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Abstract— In this paper we describe a visualization system that 
shows the behavior of jobs in large, distributed computing 
clusters. The system has been in use for two years, and is 
sufficiently generic to be applied in two quite different domains: 
a Hadoop MapReduce environment and the Watson DeepQA 
DUCC cluster. Scalable and flexible data processing systems 
typically run hundreds or more of simultaneous jobs. The 
creation, termination, expansion and contraction of these jobs 
can be very dynamic and transient, and it is difficult to 
understand this behavior without showing its evolution over time.  
While traditional monitoring tools typically show either 
snapshots of the current load balancing or aggregate trends over 
time, our new visualization technique shows the behavior of each 
of the jobs over time in the context of the cluster, and in either a 
real-time or post-mortem view. Its new algorithm runs in real-
time mode and can make retroactive adjustments to produce 
smooth layouts. Moreover, our system allows users to drill down 
to see details about individual jobs. The visualization has been 
proven useful for administrators to see the overall occupancy, 
trends and job allocations in the cluster, and for users to spot 
errors or to monitor how many resources are given to their jobs.  

 
Index Terms— Visualizing jobs, stacked charts, time graphs, 

load balancing, MapReduce visualization, cluster management.  

I. INTRODUCTION 
Scalable and flexible data processing has been a 

longstanding requirement for enterprises. In the past decade, 
Web companies such as Google, Yahoo, Amazon and IBM 
have pioneered new data processing platforms, such as 
MapReduce [1,2] and Watson [3], which scale to clusters of 
thousands of servers and have a capacity of many petabytes.  In 
this paper we will describe a new visualization tool that is 
generic enough to work with several such platforms. 

As a first example, the MapReduce framework, and its open 
source implementation, Apache Hadoop, is being adopted 
widely in industry and academia. A MapReduce cluster 
consists of a coordinator node (the master) and many worker 
nodes (slaves). Worker nodes are each configured with a 
number of Map and Reduce “slots” specifying how many tasks 
of a given type can run on the node concurrently. Cluster 
administrators configure the number of slots per node based on 
available resources (e.g. the number of cores and disks, the 
amount of memory) and resource requirements of typical tasks.    

 A MapReduce job consists of some number of independent 
Map tasks and some number of independent Reduce tasks. A 
Map task reads an amount of input data (called a split) from 

disk, processes it, and writes its output to local disk. Once a 
Map task is done, its output gets partitioned and sent to their 
respective Reduce tasks, in a process called the shuffle. Once a 
Reduce task receives its inputs from all the Map tasks, it can 
perform its own processing, producing a partition of a job’s 
final output. Thus, Map tasks start first, and once some fraction 
of the job's Map tasks is done, the shuffle phase and the Reduce 
tasks can begin. 

 Since the cluster contains a finite number of slots, 
simultaneous MapReduce jobs from multiple users will 
compete for slots. Workload management is a key concern for 
cluster administrators, who want to satisfy their users while 
making effective use of resources. Our work on the FLEX 
scheduler [4] motivated the need for sophisticated visualization 
tools in order to see the effects of scheduling decisions on 
Hadoop workloads and cluster resources. As we will illustrate 
later, we observed that visualizing job behavior at a cluster 
level and at a detailed level was useful not only for 
administrators but also for MapReduce users and developers.  

A second example of large-scale data processing is the 
Distributed UIMA Cluster Computing (DUCC) that drives the 
Watson DeepQA [5] infrastructure, used to develop Watson 
algorithms. (Watson won the Jeopardy television quiz show 
contest against world-class human opponents in 2011 [6].)  
Similar to the MapReduce environment, DUCC can run 
hundreds of jobs, submitted by different users. The 
programming model is somewhat different from MapReduce, 
but is similar in that its jobs exhibit a massive, embarrassingly 
parallel character. As opposed to slots, the granularity of shared 
resources is expressed in multiples of a “quantum” of RAM of 
a server – typically 15 GB. A DUCC job can be configured to 
run in Java Virtual Machines (JVMs), each using space that fits 
in one or multiple quanta. For example, a cluster node with 60 
GB of RAM available can run two JVMs using 30 GB, or 4 
JVMs using 15 GB and so on.  JVMs launched by a given job 
will all be of the same size, but the cluster may have a 
heterogeneous mix of JVM sizes for different jobs. In this 
shared environment, a common job scheduler launches new 
jobs, may expand and contract the number of JVMs for each 
job, and terminates them. It is worth noticing that the expansion 
and contraction of DUCC jobs may come at some application 
level cost. Expanding a job not only involves launching new 
JVMs, but also loading new data for the applications that are to 
be run. Therefore, frequent switching of resources in the 
Watson DeepQA environment is typically avoided.   



 
 
Figure 1. The cluster view shows Watson DeepQA jobs colored by user, scrolling from right to left; the height of a job at any time indicates the number of resources 
it is consuming then; the height of the view reflects the total capacity of the cluster; the thickness of the lines inside each job shows the size of JVMs.  
 

In this paper we will present a new visualization tool that 
shows how jobs consume shared resources (for these examples, 
either MapReduce slots or DUCC JVMs) over time. Our initial 
motivation was to visualize this behavior in order to support 
load-balancing, correctness and performance analysis in large 
scale computing. We noticed that the visualization tool was 
sufficiently generic to be useful, with modest customization, 
for both the MapReduce platform and the DUCC cluster in 
Watson DeepQA, and presumably others.  

The new visualization technique shows trends in multiple 
variables over time much more clearly than standard time-
based graphs. Time is still depicted in the horizontal direction, 
but as the example in Figure 1 illustrates, we depict jobs as 
“floating” bundles with variable heights reflecting their 
resource consumption over time. The absolute vertical position 
of a job is merely used to enhance the layout. 

The rest of the paper is organized as follows. In section II 
we briefly describe existing visualization tools that show 
resource usage. The requirements and the design of our new 
visualization are described in section III. Section IV describes 
how we applied this technology to these two domains. Section 
V is about interacting with the visualization, and we validate 
the proposed methods in section VI with use cases. Finally, we 
describe the architecture in section VII and our design 
methodology with user feedback in section VIII.  

II. RELATED WORK 
Stacked graphs are typically used to show the contribution 

of multiple variables over time. Examples are Microsoft 
Excel’s “Stacked Area Charts” [7] and Many Eyes’ “Stack 
Graph for Categories” [8]. These charts are compact and can 
clearly show the trend of the aggregation over all variables. 
However, it may be difficult to discern the trend of individual 
variables, especially when the slopes are steep. While the 
layers in Stacked Graphs are arranged by downward gravity, 

the ThemeRiver [9]) and Streamgraphs [10] visualizations let 
the layers gravitate towards a center axis, usually a horizontal 
straight line. This visualization suffers from the same problem: 
the outer layers may fluctuate wildly, since their position 
depends directly on the layers near the center.  As a result, 
observing the evolution of an individual layer can be tedious, 
especially near the outer layers or when slopes are steep. Yau 
offers an animated comparison on FlowingData [11] between 
Streamgraphs and Stacked Graphs. 

Another category of visualization focuses on the affinity 
between different entities over time. Ogawa’s work [12] 
illustrates participants of a software project over time as lines. 
Lines for new participants are added close to lines for existing 
participants, based on the degree of their mutual interaction. 
When many new events occur, the outer lines can exhibit 
significant fluctuations. Tanahashi and Ma [13] use a similar 
theme of storylines, but achieve a more fluent layout by 
rearranging and relaxing the lines, in addition to removing 
white space. Neither of these visualizations, however, convey 
any quantitative information attached to the participant entities.  

Earlier tools help with monitoring key resources such as 
CPU load and network traffic (e.g., Ganglia [14]), as well as 
metrics that are specific to Hadoop’s workload [15,16]. 
However, such tools do not offer a sufficiently high-level 
overview of cluster activity or reflect the behavior at the 
conceptual level of MapReduce (i.e. jobs, Map and Reduce 
tasks or workflows). The Ambrose [17] tool visualizes 
MapReduce workflows but does not provide detailed 
information about resource usage trends in clusters.  

Visualization techniques in the domain of software 
evolution often draw software entities and their attributes over 
time. Lungu and Lanza use stacked charts in their work on 
Software Ecosystems [18] to show dependencies between 
software projects. Voinea and Telea [19] also propose time-
based charts to track software evolution, but they keep related 



entities horizontal and group related entities together in their 
‘cluster map’.  

Bernadin et al. built Lumière [20], a visual tool to help 
understand scheduling out-of-core algorithms. They use a 
stacked graph visualization to track the performance of the 
algorithms.  

III. DESIGN OF A VISUALIZATION ENVIRONMENT 

A. Design Requirements  
Since the behavior of the jobs large computing platforms can 

be very dynamic and we wanted to show this transient 
behavior, we chose to use time as an explicit dimension. Time 
‘now’ corresponds to the current time; the leftmost time 
coordinate depends on a configurable time span parameter. So 
the horizontal dimension in our visualization is essentially the 
same as in standard time-based graphs.  It is in the vertical 
dimension that our tool is new. For example, techniques like 
Stacked Graphs or Streamgraphs would organize jobs as layers 
stacked on top of each other, with the height of a job at a given 
time reflecting its resource consumption. However, the 
variability of resource usage by jobs in a system usually makes 
it hard to spot trends of individual jobs this way. We therefore 
opted instead for a different vertical organization of the jobs. 
Our goal was to be able to follow the trend of each individual 
job easily, while still seeing the overall context. We still depict 
the resource usage of a job at a given time as the height of the 
job at this time coordinate. However, rather than packing the 
jobs together by gravity towards the bottom (like Stacked 
Graphs) or organized around a center axis (like Streamgraphs), 
we let jobs “float” in the vertical dimension. The absolute 
vertical position of a job does not carry any significance and is 
just used to produce relatively stable bundles while allowing 
for future expansion. This new degree of vertical freedom 
allows us to better fulfill some of the original design 
requirements, which were as follows. 
 

1. Time should be laid out explicitly (horizontally) in order to 
show trends and evolution.  

2. The height of a job at a given time coordinate must 
accurately reflect the number of resources it is using at that 
time. This number will vary as the job uses more or fewer 
resources.  

3. Jobs should not overlap.  
4. Jobs should vary as little and as stably as possible in the 

vertical dimension over time, in order to easily see their 
individual resource consumption trends.  Some variation is 
inevitable as jobs gain or lose resources, and because of new 
jobs arriving, but unnecessary variation should be avoided.  
(We will refer to this goal somewhat colloquially as 
“minimizing the slope of the jobs”.) 

5. The visualization should clearly illustrate the overall 
aggregate resource utilization of the system.  

6. The layout should cluster related jobs. For example, jobs 
submitted by the same user should be shown vertically close 
to each other at any given time coordinate and should not be 
separated by jobs from another user. This allows for an easy 

visual assessment of the aggregate resource consumption by 
this user. Similarly, in a platform supporting workflows, 
jobs in the same workflow should be drawn close together, 
and as a bundle if they execute in parallel.   

7. Ingesting, calculating, laying out and rendering of the 
execution data should be performed in real-time, in order to 
give users and administrators fresh and actionable 
information.  

8. Users should be able to request and receive more detailed 
information about a specific job on demand. 

9. In addition to showing live information, the visualization 
environment should allow automatic archiving, so a user or 
administrator can analyze past information if desired.  

B. The cluster view 
Figure 1 shows an example of the new visualization applied 

to the Watson DeepQA DUCC domain. The horizontal 
dimension is indicated by the timeline at the top, and current 
time is shown on the right.  The time span shown in the 
visualization (30 minutes in this example) is entirely 
adjustable. Shorter time spans give more detailed information 
about recent behavior, while longer time spans give a broader 
overview. The height of the view represents the total capacity 
of the system in terms of resources (in this case, quanta). 
Notice the absence of a vertical scale, since the absolute y-
coordinates in this view are only calculated to produce a stable, 
more readable layout. Each job is shown as a connected 
bundle, colored according to its user. At any given time the 
height of a job bundle represents the total number of resources 
it is using then. Since the number of resources used by all jobs 
at a given time can never exceed the cluster capacity, it is 
always possible to arrange the jobs without overlapping each 
other. Empty (black) spaces between jobs at a given time 
indicate idle resources. This allows an administrator to easily 
observe the occupancy of the cluster.   

C. Layout Algorithm 
In order to realize the first four design requirements, we 

used a combination of three methods to determine the y-
coordinates of the jobs. The view is organized in time slices 
determined by the timestamps of incoming live execution 
events, as shown in the hypothetical diagram of Figure 2.  

 
 

 
Figure 2. Two forces in the layout model move the green job: overlap 

avoidance and slope minimization 



For a given time slice, we adjust the y-coordinates of each job 
present at that time to avoid overlaps with other jobs above or 
below and to optionally provide idle space (if possible) 
surrounding the job. In this example, a sudden increase in 
resources for the blue job causes an overlap between the green 
and the blue job at time ‘now’ in the layout model, indicated by 
the red area in the figure. The “overlap avoidance” forces will 
result in coordinate adjustments to fix this, and this will 
become apparent in Figure 3.  

But merely avoiding overlapping jobs may still leave us 
with uneven, less readable layouts. Therefore we apply a 
second adjustment scheme (at a lower priority than the overlap 
avoidance) to the vertical position of a job. For a given time 
slice, this adjustment takes into account the job’s position in  
the time slices immediately to the left and right, if applicable. 
More specifically, we try to minimize the slopes of the 
boundaries of the job bundles, as illustrated by the dark green 
line in Figure 2. Again, we are trying to force the job bundle 
boundaries to be as flat as is possible even with the growth or 
shrinkage of resources of the job. We also want as little 
perturbation as possible caused by other job bundles. The idea 
can be thought of in terms of straightening the job shapes first 
from right to left, then from left to right, and iterating.  In the 
process we remove irregularities as much as possible.   
 

 
Figure 3. Same view as in Figure 2 after scrolling to the left, moving job b to 

avoid overlap and to reduce its slope. 
 

Our layout algorithm iterates within each time slice as well 
as across time slices. Figure 3 shows the effect of a new event 
(shifting all time slices to the left); the overlap avoidance 
(moving job b up); and the slope minimization (job b is more 
horizontal). When feeding this visualization with live data, new 
events, and as a result, the largest changes, will appear on the 
right side of the view. We therefore apply the coordinate 
adjustments with stronger impact on the right side and decrease 
the impact as we move left. As in force-directed graph drawing 
algorithms, we repeat this two-dimensional iteration with 
decreasing force until the coordinate changes become small. 
This retroactive adjustment of vertical job positions 
continuously tries to improve the overall layout, including past 
time slices, as a response to new incoming events. 

The third way to obtain smoother layouts is to position new 
jobs (at time ‘now’) at a location where they have the most 
room for future expansion, which is typically at the middle of 
the largest vertical gap between jobs present at time ‘now’.  We 

say typically because we may have to take into account the 6th 
design requirement about job clustering. We cannot insert a job 
from a user in between two jobs from a different user. This 
initial placement of jobs determines the vertical stacking order 
of jobs at all subsequent times. Note that finding this is an on-
line problem, and there is no knowledge of the future, only the 
past.  The corresponding off-line problem, finding a truly 
optimal set of job placements for any given time span in an 
omniscient environment, is actually NP-hard.  And, of course, 
such knowledge is impossible.  All told, this suggests a real-
time alternative such as our current iterative greedy algorithm. 

Of course, obtaining smooth layouts becomes more difficult 
as system utilization increases. For a system at 100% capacity, 
the jobs saturate the system and cannot be moved up or down 
to minimize the slopes.   

D. Animating the cluster view  
Animation may be used gratuitously, for effect. In our tool, 

we use animation sparingly, to enable transitions. Recall first 
that we wanted to observe the behavior of a cluster in real-time. 
Since time is depicted as an explicit dimension, we let the 
cluster view scroll to the left, in sync with the timestamps of 
the incoming events. These can come at irregular intervals of a 
few seconds and can be any of the following: 

1. Creation of a new job 
2. Termination of a job 
3. Job expansion 
4. Job contraction 
5. A change of job attributes (e.g. errors) 
The second way that we applied animation was to avoid 

sudden transitions as a result of new, incoming events. Given 
that we cannot predict future input, the layout calculated after 
each new input can at best be optimal for the current set of 
data. Rather than attempting an optimal layout quickly after a 
new input event, we dampened the impact for the slope 
minimization in the algorithm enough to slow down the 
movement of jobs over multiple time intervals. As a result, the 
jobs move up or down relatively more slowly, over multiple 
time slices. While the sideways scrolling of the view in a 
realistic setting is usually noticeable, the vertical change in job 
position is slow enough not to distract, but still fast enough to 
obtain near optimal layouts most of the time.  

IV. DOMAIN ADAPTATION 

Using this basic layout algorithm, we can fulfill the design 
requirements listed in this section.  But we can also tailor the 
new visualization with domain specific concepts. For example, 
MapReduce jobs have tasks of two different types (Map and 
Reduce) within the same job. A DUCC job, on the other hand, 
runs equally sized JVMs, but their memory size is configurable 
on a per job basis.  

These domain customizations also entailed defining and 
implementing specific user interaction with the environment. 
For example, MapReduce users were interested in seeing task 
behavior for a single job, whereas Watson DeepQA developers 
asked for detailed performance reports to be used for regression 
testing. 



 
 

Figure 4. The cluster view of the MapReduce System scrolls to the left as time proceeds; jobs are colored by user, their height at any time indicates the number of 
slots in use; solid color areas indicate Map tasks, hatched patterns indicate Reduce tasks in a job. The line chart at the bottom shows the total Map slots and Reduce 

slots utilizations.  

A. MapReduce adaptation  
A MapReduce job consists of some number of Map tasks 

that process input data and some number of Reduce tasks that 
process Map outputs. Reduce tasks start only after some 
fraction of the job's Map tasks is complete. Thus, MapReduce 
developers want to see not only when and how their jobs were 
running, but also when and how many Map tasks versus 
Reduce tasks were active. Showing individual slots used by 
tasks in the overall cluster view would not scale well, since a 
cluster can be configured with many thousands of slots. We 
indicate instead the Map portion of a job in a solid color and 
the Reduce portion of a job in a hatched pattern of the same 
color, as shown in Figure 4 and in the zoomed-in detail in 
Figure 5. This color is automatically determined by a color-
hashing scheme based on user name. When a job has both Map 
and Reduce tasks active at the same time, we draw the Map 
portion at the top.  
 

 
 
Figure 5. Zoomed-in detail of the cluster view in Figure 4 shows the Map 
activity of Job 17 in solid green, and the Reduce activity in the green hatched 
pattern. 

 

If a job layout is not constrained by other jobs, we draw the 
portion that contains the active Map slots above and the portion 
with the active Reduce slots below an imaginary horizontal 
axis, as shown in Figures 4 and 5. Notice that the total number 
of slots used by a job at any time is still reflected by the height 
of the job at that time coordinate. 

We adapted the slope minimization part in the layout 
algorithm so that it minimizes the slope of the axis that divides 
the Maps and Reduce slots. Of course, with other jobs 
competing for space in this view, this axis may not always be 
horizontal. One disadvantage of our “floating jobs” layout 
compared to stacked charts is that the aggregate resource 
consumption is reflected by the empty space in between jobs, 
which is therefore not depicted in as clean a manner as does 
Stacked Graphs. To address this shortcoming, we add a line 
chart at the bottom of the visualization, shown in the gray area 
below in Figure 4. It shares the time coordinate axis with the 
cluster view above and has two standard graph lines revealing 
the total utilization of Map slots and Reduce slots, aggregated 
over all jobs.  These are normalized to be between 0% and 
100% utilization. 

Jobs with errors or exceptions are easy to spot by their red 
job labels, such as the dark gray job 0011 in Figure 4. The 
locations where the errors or exceptions occurred are marked 
with a small “e”, around 11:20:40 and 11:21:15 for this job 
0011. Mousing over these red markers will reveal a tooltip with 
more detailed information about the exception. 



 
 

Figure 6. The single job view shows individual tasks with data-locality and 
errors. We overlaid tooltips to illustrate different data localities for tasks. 

 
A user at all times can click on a job in this view, to bring 

up a “single job” view, as shown in Figure 6. We use the same 
graphical syntax here, time proceeding horizontally and the 
total height of this job bundle at any time reflecting the total 
number of slots it is using. This single job view automatically 
covers the time between job submission and either current time 
or job completion. Individual Map tasks are now shown as 
layered lines in the upper half, while individual Reduce tasks 
are shown as layered lines in the lower half. By layering Map 
task lines on top of each other over time, the shape of the upper 
half of this job indicates the total number of Map tasks over 
time. Similarly, Reduce task lines are layered so that the shape 
of the lower half of this job reflects the Reduce slot usage over 
time. As can be seen from Figure 6, we packed the task lines by 
gravity around a horizontal axis, similar to Stacked Graphs. We 
opted not to let the task lines float freely as we did for the job 
shapes in the previous section. Instead, we wanted the 
boundary of the job in this view to be similar to its shape in the 
cluster view. Moreover, there was no need to observe trends in 
the thickness of the task lines as it remains constant.  

MapReduce application developers may also want to see 
the behavior of individual tasks in order to gain insight into 
possible failures, or performance indicators such as data 
locality, CPU usage and heap space. Since there is only one job 
shown in this view, there is no need to distinguish different 
jobs by color as we did in the cluster view. Therefore we can 
color individual task lines by a user selectable option, such as 
data locality or any of the other performance indicators. The 
single job view in Figure 6 actually illustrates both errors and 
data-locality. In the tooltip at the top we can observe that task 5 
has failed, as is also evident by the red line. Moving the mouse 
to the right of this red area will reveal a “task cleanup”. Finally, 
following the task line of task 5 further to the right will show 
that another attempt for this task completed successfully (not 
shown). We overlaid the same figure with a second tooltip 
capture, illustrating another useful metric. One of the task lines, 
colored in yellow, indicates that this task attempt was “rack-
local”. This means that the task processed a split of data that 
was not available on the machine that executed the task (idp05 
in this case), but was available in the same rack of the cluster. 

B. DUCC adaptation  
DUCC users prefer to see how many JVMs their jobs were 

able to obtain. As already mentioned, users configure a job 
with an upper limit of memory. DUCC will then allocate JVMs 
running with a multiple of a particular quantum (e.g. 15 GB of 
RAM) defined by the system to cover this need. As a result, a 
cluster may have a mix of 15 GB jobs, 30 GB jobs, 45 GB jobs, 
etc. In this domain, we visualize a job as a bundle of curved 
lines (“noodles”), each noodle representing a JVM. This is 
shown in Figure 1. Jobs are colored automatically based on the 
user ID, using a color-hashing scheme. This makes it easy for 
users to spot their own jobs (as well as their colleagues’ jobs). 
The thickness of the noodles reflects the memory amount 
apportioned to each JVM: noodles for 60 GB JVMs are twice 
as thick as those for 30 GB JVMs, and so on. The total height 
of each job at any given time reflects the total amount of 
memory allocated for the JVMs spawned by this job. Starting a 
new JVM in DUCC is quick, but the Watson DeepQA 
applications tend to have large memory requirements and may 
load lots of data during the initialization. The launch of a JVM 
is marked by a small yellow edge at the beginning of the 
noodle. In order to indicate the initialization phase for each 
JVM, we use a slightly darker color (in the same hue) at the 
beginning of each noodle. Figure 1 illustrates how the short 
running purple murdockj:35 job starting at 17:47 causes the 
long running green spatward:30 job to give up almost half of 
its resources. DUCC typically starts a new job with a small 
number (two to four) of JVMs and only lets the job expand if it 
runs without errors for a short ‘trial’ period. This can be 
observed for the job starts that are visible in Figure 1. The 
figure also shows how spatward:30 soon returns back to its 
original share of JVMs.  But it also has to initialize the new 
JVMs, as is apparent from the darker shades in this job between 
17:51 and 17:53. 

We customized the layout mechanism for DUCC in terms 
of the way jobs expand and contract. When expanding a job 
with one or more JVMs, we add new JVM noodles either at the 
lower or at the upper side of the job shape, depending on where 
more empty space is available. The aforementioned expansion 
of spatward:30 between 17:51 and 17:53 shows the job 
expanding downward, because there was more empty space 
available below the job at that time. Expanding a job on the 
side with more room for expansion leads to noodles that appear 
more horizontal and thus to a more readable layout.  

When a JVM in a job terminates, we shrink the job shape 
by moving the surrounding noodles up or down by half a 
noodle, as appropriate.  This is shown in Figure 7. DUCC users 
somtimes are interested in knowing when work in a JVM 
terminated normally or whether the scheduler preempted the 
JVM in order to make room for other jobs. Instead of 
overloading the visualization with too many symbols and 
legends, we opted for a simple visual encoding with the line 
caps style. A rounded noodle end is used for a normal JVM 
termination, whereas a hollow end is used for preemption of 
the JVM, as illustrated in Figure 7. Similar to the MapReduce 
visualization, red job labels flag errors or exceptions in real-
time. 



     
 

Figure 7. Left, rounded line caps denote normal JVM terminations; right, 
hollow line caps denote preemption. 

 
The two most important goals for DUCC users who 

develop Watson DeepQA algorithms are improving the overall 
quality of the algorithms, and increasing or at least maintaining 
their performance. To help them with their performance 
analysis, we added real-time, one-click performance reports: 
when a user clicks on a job in the main cluster view, a new 
view will pop up (see Figure 8) to show the job information 
and its performance statistics per component. The view also 
provides information about failures, swapping, CPU utilization 
and garbage collection. Our visualization environment 
automatically archives these job reports, and users employed 
the archive intensively for regression testing.  

 
 

 
 

Figure 8. A DUCC job report shows the key performance indicators and 
component performance breakdown for one job. 

 
The DUCC platform not only accommodates a 

heterogeneous mix of JVM sizes, it can also run on a set of 
nodes with different memory capacities. The node view shown 
in Figure 9 provides a real-time overview of the nodes and the 
jobs they are currently hosting. Each node is a square with an 
area proportional to its amount of RAM. Notice that the first 
two nodes at the top left are the largest in the cluster, each with 
60 GB of RAM, the next 46 nodes (from left to right and 
wrapping on the page as though they were text) each have 45 
GB of RAM, and the last 52 are 30 GB machines. Inside each 
node square we draw a treemap in which the tiles reflect the 
amount of RAM used by the jobs on this node. Each tile has 
the job ID and is colored according to the job user. As we can 
see in Figure 9, most of the node squares consist of a single tile 
treemap, indicating these nodes run one or more JVMs of the 
same job. A few nodes have two tiles. For example, the first 
node has a tile for job 239 and a somewhat smaller tile for job 
188. We can see from their color that both jobs on this node 
belong to the same user. Some nodes have a small black tile at 
the bottom, indicating RAM on this machine that was not 

allocated by the scheduler to any job. Our visualization 
environment detects the arrival or removal of nodes by tracking 
the ‘heartbeat’ of each node. Any change in the set of active 
nodes will be reflected with little delay in this view. At the 
same time, the new total of available resources will be reflected 
in the cluster view (Figure 1). We are currently in the process 
of adapting the node view in Figure 9 for the MapReduce 
environment. 
 

 
 

Figure 9. Nodes are shown as squares; their size is proportional to the amount 
of RAM; jobs are drawn inside each square with their job ID and colored by 

user. 

V. INTERACTION 
 
Users can interact with the visualization environment to get 

more detailed information. Rather than overloading users 
upfront with overly complicated views, we encapsulate detailed 
information as much as possible in tooltips in all views. Users 
can mouse over jobs, tasks, nodes or error markers to get 
accurate details about any of these entities.  

Clicking on a job in the cluster view (Figure 1 or Figure 4) 
or in the node view (Figure 9) will bring up a single job view 
(Figure 6 or Figure 8).  This provides an intuitive drill-down 
mechanism to see more specifics.  

When running the tool in live mode, the cluster view shows 
the behavior of the cluster for a certain time span (user 
configurable) up until ‘now’. However, at any time, navigation 
buttons (shown as the double blue arrows in the upper left 
corners of Figures 1 and 4) let the user browse back and forth 
in time, analogous to the functionality of a DVR. One of the 
shortcomings in our current implementation is that the time 
span shown in the cluster view is fixed at configuration time. 
We are currently experimenting with variable time scales, 
instead of the linear time scale that is in use now. The goal 
would be to see recent events in more detail than past events. 
The timescale would be linear on the right side of the view, as 
it is now, but going to the left, time would be more and more 
compressed, in an exponential way, to give the impression of a 
curving mural.  



We plan to add more commands to the MapReduce 
visualization to let a user with the appropriate credentials 
cancel a job, change the priority of a job, or change its 
configured minimum and maximum number of slots.    

VI. USE CASES 

A. MapReduce use cases  
One popular application of our tool is to ensure that 

MapReduce tasks are balanced correctly. Tasks that run 
significantly longer than others often point to a suboptimal job 
setup. In one case, a user observed a view like Figure 6, but 
with many long Map task lines in yellow (‘rack-local’) or in 
orange (‘non-local’). This was evidence of Map tasks running 
slower because they were not data-local. The user verified and 
found that the input data was improperly balanced across the 
cluster, which was subsequently corrected by initiating an 
HDFS rebalance process.  

In another case, a user saw a few blue Reduce task lines in 
the single job view that were significantly longer than the 
others. Clearly, these Reduce tasks were receiving much more 
data and, as a result, took much longer to finish. After the user 
modified the "partitioner" component of the job, the Map tasks 
distributed output to the Reduce tasks much more uniformly, 
fixing the long lines and speeding up the job. Without the 
intuitive graphical representation in the single job view, our 
user would have had to look up this information from the 
standard Hadoop user interface, which lists task runtime 
statistics in a numeric table.  This table can be hard to analyze, 
as large jobs tend to have thousands of tasks. 

Another important task for MapReduce developers is to 
understand the resource contention between tasks of their job 
by looking at trends in task durations. The standard textual 
Hadoop user interface is virtually useless to spot such trends. 
For example, a developer had a scenario where our tool was 
used to understand why a large job with 5000 Map tasks ran 
significantly longer than expected. From the single job view it 
became clear that the first roughly 2000 tasks all ran in a 5 to 
15 seconds range, as expected. However, the rest of the tasks 
each took about 20 to 50 seconds each. What jumped out from 
the visualization was that this phase transition happened at 
exactly the same time when Reduce tasks of the job started. 
Clearly, this was a sign of heavy resource contention between 
Map and Reduce tasks. As it turned out, the contention was for 
disk access. The developer experimented with reducing the 
degree of parallelism and delaying the start of Reducers, which 
resulted in successfully removing the performance bottleneck.  

We observed MapReduce developers using the real-time 
cluster view when they were testing their jobs in a shared 
environment. This allowed them to adjust their performance 
expectations according to the cluster utilization level. They 
reported that the ability to see historical trends with the cluster 
view was vastly superior to the standard Hadoop user interface 
that only displays how many slots are occupied at the present 
time. 

MapReduce administrators tend to be the heaviest users of 
the real-time cluster view, since they need to see utilization 

levels per user.  They either manually throttle down heavy 
users by changing their job priority, or change the cluster 
scheduler policy to achieve the desired effect. Administrators 
often utilize the post-mortem capabilities of our visualization 
environment as well, to analyze demand for, and effects of, 
configuration changes in both hardware and software. 

B. DUCC use cases  
Figure 10 shows an example of erroneous behavior in the 

DUCC cluster. The green job indicated instability in scheduling 
behavior. As can be observed from this figure, only two JVMs 
remain allocated for the green job. Other JVMs are allocated 
and then quickly preempted a number of times, without 
apparent reason. The extent of the darker shade of green during 
these sudden expansions exposes the amount of initialization 
work. The scientific results calculated by this green job were 
proven accurate (eventually) by the developer in question, and 
it would have been difficult to spot this problem in the platform 
without the visualization. 
 

 
Figure 10. Strange resource allocation pattern for the green job. 

 
After correcting the problem in the scheduler, the new 

behavior of the same green job looked much more condensed, 
and was faster. This is shown in Figure 11. This problem was 
detected in early testing of the DUCC system. The node view 
was helpful for fine-tuning the quantum size (now 15GB) in 
the cluster e.g. by observing and minimizing the black ‘idle’ 
tiles in the nodes (Figure 9). The cluster view proved useful in 
numerous cases before DUCC went in full ‘production’ mode.  

 

 
Figure 11. Same run as in Figure 10, after fixing a bug in the scheduler. 
 



We also discovered an interesting social aspect to using this 
visualization.  Greedy users, requesting a lot of resources from 
the system and thus slowing down other users' jobs, were 
exposed easily.  

From a 20 people team outside our company we received 
this testimonial: “During our long hours of work, we used the 
"race track" or Cluster view to monitor.  The views were 
projected onto a white board in our war room so that every 
team member could monitor data ingestion jobs. [...]  The 
simple yet rich data visualization helped the team to better 
understand our system performance.  We were able to 
orchestrate the actions of our team through your visualization 
dashboard.” 

VII. ARCHITECTURE AND IMPLEMENTATION 

A. Acquiring the events live or post-mortem 
Our tool is capable of running in three modes: post-mortem, 

live and headless. In the MapReduce environment we extract 
the behavior of jobs from the JobTracker log, located on the 
MapReduce master node. For post-mortem analysis, the tool 
reads this log, replays the execution in fast-forward, and 
generates screenshots and single job views for further 
examination. In live mode, the tool tracks changes in the 
JobTracker log as it is being updated by a live MapReduce 
system. A simple polling mechanism with a sample frequency 
of 500 ms provides almost instantaneous updates.  We are 
currently implementing additional access mechanisms through 
an HBase repository as well as a REST interface, which can 
report key performance indicators in addition to the basic job 
events. The headless mode runs without displaying the 
execution behavior immediately and only archives the cluster 
and job information for future usage.  

The DUCC platform uses Apache ActiveMQ, an open 
source message broker implementing the Java Message Service 
for the communication between its components. Our tool 
simply subscribes to events from relevant components to get 
live updates. In addition, we have added the capability to read 
the messages from stored serialized message objects for post-
mortem analysis.  

B. Archiving the visualization 
Even though the visualization environment is used mostly 

as a real-time monitoring tool for large computing clusters, it is 
also valuable as a troubleshooting and performance analysis 
tool for past runs. Rather than leaving the responsibility for 
taking snapshots with users, we incorporated archiving as an 
automatic feature at two levels. First, the tool stores a snapshot 
after every interval equal to the time span shown in the cluster 
view, to provide complete coverage. This makes it easy to 
troubleshoot – for example, to see unexpected behavior of the 
cluster during periods when it was unsupervised. The snapshots 
are stored as SVG (Scalar Vector Graphics) files and can be 
accessed through the tool’s web server, or as stand-alone files 
with a browser. Even when using the SVG files in stand-alone 
mode, the tooltip information as well as the navigation buttons 
(back and forth) still function. Secondly, the tool automatically 
archives details for each job when it terminates and organizes 

this information in user directories. Developers use this feature 
for ongoing quality control. Since the cluster snapshots and the 
jobs are stored as simple, portable SVG files on a shared file 
system, they also serve as an efficient team communication 
vehicle.  

C. Architecture 
Figure 12 shows the architecture of the environment. To the 

left are the possible sources of information. The Web Server 
hosts the application logic (written in Java) for ingestion, 
modeling, the layout algorithm, generating the views, handling 
interaction and archiving, as well as dynamically serving the 
web pages to the browser. The combination of AJAX, 
JavaScript and SVG allows us to update the web pages in the 
background. As is shown in the figure, archived information 
can be accessed through the web server as well as directly from 
a browser.  

 

 
 

Figure 12. Architecture of the visualization environment 
 

 

VIII. ITERATIVE DESIGN DRIVEN BY USER FEEDBACK 

Watson DeepQA developers have used our visualization 
environment intensively since mid 2011, while MapReduce 
developers employed our technology since early 2012. From 
early on we had in-depth design reviews with a core of about 
10 developers. As we rolled out new versions, we collected 
informal feedback from a larger group of about 50 users as they 
were using the visualization to help them in their daily tasks. 
We did this approximately weekly.  The variety of users across 
different domains and roles allowed us to identify common 
needs, but at times also conflicting goals. We worked with 
individual users, often letting them try out prototypes with new 
features.  This allowed us to make more progress than if we 
had followed a more formal approach with tightly controlled 
user experiments at a larger scale. It may be worth mentioning 
that new users sometimes asked about the meaning of the 
vertical position of jobs in the cluster view; most of them 
agreed with our explanation that this made it easier to observe 
trends over time.  

Watson DeepQA as well as MapReduce developers liked 
the ability to “see” their computing platform in real-time with 
the cluster view. They found it easy to spot their jobs, since 
each developer had a dedicated color. Developers from both 
domains reported they used the cluster view for coordinating 



and predicting work schedules, but they most frequently used 
the single job view to help them with performance tuning.  

The manager of the Watson DeepQA DUCC team reported 
to us “with confidence that they were primarily interested in:  
1. The projected end time of a job (visible in tooltips in the 

cluster view and in single job views)  
2. Details on any errors. 
3. Performance information like computational breakdown, 

swapping, garbage collection and CPU utilization. “ 
DUCC and MapReduce administrators relied on the cluster 

view to spot problems and to fine tune cluster parameters. They 
used the archiving utility to quickly diagnose problems that 
happened, for example, during nightly runs. The node view 
(Figure 9) was helpful for administrators when hot-swapping 
nodes in a live DUCC cluster.  
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CONCLUSION 
In this paper we presented a new visualization technique 

that is effective for showing trends in individual variables 
coming from live data feeds. Our new layout mechanism is 
optimized to work in real-time, while simultaneously 
optimizing the layout in a retroactive manner. 

We applied this technique in a visualization environment to 
observe the resource usage of jobs in two different domains: 
the Watson DeepQA DUCC cluster and the Hadoop 
MapReduce environment. System administrators, developers 
and end-users have used the new visualization environments 
intensively on clusters of more than 200 nodes since 2011.  

We believe our proposed techniques would be applicable to 
more domains where it is useful to follow historic trends of 
resource usages.  

We are currently working on extending the MapReduce 
cluster view to show not only past and present events, but to 
display hypothetical future behavior, by tapping into 
information from the scheduler. In addition, we also plan to 
extend our visual syntax to include MapReduce workflows.  
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