over time, the shape of the upper
half of this job indicates the total number of Map tasks over
time. Similarly, Reduce task lines are layered so that the shape
of the lower half of this job reflects the Reduce slot usage over
time. As can be seen from Figure 6, we packed the task lines by
gravity around a horizontal axis, similar to Stacked Graphs. We
opted not to let the task lines float freely as we did for the job
shapes in the previous section. Instead, we wanted the
boundary of the job in this view to be similar to its shape in the
cluster view. Moreover, there was no need to observe trends in
the thickness of the task lines as it remains constant.

MapReduce application developers may also want to see
the behavior of individual tasks in order to gain insight into
possible failures, or performance indicators such as data
locality, CPU usage and heap space. Since there is only one job
shown in this view, there is no need to distinguish different
jobs by color as we did in the cluster view. Therefore we can
color individual task lines by a user selectable option, such as
data locality or any of the other performance indicators. The
single job view in Figure 6 actually illustrates both errors and
data-locality. In the tooltip at the top we can observe that task 5
has failed, as is also evident by the red line. Moving the mouse
to the right of this red area will reveal a “task cleanup”. Finally,
following the task line of task 5 further to the right will show
that another attempt for this task completed successfully (not
shown). We overlaid the same figure with a second tooltip
capture, illustrating another useful metric. One of the task lines,
colored in yellow, indicates that this task attempt was “rack-
local”. This means that the task processed a split of data that
was not available on the machine that executed the task (idp05
in this case), but was available in the same rack of the cluster.

B. DUCC adaptation
DUCC users prefer to see how many JVMs their jobs were

able to obtain. As already mentioned, users configure a job
with an upper limit of memory. DUCC will then allocate JVMs
running with a multiple of a particular quantum (e.g. 15 GB of
RAM) defined by the system to cover this need. As a result, a
cluster may have a mix of 15 GB jobs, 30 GB jobs, 45 GB jobs,
etc. In this domain, we visualize a job as a bundle of curved
lines (“noodles”), each noodle representing a JVM. This is
shown in Figure 1. Jobs are colored automatically based on the
user ID, using a color-hashing scheme. This makes it easy for
users to spot their own jobs (as well as their colleagues’ jobs).
The thickness of the noodles reflects the memory amount
apportioned to each JVM: noodles for 60 GB JVMs are twice
as thick as those for 30 GB JVMs, and so on. The total height
of each job at any given time reflects the total amount of
memory allocated for the JVMs spawned by this job. Starting a
new JVM in DUCC is quick, but the Watson DeepQA
applications tend to have large memory requirements and may
load lots of data during the initialization. The launch of a JVM
is marked by a small yellow edge at the beginning of the
noodle. In order to indicate the initialization phase for each
JVM, we use a slightly darker color (in the same hue) at the
beginning of each noodle. Figure 1 illustrates how the short
running purple murdockj:35 job starting at 17:47 causes the
long running green spatward:30 job to give up almost half of
its resources. DUCC typically starts a new job with a small
number (two to four) of JVMs and only lets the job expand if it
runs without errors for a short ‘trial’ period. This can be
observed for the job starts that are visible in Figure 1. The
figure also shows how spatward:30 soon returns back to its
original share of JVMs. But it also has to initialize the new
JVMs, as is apparent from the darker shades in this job between
17:51 and 17:53.

We customized the layout mechanism for DUCC in terms
of the way jobs expand and contract. When expanding a job
with one or more JVMs, we add new JVM noodles either at the
lower or at the upper side of the job shape, depending on where
more empty space is available. The aforementioned expansion
of spatward:30 between 17:51 and 17:53 shows the job
expanding downward, because there was more empty space
available below the job at that time. Expanding a job on the
side with more room for expansion leads to noodles that appear
more horizontal and thus to a more readable layout.

When a JVM in a job terminates, we shrink the job shape
by moving the surrounding noodles up or down by half a
noodle, as appropriate. This is shown in Figure 7. DUCC users
somtimes are interested in knowing when work in a JVM
terminated normally or whether the scheduler preempted the
JVM in order to make room for other jobs. Instead of
overloading the visualization with too many symbols and
legends, we opted for a simple visual encoding with the line
caps style. A rounded noodle end is used for a normal JVM
termination, whereas a hollow end is used for preemption of
the JVM, as illustrated in Figure 7. Similar to the MapReduce
visualization, red job labels flag errors or exceptions in real-
time.

Figure 7. Left, rounded line caps denote normal JVM terminations; right,
hollow line caps denote preemption.

The two most important goals for DUCC users who

develop Watson DeepQA algorithms are improving the overall
quality of the algorithms, and increasing or at least maintaining
their performance. To help them with their performance
analysis, we added real-time, one-click performance reports:
when a user clicks on a job in the main cluster view, a new
view will pop up (see Figure 8) to show the job information
and its performance statistics per component. The view also
provides information about failures, swapping, CPU utilization
and garbage collection. Our visualization environment
automatically archives these job reports, and users employed
the archive intensively for regression testing.

Figure 8. A DUCC job report shows the key performance indicators and
component performance breakdown for one job.

The DUCC platform not only accommodates a

heterogeneous mix of JVM sizes, it can also run on a set of
nodes with different memory capacities. The node view shown
in Figure 9 provides a real-time overview of the nodes and the
jobs they are currently hosting. Each node is a square with an
area proportional to its amount of RAM. Notice that the first
two nodes at the top left are the largest in the cluster, each with
60 GB of RAM, the next 46 nodes (from left to right and
wrapping on the page as though they were text) each have 45
GB of RAM, and the last 52 are 30 GB machines. Inside each
node square we draw a treemap in which the tiles reflect the
amount of RAM used by the jobs on this node. Each tile has
the job ID and is colored according to the job user. As we can
see in Figure 9, most of the node squares consist of a single tile
treemap, indicating these nodes run one or more JVMs of the
same job. A few nodes have two tiles. For example, the first
node has a tile for job 239 and a somewhat smaller tile for job
188. We can see from their color that both jobs on this node
belong to the same user. Some nodes have a small black tile at
the bottom, indicating RAM on this machine that was not

allocated by the scheduler to any job. Our visualization
environment detects the arrival or removal of nodes by tracking
the ‘heartbeat’ of each node. Any change in the set of active
nodes will be reflected with little delay in this view. At the
same time, the new total of available resources will be reflected
in the cluster view (Figure 1). We are currently in the process
of adapting the node view in Figure 9 for the MapReduce
environment.

Figure 9. Nodes are shown as squares; their size is proportional to the amount
of RAM; jobs are drawn inside each square with their job ID and colored by

user.

V. INTERACTION

Users can interact with the visualization environment to get

more detailed information. Rather than overloading users
upfront with overly complicated views, we encapsulate detailed
information as much as possible in tooltips in all views. Users
can mouse over jobs, tasks, nodes or error markers to get
accurate details about any of these entities.

Clicking on a job in the cluster view (Figure 1 or Figure 4)
or in the node view (Figure 9) will bring up a single job view
(Figure 6 or Figure 8). This provides an intuitive drill-down
mechanism to see more specifics.

When running the tool in live mode, the cluster view shows
the behavior of the cluster for a certain time span (user
configurable) up until ‘now’. However, at any time, navigation
buttons (shown as the double blue arrows in the upper left
corners of Figures 1 and 4) let the user browse back and forth
in time, analogous to the functionality of a DVR. One of the
shortcomings in our current implementation is that the time
span shown in the cluster view is fixed at configuration time.
We are currently experimenting with variable time scales,
instead of the linear time scale that is in use now. The goal
would be to see recent events in more detail than past events.
The timescale would be linear on the right side of the view, as
it is now, but going to the left, time would be more and more
compressed, in an exponential way, to give the impression of a
curving mural.

We plan to add more commands to the MapReduce
visualization to let a user with the appropriate credentials
cancel a job, change the priority of a job, or change its
configured minimum and maximum number of slots.

VI. USE CASES

A. MapReduce use cases
One popular application of our tool is to ensure that

MapReduce tasks are balanced correctly. Tasks that run
significantly longer than others often point to a suboptimal job
setup. In one case, a user observed a view like Figure 6, but
with many long Map task lines in yellow (‘rack-local’) or in
orange (‘non-local’). This was evidence of Map tasks running
slower because they were not data-local. The user verified and
found that the input data was improperly balanced across the
cluster, which was subsequently corrected by initiating an
HDFS rebalance process.

In another case, a user saw a few blue Reduce task lines in
the single job view that were significantly longer than the
others. Clearly, these Reduce tasks were receiving much more
data and, as a result, took much longer to finish. After the user
modified the "partitioner" component of the job, the Map tasks
distributed output to the Reduce tasks much more uniformly,
fixing the long lines and speeding up the job. Without the
intuitive graphical representation in the single job view, our
user would have had to look up this information from the
standard Hadoop user interface, which lists task runtime
statistics in a numeric table. This table can be hard to analyze,
as large jobs tend to have thousands of tasks.

Another important task for MapReduce developers is to
understand the resource contention between tasks of their job
by looking at trends in task durations. The standard textual
Hadoop user interface is virtually useless to spot such trends.
For example, a developer had a scenario where our tool was
used to understand why a large job with 5000 Map tasks ran
significantly longer than expected. From the single job view it
became clear that the first roughly 2000 tasks all ran in a 5 to
15 seconds range, as expected. However, the rest of the tasks
each took about 20 to 50 seconds each. What jumped out from
the visualization was that this phase transition happened at
exactly the same time when Reduce tasks of the job started.
Clearly, this was a sign of heavy resource contention between
Map and Reduce tasks. As it turned out, the contention was for
disk access. The developer experimented with reducing the
degree of parallelism and delaying the start of Reducers, which
resulted in successfully removing the performance bottleneck.

We observed MapReduce developers using the real-time
cluster view when they were testing their jobs in a shared
environment. This allowed them to adjust their performance
expectations according to the cluster utilization level. They
reported that the ability to see historical trends with the cluster
view was vastly superior to the standard Hadoop user interface
that only displays how many slots are occupied at the present
time.

MapReduce administrators tend to be the heaviest users of
the real-time cluster view, since they need to see utilization

levels per user. They either manually throttle down heavy
users by changing their job priority, or change the cluster
scheduler policy to achieve the desired effect. Administrators
often utilize the post-mortem capabilities of our visualization
environment as well, to analyze demand for, and effects of,
configuration changes in both hardware and software.

B. DUCC use cases
Figure 10 shows an example of erroneous behavior in the

DUCC cluster. The green job indicated instability in scheduling
behavior. As can be observed from this figure, only two JVMs
remain allocated for the green job. Other JVMs are allocated
and then quickly preempted a number of times, without
apparent reason. The extent of the darker shade of green during
these sudden expansions exposes the amount of initialization
work. The scientific results calculated by this green job were
proven accurate (eventually) by the developer in question, and
it would have been difficult to spot this problem in the platform
without the visualization.

Figure 10. Strange resource allocation pattern for the green job.

After correcting the problem in the scheduler, the new

behavior of the same green job looked much more condensed,
and was faster. This is shown in Figure 11. This problem was
detected in early testing of the DUCC system. The node view
was helpful for fine-tuning the quantum size (now 15GB) in
the cluster e.g. by observing and minimizing the black ‘idle’
tiles in the nodes (Figure 9). The cluster view proved useful in
numerous cases before DUCC went in full ‘production’ mode.

Figure 11. Same run as in Figure 10, after fixing a bug in the scheduler.

We also discovered an interesting social aspect to using this
visualization. Greedy users, requesting a lot of resources from
the system and thus slowing down other users' jobs, were
exposed easily.

From a 20 people team outside our company we received
this testimonial: “During our long hours of work, we used the
"race track" or Cluster view to monitor. The views were
projected onto a white board in our war room so that every
team member could monitor data ingestion jobs. [...] The
simple yet rich data visualization helped the team to better
understand our system performance. We were able to
orchestrate the actions of our team through your visualization
dashboard.”

VII. ARCHITECTURE AND IMPLEMENTATION

A. Acquiring the events live or post-mortem
Our tool is capable of running in three modes: post-mortem,

live and headless. In the MapReduce environment we extract
the behavior of jobs from the JobTracker log, located on the
MapReduce master node. For post-mortem analysis, the tool
reads this log, replays the execution in fast-forward, and
generates screenshots and single job views for further
examination. In live mode, the tool tracks changes in the
JobTracker log as it is being updated by a live MapReduce
system. A simple polling mechanism with a sample frequency
of 500 ms provides almost instantaneous updates. We are
currently implementing additional access mechanisms through
an HBase repository as well as a REST interface, which can
report key performance indicators in addition to the basic job
events. The headless mode runs without displaying the
execution behavior immediately and only archives the cluster
and job information for future usage.

The DUCC platform uses Apache ActiveMQ, an open
source message broker implementing the Java Message Service
for the communication between its components. Our tool
simply subscribes to events from relevant components to get
live updates. In addition, we have added the capability to read
the messages from stored serialized message objects for post-
mortem analysis.

B. Archiving the visualization
Even though the visualization environment is used mostly

as a real-time monitoring tool for large computing clusters, it is
also valuable as a troubleshooting and performance analysis
tool for past runs. Rather than leaving the responsibility for
taking snapshots with users, we incorporated archiving as an
automatic feature at two levels. First, the tool stores a snapshot
after every interval equal to the time span shown in the cluster
view, to provide complete coverage. This makes it easy to
troubleshoot – for example, to see unexpected behavior of the
cluster during periods when it was unsupervised. The snapshots
are stored as SVG (Scalar Vector Graphics) files and can be
accessed through the tool’s web server, or as stand-alone files
with a browser. Even when using the SVG files in stand-alone
mode, the tooltip information as well as the navigation buttons
(back and forth) still function. Secondly, the tool automatically
archives details for each job when it terminates and organizes

this information in user directories. Developers use this feature
for ongoing quality control. Since the cluster snapshots and the
jobs are stored as simple, portable SVG files on a shared file
system, they also serve as an efficient team communication
vehicle.

C. Architecture
Figure 12 shows the architecture of the environment. To the

left are the possible sources of information. The Web Server
hosts the application logic (written in Java) for ingestion,
modeling, the layout algorithm, generating the views, handling
interaction and archiving, as well as dynamically serving the
web pages to the browser. The combination of AJAX,
JavaScript and SVG allows us to update the web pages in the
background. As is shown in the figure, archived information
can be accessed through the web server as well as directly from
a browser.

Figure 12. Architecture of the visualization environment

VIII. ITERATIVE DESIGN DRIVEN BY USER FEEDBACK

Watson DeepQA developers have used our visualization
environment intensively since mid 2011, while MapReduce
developers employed our technology since early 2012. From
early on we had in-depth design reviews with a core of about
10 developers. As we rolled out new versions, we collected
informal feedback from a larger group of about 50 users as they
were using the visualization to help them in their daily tasks.
We did this approximately weekly. The variety of users across
different domains and roles allowed us to identify common
needs, but at times also conflicting goals. We worked with
individual users, often letting them try out prototypes with new
features. This allowed us to make more progress than if we
had followed a more formal approach with tightly controlled
user experiments at a larger scale. It may be worth mentioning
that new users sometimes asked about the meaning of the
vertical position of jobs in the cluster view; most of them
agreed with our explanation that this made it easier to observe
trends over time.

Watson DeepQA as well as MapReduce developers liked
the ability to “see” their computing platform in real-time with
the cluster view. They found it easy to spot their jobs, since
each developer had a dedicated color. Developers from both
domains reported they used the cluster view for coordinating

and predicting work schedules, but they most frequently used
the single job view to help them with performance tuning.

The manager of the Watson DeepQA DUCC team reported
to us “with confidence that they were primarily interested in:
1. The projected end time of a job (visible in tooltips in the

cluster view and in single job views)
2. Details on any errors.
3. Performance information like computational breakdown,

swapping, garbage collection and CPU utilization. “
DUCC and MapReduce administrators relied on the cluster

view to spot problems and to fine tune cluster parameters. They
used the archiving utility to quickly diagnose problems that
happened, for example, during nightly runs. The node view
(Figure 9) was helpful for administrators when hot-swapping
nodes in a live DUCC cluster.

ACKNOWLEDGMENT
Thanks to the Watson DeepQA team for their feedback and

their help with the DUCC communication, in particular to Jim
Challenger and Edward Epstein. Thanks also to all the
MapReduce users for their feedback and suggestions,
especially Eric Yang, Stephen Brodsky, Alicia Chin and Aaron
Baughman.

CONCLUSION
In this paper we presented a new visualization technique

that is effective for showing trends in individual variables
coming from live data feeds. Our new layout mechanism is
optimized to work in real-time, while simultaneously
optimizing the layout in a retroactive manner.

We applied this technique in a visualization environment to
observe the resource usage of jobs in two different domains:
the Watson DeepQA DUCC cluster and the Hadoop
MapReduce environment. System administrators, developers
and end-users have used the new visualization environments
intensively on clusters of more than 200 nodes since 2011.

We believe our proposed techniques would be applicable to
more domains where it is useful to follow historic trends of
resource usages.

We are currently working on extending the MapReduce
cluster view to show not only past and present events, but to
display hypothetical future behavior, by tapping into
information from the scheduler. In addition, we also plan to
extend our visual syntax to include MapReduce workflows.

REFERENCES
[1] J. Dean and S. Ghemawat, “MapReduce: Simplified data

processing on large clusters”, OSDI, pp. 137–150, 2004.
[2] Apache hadoop. http://hadoop.apache.org

[3] D.A. Ferrucci, “Introduction to ‘This is Watson’,” In IBM
Journal of Research and Development, Vol. 56, Issue 3.4, 2012

[4] J. Wolf, D. Rajan, K. Hildrum, R. Khandekar, V. Kumar, S.
Parekh, K. Wu, and A. Balmin, “FLEX: A slot allocation
scheduling optimizer for MapReduce workloads,” in
Proceedings of the Int. Conf. on Middleware, 2010.

[5] E. Epstein et al., “Making Watson fast,” In IBM Journal of
Research and Development, Vol. 56, Issue 3.4, 2012

[6] Watson. https://en.wikipedia.org/wiki/Watson_(computer)
[7] Microsoft Excel Charts. http://office.microsoft.com/en-us/excel
[8] F. Viégas, M. Wattenberg, F. van Ham, J. Kriss, and M.

McKeon, “Many Eyes: A site for visualization at internet scale,”
In IEEE Transactions on Visualization and Computer Graphics,
vol. 13, no. 6, pp. 1121-1128.

[9] S. Havre, E. Hetzler, P. Whitney and L. Nowell, “ThemeRiver:
Visualizing Thematic Changes in Large Document Collections,”
IEEE Transactions on Visualization and Computer Graphics,
Vol. 8, pp. 9-20, 2002.

[10] L. Byron and M. Wattenberg, “Stacked graphs - geometry &
aesthetics,” IEEE Transactions on Visualization and Computer
Graphics, 14, pp. 1245–1252, November 2008.

[11] N. Yau, “Hurricane Sandy’s impact on NYC 311 calls,” Flowing
Data, http://projects.flowingdata.com/tut/chart_transitions_demo

[12] M. Ogawa and K.-L. Ma., “Software evolution storylines,” in
Proceedings of the 5th International Symposium on Software
Visualization, SOFTVIS 2010, pp. 35–42, 2010, ACM.

[13] Y. Tanahashi and K.-L. Ma, “Design considerations for
optimizing storyline visualizations,” IEEE Transactions on
Visualization and Computer Graphics, Vol. 18, Dec. 2012

[14] Ganglia. http://www.ganglia.info
[15] X. Pan, J. Tan, S. Kavulya, G. Rajeev, and P. Narasimhan.

Ganesha: “Black-box diagnosis of MapReduce systems,”
Proceedings of the 2nd Workshop on Hot Topics in
Measurement and Modeling of Computer Systems, 2009.

[16] J. Tan, X. Pan, S. Kavulya, G. Rajeev, and P. Narasimhan,
“Mochi: Visual log-analysis based tools for debugging Hadoop,”
In Proceedings of the 2009 Conf. on Hot topics in Cloud
computing (HotCloud'09). USENIX, Berkeley, CA, USA

[17] Ambrose. https://github.com/twitter/ambrose
[18] M. Lungu, M. Lanza, G. Tudor and R. Robbes, “The small

project observatory: Visualizing software ecosystems,” Science
of Computer Programming, Elsevier, Vol. 75, No. 4, pp. 264-
275, 2010

[19] L. Voinea and A. Telea, “Multiscale and multivariate
visualizations of software evolution, in Proceedings of the ACM
Symposium on Software Visualization, SOFTVIS 2006, pp.
115-124, 2006.

[20] T. Bernardin, B. Budge and B. Hamann, “Stacked-widget
visualization of scheduling-based algorithms,” in Proceedings of
the 4th International Symposium on Software Visualization,
SOFTVIS 2008, pp. 165-174.

