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Abstract After their introduction in global optimization by Tawarmalani and Sahini-

dis [43,44], polyhedral relaxations have been incorporated in a variety of solvers for

the global optimization of nonconvex nonlinear programs and mixed-integer nonlinear

programs. Currently, these relaxations constitute the dominant approach in global op-

timization practice. In this paper, we introduce a new relaxation paradigm for global

optimization. The proposed framework combines polyhedral and convex nonlinear re-

laxations, along with fail-safe techniques, convexity identification at each node of the

search tree, and learning strategies for automatically selecting and switching between

different relaxations and between different local search algorithms in different parts of

the search tree. We report computational experiments with the proposed methodology

on widely-used test problem collections from the literature, including 369 problems

from GlobalLib, 250 problems from MINLPLib, and 980 problems from Princeton-

Lib. Results show that incorporating the proposed techniques in the BARON software

leads to significant reductions in execution time, and increases by 30% the number of

problems that are solvable to global optimality within 500 s on a standard workstation.

Keywords Global optimization · Polyhedral relaxations · Nonlinear relaxations ·
Automatic convexity detection · Branch-and-reduce

PACS 65K05 · 90C30 · 90C26

1 Introduction

Research in global optimization has witnessed a significant growth at the algorithmic

and software levels over the last few years. Several general-purpose deterministic global
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solvers have been developed for nonconvex nonlinear programs (NLPs) and mixed-

integer nonlinear programs (MINLPs), and are maturing rapidly. Beginning with the

appearance of BARON in the mid 1990s [40], the following branch-and-bound based

global solvers were introduced in the past decade: GlobSol [27], LindoGlobal [29],

Couenne [10], and SCIP [11]. Performance of these algorithms is highly dependent on

an effective use of state-of-the-art solvers for linear programming (LP), mixed-integer

programming (MIP), and convex programming, at various stages in the global search

(cf. [42] for an exposition).

Branch-and-bound algorithms rely on relaxations of nonconvex problems over suc-

cessively refined partitions of the feasible region. That is, at each node in the search

tree, in order to compute a bound on the optimal value of the original problem over the

corresponding partition element, a relaxation of the nonconvex problem is constructed

and optimized by a suitable optimization solver. Various relaxation construction tech-

niques for nonconvex problems have been proposed in the literature. These methods

can be broadly categorized as nonlinear convex relaxations [39,29], polyhedral relax-

ations [43,44,10], and piece-wise linear relaxation [9,8]. Computational results reported

over the past two decades demonstrate that, in comparison to LP solvers, local NLP

solvers are slower and more susceptible to failure due to numerical difficulties. Moti-

vated by this observation, Tawarmalani and Sahinidis [43] proposed the first branch-

and-bound global optimization algorithm based on polyhedral relaxations. Using a

factorable reformulation of the problem as the starting point, each univariate convex

function was outer-approximated by supporting hyperplanes at a number of carefully

selected points. These authors found that, while polyhedral relaxations introduce larger

relaxation gaps compared to the convex relaxations from which they are derived, the

superior performance and robustness of LP solvers significantly improves the reliabil-

ity of LP relaxation-based global solvers. In a subsequent paper [44], Tawarmalani and

Sahinidis addressed the question of constructing polyhedral relaxations for multivariate

convex functions, and presented a branch-and-cut framework for global optimization of

nonconvex NLPs and MINLPs based on the solution of LP relaxations. Furthermore,

these authors showed that their proposed factorable-based polyhedral relaxations au-

tomatically exploit the convexity of intermediate expressions whose convexity follows

from a recursive application of a set of well-known convexity preserving operations on a

number of primitive functions. Due to its remarkable computational success, their pro-

posed branch-and-cut framework was later adopted by other global solvers, currently

including Couenne, GlobSol, and SCIP.

In Section 2 of this paper, we revisit the question of constructing sharp polyhe-

dral relaxations for nonconvex problems. We take the polyhedral relaxation frame-

work of [44] as the starting point, and enhance and refine it in several directions. We

strengthen the existing relaxations by generating supporting hyperplanes for intermedi-

ate convex expressions whose convexity is not implied by factorable composition rules.

In addition, we improve the reliability of the relaxation constructor in BARON by de-

vising a more reliable cut generation scheme that examines the quality of the solution

returned by the LP solver prior to utilizing it in global search.

In Section 3, we consider the case in which the continuous relaxation of a possibly

nonconvex problems at a given node in the search tree is a convex optimization problem.

Examples include convex NLPs, convex MINLPs, and nonconvex problems that become

convex as a result of branching or range reduction operations. Current general-purpose

global solvers based on LP relaxations employ a branch-and-cut algorithm even when

the original problem is convex. While such an approach is quite stable and efficient
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for small problems, it is often several orders of magnitude slower than gradient-based

algorithms. We present a hybrid lower bounding scheme that combines polyhedral and

nonlinear convex relaxations to make the most of state-of-the-art LP and local NLP

solvers. The main components of our implementation are (i) an efficient convexity

detection tool that is embedded at every node in the branch-and-bound tree, (ii) a

dynamic local solver selection strategy that can switch among various local solvers in

the search tree based on their performance, (iii) a verification routine that examines

the optimality of the solution returned by a local solver, and (iv) a hybrid relaxation

constructor that alternates between polyhedral and nonlinear relaxations at every node

based on their relative quality and numerical stability.

In Section 4, we present computational experiments on a variety of NLPs and

MINLPs taken from GlobalLib [24], MINLPLib [14] and PrincetonLib [37]. Results

show that the enhanced polyhedral relaxations and hybrid linear/nonlinear lower bound-

ing scheme significantly improve the performance of BARON. In addition, a systematic

comparison with a number of other solvers indicates the superiority of BARON 12.0 on

a wide range of problem types.

2 Polyhedral branch-and-cut

In this section, we consider the problem of constructing polyhedral relaxations for

general nonconvex factorable programs. We first present some preliminary material

on factorable programming relaxations as well as the outer-approximation method

proposed in [44]. Subsequently, we discuss strengths and weaknesses of the existing

framework and propose several enhancements.

2.1 Factorable-based polyhedral relaxations

Factorable programming relaxations [31] have formed the basis of currently popu-

lar techniques in global optimization for bounding nonconvex functions. A variant

of this technique introduced by Ryoo and Sahinidis [39] starts by iteratively decom-

posing a nonconvex factorable function, through introduction of auxiliary variables

and constraints for intermediate functional expressions, until all intermediate expres-

sions can be outer-approximated by a convex feasible set. Current implementations of

factorable relaxations in general-purpose global solvers [41,29,10] employ this nested

decomposition to the extent that all intermediates are affine functions, univariate con-

vex (concave) functions, bilinear expressions, or other functions whose convex/concave

envelopes are known. Subsequently, bilinear relations are replaced by their polyhedral

convex and concave envelopes, and convex (resp. concave) univariates are overesti-

mated (resp. underestimated) by their affine envelopes (see [43] for further details).

The resulting optimization problem is nonlinear and convex, possibly with many more

variables than the original nonconvex problem, and its solution provides a lower bound

for the optimal value of the original minimization problem.

To capitalize on the availability of highly efficient LP solvers, in [43], the authors

proposed the use of entirely polyhedral relaxations by further underestimating (resp.

overestimating) each convex (resp. concave) univariate via supporting hyperplanes at

a number of points determined by a sandwich algorithm. The resulting LP is solved at

each node in the branch-and-bound tree to generate a lower bound. This methodology
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was further refined in [44], where at each node additional cutting planes are generated

in rounds and added to the polyhedral relaxation only if they violate the relaxation

solution. In general, the nested decomposition and relaxation may introduce a large

relaxation gap. Interestingly, there exist several important cases for which factorable

decomposition exploits the structure of the original problem. In [44], the authors showed

that the proposed factorable-based polyhedral relaxation framework automatically ex-

ploits the convexity of original functions, under certain assumptions. In the following,

we briefly describe this result in a slightly different form (see also Theorem 1 in [44]).

First, we recall a convexity-preserving operation, which is a powerful tool for detecting

convexity of a wide class of functions (cf. Section 3.2 in [13]).

Lemma 1 Let f : D → Rn be a vector of functions fj , j ∈ J = {1, ..., n}, where

D ⊂ Rm is a convex set. Let J̄ contain the elements of J for which fj is not affine.

Assume that fj is convex for j ∈ J1 ⊂ J̄ and concave for j ∈ J2 = J̄ \ J1. Let

g : C → R be convex, where C is a convex set in Rn that contains the range of all fj
over D. Assume that g(y1, . . . , yn) is nondecreasing in yj , j ∈ J1 and is nonincreasing

in yj , j ∈ J2. Then, the composite function h(x) = g(f(x)) is convex on D.

Various well-known convexity-preserving operations follow from the above result.

For instance, if fj , j ∈ J are affine functions, then it follows that convexity is preserved

under the affine mapping of the domain. Similarly, if we restrict g to be a univariate

convex function, then Lemma 1 simplifies to the following composition rule: a convex

nondecreasing (resp. nonincreasing) function of a convex (resp. concave) function is

convex.

Now, consider a factorable decomposition of h(x) = g(f(x)) defined as yj = fj(x)

for all j ∈ J , and z = g(y). For simplicity, let f and g be differentiable and let f denote

a vector of convex functions, i.e., J = J1. Suppose that convexity of f(x) and g(y) are

recognizable by the relaxation constructor, whereas convexity of h(x) is not known a

priori. Our goal is to generate a polyhedral underestimator for z at (x, y) = (x0, y0),

where y0 = f(x0). By convexity and monotonicity assumptions on f and g, a factorable

relaxation of z is given by yj ≥ fj(x0) + ∇fj(x0)
T (x − x0) for all j ∈ J and z ≥

g(y0)+∇g(y0)
T (y−y0). By assumption, g(y) is component-wise nondecreasing. Thus,

z ≥ g(y0) + (∇f(x0)
T∇g(y0))

T (x − x0), where ∇f(x0) denotes the jacobian of f(x)

at x = x0. By the chain rule of differentiation, ∇h(x0) = ∇f(x0)
T∇g(y0). Therefore,

z ≥ h(x0) + ∇h(x0)
T (x − x0), i.e., recursive relaxation automatically exploits the

convexity of h(x), in the sense that its projection onto the space of original variables

corresponds to the supporting hyperplane of h(x) at x = x0.

In the remainder of the paper, by primitive functions, we refer to the set of func-

tions whose convexity properties are recognizable by a factorable relaxation scheme.

Moreover, we will refer to those convexity-preserving operations that are implied by

Lemma 1, as composition rules. Hence, the above discussion implies that recursive fac-

torable relaxations automatically exploit convexity of functions whose convexity can be

described by a recursive application of composition rules on a set of primitive functions.

2.2 Exploiting convexity in constructing polyhedral relaxations

There exists a variety of functional classes whose convexity is not exploited by the

conventional factorable relaxation scheme. For instance, in BARON’s factorable program-

ming module, the list of primitive functions consist of affine expressions, monomials
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(xa), powers (ax), logarithmic functions, bilinears, and fractions. As a result, to gen-

erate a convex outer-approximation of the set P = {(x, f) : f = x log x, x ∈ [0.1, 1]}, a
decomposed equivalent of f is constructed as follows: y = log x, f = xy. Subsequently,

the nonconvex set defined by each equation is replaced by its convex hull to obtain a

convex relaxation of P , denoted by P̃ . It is then simple to show that the projection of

P̃ onto the original space (x, f) is given by:

S = {(x, f) : max{−2.05x − 0.03, 2.56(x − 1.0)} ≤ f ≤ log x/10}.

The convex set S is depicted in Figure 1(a), where it can be seen that the recursive

relaxation introduces a large relaxation gap. As a second example, in Figure 1(b), a

factorable relaxation of P = {(x, f) : f =
√
1 + x2,−0.5 ≤ x ≤ 2.0} is shown. It

is simple to verify that the function f =
√
1 + x2 is convex. However, as a composite

function, f is a concave increasing function (f =
√
y) of a convex function (y = 1+x2),

a structure that does not satisfy the assumptions of Lemma 1.
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(a) f = x log x, 0.1 ≤ x ≤ 1.0
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(b) f =
√
1 + x2, −0.5 ≤ x ≤ 2.0

Fig. 1 Conventional factorable relaxations for functions whose convexity does not follow from
composition rules. The convex function f is shown in solid black and its factorable outer-
approximation is shown in dashed red. In both figures, the dotted blue line is the concave
envelope of f .

Motivated by the above discussion, we present several important functional classes

whose convexity or concavity are not exploited by the conventional factorable approach.

Clearly, our list is by no means complete, and there exist many convex functions that

we do not consider in our implementation. However, the following list is based upon

an extensive survey of a large number of optimization problems that appear in widely-

used test libraries as well as a variety of applications. We state the functional forms

without proofs, as these proofs follow from elementary arguments.

1. Products and ratios. Consider the function

f(x) =
∏

i∈I

fi(xi), I = {1, . . . , n}, n ≥ 2,

where fi = xai

i , ai ∈ R \ {0} or fi = axi

i , ai > 0 for all i ∈ I . Then, f(x) is convex

if one of the following conditions is satisfied:

(i) fi = axi

i , or fi = xai

i with xi > 0, ai < 0 for all i ∈ I .

(ii) fi = xai

i with xi > 0, ai < 0 for all i ∈ I \ {j}, and fj = x
aj

j with aj > 1,

fj ≥ 0 and
∑

i∈I ai ≥ 1.
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Moreover, f(x) =
∏

i∈I x
ai

i is concave if ai > 0 for all i ∈ I and
∑

i∈I ai ≤ 1.

2. Perspective of functions. The perspective operation preserves convexity, i.e., if

f(x) is convex, then its perspective g(x, y) = yf(x/y), y > 0 is jointly convex in x

and y (cf. Section 3.2.6 in [13]). Examples include perspective of negative entropy

g = x log(x/y), and perspective of exponential g = y exp(x/y).

3. Norms and norm-type functions. Consider the function

f(x) =

(

a0 +

n
∑

i=1

aix
p
i

)q

, x ∈ Rn, p, q ∈ R, n ≥ 1,

where ai > 0, i = 0, 1, . . . , n. Then, f(x) is convex if one of the following conditions

is satisfied:

(i) p > 1.0, q < 1.0, and pq ≥ 1.0; e.g. f =
√

x21 + x22
(ii) p < 0.0, and 0.0 < q < 1.0; e.g. f =

√

1 + 1/x.

Moreover, f(x) is concave if p < 1.0, 0.0 < pq < 1.0, and p(q − 1) > 0; e.g.

f = (1 +
√
x)2.

4. Quadratic functions and quadratic norms. Consider the function f(x) =

xTQx, x ∈ Rn, Q ∈ Sn, where Sn denotes the set of n × n symmetric matrices.

Suppose that Q is not diagonal. Then, f(x) is convex (resp. concave) if and only if

Q is positive semidefinite (resp. negative semidefinite). Moreover, the Q-quadratic

norm (resp. seminorm) defined as ||x||Q =
√

xTQx, where Q is positive definite

(resp. positive semidefinite), is a convex function.

5. Log-sum-exp. The function f = log(c0 + c1a
x1

1 + . . .+ cna
xn
n ), where x ∈ Rn and

ci > 0 for i = 0, . . . , n is convex.

6. Negative entropy. f = x log x, x > 0 is a convex function.

Remark 1 It is possible to construct many more types of functions by applying compo-

sition rules to the functions listed above. However, there is no need to characterize all

such functions. A factorable relaxation automatically exploits such structures, provided

that the above functions are included in the list of primitive functions of the factorable

scheme. For example, consider h(x) = (
∏n

i=1 fi(x))
1/n, x ∈ Rm. Suppose that fi,

i = 1, . . . , n are concave and nonnegative. The geometric mean g(y) = (
∏n

i=1 yi)
1/n,

yi ≥ 0 belongs to Class 1 above, and thus is concave. In addition, g(y) is nonde-

creasing in each argument. Hence, by Lemma 1, h(x) is concave, and its concavity is

automatically exploited by the recursive relaxation.

Remark 2 Consider the set S = {(x, f) : f = x1
√

1 + (log x2)2, x ∈ [x, x̄]}, and sup-

pose that the goal is replace S by a convex set. Clearly, as a function of x, f does not

belong to any of the functional types listed above. A factorable reformulation of this set

is given by S ′ = {(x, y, f) : y1 = log x2, y2 = y21 , y3 = 1 + y2, y4 =
√
y3, f = x1y4, x ∈

[x, x̄]}. In the lifted space, we can deduce the relation y4 =
√

1 + y21 , which, by Part (i)

of Class 2, corresponds to the graph of a univariate convex function, and thus can be

outer-approximated but its convex hull. It is important to note that, since factorable

relaxations are already built in the lifted space, generating strong cuts for such interme-

diate relations can significantly enhance the convergence rate of a branch-and-bound

algorithm.
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Remark 3 To identify convex/concave quadratics, we decompose a quadratic function

into nonseparable components and compute the eigenvalues of each quadratic form

to detect its convexity. As we detail in the following, we store both eigenvalues and

eigenvectors of quadratics to generate additional classes of cutting planes. Furthermore,

for indefinite quadratics with non-polyhedral envelopes, we generate cutting planes

based on the separable programming approach of [38]. Quadratic forms with polyhedral

envelopes are ignored here as BARON is equipped with a powerful relaxation constructor

for such functions [7].

Remark 4 Consider the second-order cone constraint given by

n
∑

i=1

aix
2
i − a0x

2
0 ≤ 0, xi ∈ R, ai > 0, ∀i ∈ {0, 1, . . . , n}. (1)

Clearly, the quadratic function f =
∑n

i=1 aix
2
i −a0x

2
0 is not convex. However, inequal-

ity (1) defines a convex feasible region; i.e., the zero-sublevel set of f , denoted by f0,

is a convex set. It is simple to verify that factorable relaxations of f do not exploit the

convexity of f0. Therefore, we reformulate constraints of the form (1) as

(

n
∑

i=1

aix
2
i

)0.5
−√

a0x0 ≤ 0. (2)

Since the l2-norm belongs to Class 3 functions above, the proposed factorable relaxation

in the left-hand side of inequality (2) does not introduce any relaxation gap.

Now consider the function f = x0.31 x0.42 x0.53 , x ≥ 0. This function is not concave.

However, if at least one of the variables get fixed, then the resulting function is con-

cave. In addition, if two of the variables become fixed, then concavity of the resulting

univariate function is exploited by the conventional factorable scheme. As another ex-

ample, consider f = x31/ log x2, x1 ∈ R, x2 > 1. This function is neither convex nor

concave. However, if at some node in the search tree, we have x1 ≥ 0 (resp. x1 ≤ 0),

then f becomes convex (resp. concave). For functions of this type, we do not mod-

ify the conventional factorable reformulator. Instead, we apply the following two-step

approach to generate tighter polyhedral relaxations at each node in the branch-and

bound tree:

• Recognition: prior to the initialization of the branch-and-bound tree, we mark

and classify all intermediate relations containing subexpressions whose convex-

ity/concavity cannot be exploited by the factorable approach. The data structures

required for generating and storing cutting planes are also allocated at this stage.

• Cut generation: at each node in the branch-and-bound tree, we first construct

and solve a crude outer-approximation of the problem based on the conventional

factorable reformulation. Subsequently, various classes of cutting planes are gen-

erated and added to the current relaxation iteratively, only if they violate the re-

laxation solution (see [44] for details). We do not add the proposed cutting planes

to the initial outer-approximation but utilize them for the iterative cut generation

scheme. At a given cut generation iteration, we scan all expressions yj = fj(x),

j ∈ J stored at the recognition step. Denote by (x∗, y∗j ) the projection of the cur-

rent relaxation solution to the (x, yj) space. If any of the variables are fixed in

the current node, then we eliminate them and update fj(x) accordingly. If fj(x)
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is a convex function (resp. concave function) that is not recognized as such by

the factorable scheme and y∗j < fj(x
∗) (resp. y∗j > fj(x

∗)), then a cut of the

form ∇fj(x
∗)Tx − yj ≤ ∇fj(x

∗)Tx∗ − fj(x
∗) (resp. ≥ ) is added to the current

relaxation.

In addition to generating sharp cutting planes, detecting convexity of intermedi-

ate expressions may result in inferring tighter bounds for both original and auxiliary

variables of a nonconvex problem. Given lower and upper bounds on original variables,

factorable programming-based global solvers employ a recursive bound propagation

scheme based on interval arithmetic and monotonicity analysis to infer bounds on all

intermediate variables. Subsequently, in a backward mode, bounds on the objective

and constraint functions are used to infer tighter bounds on original and intermediate

variables. Clearly, if an intermediate relation is convex (resp. concave), then we can

compute its minimum (resp. maximum) to obtain a sharp lower bound (resp. upper

bound) for the associated auxiliary variable. Accordingly, we tighten the bounds on all

convex/concave intermediates, whenever such bounds are not implied by the existing

bound propagation scheme. For instance, consider f = x log x, x ∈ [0.1, 2]. By convex-

ity of f , it follows that f ∈ [−0.368, 1.386]. However, in the recursive approach, we

have f = xy, where y = log x. Utilizing interval bounds for the bilinear term f = xy,

0.1 ≤ x ≤ 2, −2.3 ≤ y ≤ 0.69, we obtain f ∈ [−4.605, 1.386]. Similarly, we exploit

convexity (or concavity) of univariate quadratics of the form ax2 + bx to enhance

linear-feasibility-based range reduction operator (cf. [17] for details).

As another example, consider a nonseparable convex quadratic function f = xTQx+

bTx, x ∈ [x, x̄] ⊂ Rn, Q ∈ Rn×n, b ∈ Rn, n ≥ 2. In this case, we compute the mini-

mum of f over Rn by solving a system of linear equations and use it to bound f in the

relaxation. If f is unbounded below over Rn, i.e., if b is not the in the column space of

Q, then we ignore the linear part of f and add the inequality xTQx ≥ 0 to the relax-

ation. Now, suppose that a finite upper bound on f is available, i.e., xTQx+ bTx ≤ α.

The feasible region defined by this inequality is an ellipsoid (or a degenerate ellipsoid).

In this case, we characterize the hyperplanes corresponding to the minimum-volume

bounding box of this ellipsoid, and add them to the relaxation. In the following, we

present the derivation of these inequalities for completeness. First, suppose that f does

not contain any linear term. Denote by λi and vi the ith eigenvalue and eigenvector of

Q, respectively. By convexity of f , we have λi ≥ 0 for all i = 1, . . . , n. Without loss of

generality, suppose that the first m eigenvalues of Q are positive. Clearly, if f is strictly

convex, then m = n. It follows that f =
∑m

i=1 λi(v
T
i x)2. By assumption, α is a finite

upper bound on f . Thus, we obtain 2m inequalities given by−
√

α/λi ≤ vTi x ≤
√

α/λi,

for i = 1, . . . , m. Now, suppose that f contains linear terms. As in the previous case,

we would like to reformulate f as a sum of squares, i.e., we are interested in finding

the vector c ∈ Rm such that xTQx + bTx =
∑m

i=1 λi(v
T
i x+ ci)

2 −
∑m

i=1 λic
2
i . After

rearranging terms and using the relation xTQx =
∑m

i=1 λi(v
T
i x)2, we obtain

m
∑

i=1

(λivij)ci = bj/2, ∀j = 1, . . . , n, (3)

where vij denotes the jth element of vi. Two cases arise:

• The linear system (3) has a solution (clearly, if Q is positive definite, i.e., m = n,

then the system always has a solution). In this case, the minimum-volume bounding
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box of the feasible region is given by the following inequalities:

−

√

α+
∑m

j=1 λjc
2
j

λi
− ci ≤ vTi x ≤

√

α+
∑m

j=1 λjc
2
j

λi
− ci, i = 1, . . . ,m.

• The linear system (3) does not have any solutions (if Q is positive semi-definite,

then (3) has more equations than unknowns and may not have any solutions, i.e.,

the feasible region is an elliptic paraboloid). In this case, if a finite upper bound β

on the quadratic form xTQx is available, then we ignore the linear part of f and

generate the bounding box of the region defined by xTQx ≤ β.

2.3 Exploiting quasi-convexity in constructing polyhedral relaxations

Consider the inequality constraint g defined as x21x2 ≥ 1. The function in the left-hand

side, i.e., f = x21x2 is neither convex nor concave. However, g defines a convex feasible

region since it is a superlevel set of the quasi-concave function f . Recall that a function

is quasiconcave if and only if all of it superlevel sets Sα = {x : f(x) ≥ α}, for α ∈ R

are convex (cf. [5] for an exposition). To generate supporting hyperplanes of the convex

region defined by g, we first reformulate it as x2 ≥ 1/x21, and subsequently linearize it

using first-order Taylor series approximation of the convex function 1/x21. In general,

it is always possible to represent sublevel sets of quasiconvex functions (or superlevel

sets of quasiconcave functions) via inequalities of convex functions (cf. Section 3.4

in [13]). To demonstrate the benefit of such reformulations for constructing tighter

relaxations, in Figure 2, we show the factorable outer-approximation of g projected

onto the original space. This relaxation is obtained by first reformulating g as y1 = x21,

y2 = y1x2, y2 ≥ 1, and replacing the two equality constraints by their convex hulls. To

construct this relaxation, finite lower and upper bounds on variables are required. We

assume x1 ∈ [0.1, 1], x2 ∈ [1, 100].

Alternatively, a relaxation can be constructed by combining the two techniques,

i.e., by reformulating y1x2 ≥ 1 as x2 ≥ 1/y1, and employing the factorable relaxation

of y1 = x22 as before. As can be seen in Figure 2, while stronger than the pure factorable

approach, the hybrid scheme is not tight. For this example, it is simple to show that,

if the exponent of x1 is smaller than one, then the hybrid approach does not introduce

any relaxation gap. We formalize this idea as follows. First, we recall the conditions

under which a signomial term is quasiconvex or quasiconcave (see Chapter 5 of [5]

for proofs). Clearly, convexity is a sufficient condition for quasi-convexity. Since con-

vex/concave signomials are covered by the techniques discussed in the previous section,

in the following, we only consider cases in which f is merely quasiconvex (or merely

quasi-concave).

Lemma 2 Consider the function f =
∏

i∈I x
ai

i , ai ∈ R\{0} for all i ∈ I = {1, . . . , n}.
Define the subsets Ip = {i ∈ I : ai > 0}, and In = I \ Ip. The function f is defined

over the domain C = {x ∈ Rn : xi ≥ 0 ∀i ∈ Ip, xi > 0 ∀i ∈ In}. Then, f is merely

quasiconcave if one of the following conditions is satisfied:

(i) ai > 0 for all i ∈ I, and
∑

i∈I ai > 1,

(ii) ai > 0 for all i ∈ I \ {j}, and
∑

i∈I ai ≤ 0.

Moreover, f is merely quasiconvex if ai < 0 for all i ∈ I \ {j}, and 0 ≤
∑

i∈I ai < 1.
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Fig. 2 Alternative relaxation methods for the set S = {(x1, x2) : x2

1
x2 ≥ 1, x1 ∈ [0.1, 1], x2 ∈

[1, 100]}. The boundary of set S is shown in solid blue, its factorable outer-approximation
is shown in dashed red, and a hybrid relaxation is shown in dotted green. The two tangent
lines show the cutting planes associated with two convex reformulations of x2

1
x2 ≥ 1, i.e.,

(i)1/x2

1
− x2 ≤ 0 and, (ii) 1/

√
x2 − x1 ≤ 0, which separate the point (x1, x2) = (0.2, 1.0) from

the enlarged feasible regions.

We now utilize the above result to construct tighter polyhedral relaxations for

nonconvex problems that contain quasi-convex expressions. In the following, we assume

that f is defined over a box [x, x̄] ⊂ C, where the set C is defined in the statement of

Lemma 2. In addition, by f and f̄ , we imply interval lower and upper bounds on f(x),

respectively, i.e., f =
∏

i∈In
x̄ai

i

∏

i∈Ip
xai

i and f̄ =
∏

i∈In
xai

i

∏

i∈Ip
x̄ai

i .

Lemma 3 Consider the function f(x), x ∈ [x, x̄] defined in the statement of Lemma 2.

Suppose that y = f(x) is an intermediate relation introduced by the factorable reformu-

lation of a nonconvex problem. Denote by f and f̄ the interval bounds on f(x), and let

α and β denote lower and upper bounds on y, respectively. Suppose that at least one of

the following inequalities holds: (i) f < α, (ii) β < f̄ . Denote by x∗ the LP solution

for a relaxation of the nonconvex problem. We have the following cases:

(i) if f(x) is quasiconcave with ai > 0 for all i ∈ I and f(x∗) < α, then an inequality

of the form l(x)−xj ≤ 0 for some j ∈ I cuts off the relaxation solution, where l(x)

is the supporting hyperplane of the convex function z =
(
∏

i∈I\{j} x
ai

i /α
)−1/aj

at

xi = x∗i for all i ∈ I \ {j}.
(ii) if f(x) is quasiconcave (resp. quasiconvex) with aj < 0 (resp. aj > 0) for some

j ∈ I and f(x∗) < α (resp. f(x∗) > β), then the inequality xj − l(x) ≤ 0 cuts

off the relaxation solution, where l(x) is the supporting hyperplane of the concave

function z =
(
∏

i∈I\{j} x
ai

i /γ
)−1/aj

at xi = x∗i for all i ∈ I \ {j}, and γ = α

(resp. γ = β).

Proof We state the proof for Part(i). The proof of Part(ii) follows from a similar line of

arguments. Note that if α ≤ f and f̄ ≤ β, then the relation α ≤ f(x) ≤ β is valid for all

x ∈ [x, x̄] and no useful cut can be generated. Now, suppose than f(x∗) < α. Clearly,

α > 0. Hence xi > 0 for all i ∈ I at any point satisfying the inequality f(x) ≥ α.

Consider
∏

i∈I x
ai

i ≥ α. Since ai > 0 and xi > 0 for all i ∈ I , this inequality can be

equivalently written as (
∏

i∈I\{j} x
ai

i /α)−1/aj ≤ xj for any j ∈ I . It is simple to show

that the signomial term on the left-hand side of this inequality is convex (cf. Part (ii)

of Class 1 functions in Section 2.2), and thus replacing it by a supporting hyperplane

at x = x∗ results in a valid inequality that enforces f(x∗) ≥ α.

If a function f(x), x ∈ Rn satisfies the conditions of Part(i) of Lemma 3, then n

distinct cutting planes can be generated, all of which violate the relaxation solution.
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In Figure 2, we show the two cutting planes associated with the inequality x1x
2
2 ≥ 1 at

(x1, x2) = (0.2, 1.0). In our implementation, we generate one cutting plane by using a

heuristic to select a reformulation that produces a safe cut. We will detail the concept

of safe cuts in the next section. From Lemma 2, it follows that f = (x1/x2)
a, a ∈ R is

both quasiconvex and quasiconcave. In this case, (i) if f(x∗) < α, then we consider the

inequality (x1/x2)
a ≥ α and, (ii) if f(x∗) > β, then the inequality (x1/x2)

a ≤ β will be

used as the starting point for cut generation. In principle, this reformulation technique

can be used to generate cutting planes for any inequality of the form f(x) ≤ α, where

f is a quasi-convex function. However, at this stage, our implementation is restricted

to the case where f is either a signomial term or a function obtained by application of

composition rules to signomials.

2.4 Other enhancements: safe lower bounds and reformulations

At each node in the branch-and-bound tree, a global optimization solver constructs

and solves polyhedral relaxations to obtain lower bounds on the optimal value of the

nonconvex problem. For many problems, these LP relaxations are ill-conditioned and

contain constraints with very large and/or very small coefficients. This issue often

arises for nonconvex problems that contain unbounded variables or nonlinear expres-

sions that are not properly bounded. While the state-of-the-art LP solvers are quite

reliable, there exist cases for which these solvers make false optimality or infeasibility

claims (cf. [36]). For instance, we have observed that LP solvers occasionally return

a solution that is slightly infeasible with respect to a number of cutting planes. As a

result, the relaxation constructor generates identical (or very similar) cutting planes

and adds them to the current relaxation. Subsequently, the solution returned by the

LP solver remains unchanged, and the same set of cutting planes may be appended to

the relaxation and sent to the LP solver for multiple rounds. As another example, for

badly scaled LPs that are on the border of infeasibility, LP solvers tend to make false

infeasibility claims. By simply accepting such false infeasibility claims and pruning the

corresponding nodes, the global solver may fail to locate a global solution. To address

these issues, we add cutting planes to the relaxation only if they are properly scaled.

Additionally, we accept LP solver solutions only after verifying their optimality, and

examine infeasibility certificates prior to pruning any node:

• Safe cuts: consider a cutting plane of the form
∑

i∈I aixi ≤ b, where ai ∈ R\{0},
xi ∈ R for all i ∈ I = {1, . . . , n}, b ∈ R. To avoid a poorly scaled model, we add this

cut to the LP relaxation if the following conditions are satisfied: (i) l ≤ |ai| ≤ u for

all i ∈ I , (ii) l ≤ |ai/aj | ≤ u for all i, j ∈ I such that i < j, and (iii) |b| ≤ b̄. Here,

the implementation-specific constant l > 0 is acceptably small, and 0 < u < (̄b)

are acceptably large. To maintain the tightness of polyhedral relaxations, prior to

the initial outer-approximation of each convex/concave univariate f(x), x ∈ C ⊆
R, the algorithm locates an interval L ⊆ C, over which the resulting supporting

hyperplanes satisfy the above conditions. Finally, prior to appending cutting planes

to an existing relaxation, we scale the cuts so that our measure of violation agrees

with the feasibility tolerance of the LP solver.

• Safe LP bounds: we verify the optimality of the primal-dual pair reported by the

LP solver prior to utilizing them in the global search. In particular, we check for (i)

primal feasibility, (ii) dual feasibility, and (iii) zero duality gap. We have observed
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many cases for which the solution returned by the LP solver is slightly infeasible.

This issue often arises if the original nonconvex problem contains (many) nonlinear

equality constraints or if the polyhedral relaxation is poorly scaled. For such in-

stances, if the LP solution is dual feasible, then by weak duality, the dual objective

value serves as a valid lower bound for the problem. Linear programming solvers

such as CPLEX and CLP provide Farkas certificates for infeasible models. Namely, if

an infeasible LP has an unbounded dual, then finding a recession direction of the

dual problem is sufficient to prove the infeasibility of the primal. Hence, to identify

false infeasibility claims, we demand and examine the associated certificates.

For a nonlinear expression, there exist many equivalent reformulations each of which

has different implications for convexification and range reduction purposes. As a pre-

processing step, we employ the following basic reformulations, which are beneficial for

constructing factorable relaxations as well as automatic convexity detection:

• Consider y = (xa1)a2 . We reformulate this expression as y = xa1a2 unless the

following conditions are satisfied: (i) a1 is an even number, (ii) a1a2 is not an even

number and (iii) x ∈ [x, x̄] such that x < 0. If these conditions hold, then we mark

y as a non-differentiable monomial expression and generate its convex and concave

envelopes, as needed. More generally, we employ a similar reformulation for the

expression y = ((xa1)···)an .

• We reformulate y = log ax as y = xlog a.

• We reformulate y = (ax)b as y = (ab)x.

• We reformulate y = alog x as y = xlog a.

3 Hybrid LP/NLP relaxation paradigm

Consider a convex optimization in standard form:

(CV) min
x

f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m

Ax− b = 0,

where x ∈ Rn, A ∈ Rp×n, b ∈ Rp, and f0, . . . , fm are convex functions. Various

cutting plane-based algorithms have been proposed for solving convex NLPs by solving

a sequence linear programs (cf. [28,12]). These methods are used mostly for solving non-

smooth convex problems or large-scale structured convex problems such as nonlinear

network flows. For general smooth convex problems, however, methods based on active

set or interior point algorithms are often significantly faster, even though they are more

prone to numerical difficulties. In fact, for some convex problems, state-of-the-art local

solvers report sub-optimal solutions or make false infeasibility claims. It is well-known

that, for differentiable convex problems, every primal-dual pair that satisfies KKT

conditions is optimal. Therefore, a practical approach to solve convex problems could

first utilize local NLP solvers and, if these solvers fail due to numerical issues, then the

algorithm could utilize the more stable but slower polyhedral-based techniques.

In the context of global optimization, convex subproblems often appear as a result

of relaxing or restricting the feasible region of the original nonconvex problem at vari-

ous stages during the global search. For example, convex subproblems are obtained by



13

relaxing integrality requirements in convex MINLPs or restricting the domain of a sub-

set of variables in nonconvex NLPs, as a result of applying range reduction or branching

operations. Clearly, an extreme yet important case is when the original NLP is con-

vex. Global solvers such as SCIP, LindoGlobal and GloMIQO [32] detect convexity of

quadratic programs (QPs) and quadratically constrained quadratic programs (QCQPs)

prior to the initialization of the branch-and-bound tree, and solve convex problems with

local solvers. However, for more general problem classes, current general-purpose global

solvers are not equipped with automatic convexity detection facilities, and utilize the

standard branch-and-bound algorithm to solve convex problems as well.

Motivated by the above discussion, in this section, we introduce a hybrid lower-

bounding paradigm that aims to harness the advantages of both polyhedral and nonlin-

ear convex relaxations by combining them in a dynamic fashion. The main components

of our implementation are (i) an efficient convexity detection tool that checks if the

continuous relaxation of the problem is convex at every node in the branch-and-bound

tree, (ii) a dynamic local solver selection strategy that switches among various local

solvers in the branch-and-abound tree based on their performance, (iii) an examiner

that verifies if the solution returned by the local solver is optimal, and (iv) a hybrid

relaxation constructor that alternates between polyhedral and nonlinear relaxations at

every node based on their relative strength and numerical robustness. We detail each

of these components below.

3.1 Automatic convexity detection

To expedite the global search, we embed an efficient convexity detector at every node

in the branch-and-bound tree. As we describe in the following, our convexity verifica-

tion approach is based on a number of basic principles in convex analysis, which have

also been implemented in other computational environments [25,22]. The main dis-

tinction between our method and earlier convexity assessment techniques stems from

the different contexts in which the results of such analysis are utilized. Our starting

point is a highly efficient polyhedral-based branch-and-cut framework, and our goal

is to improve the global solver by exploiting convexity of subproblems at every node

in the branch-and-bound tree. Clearly, such an approach is only beneficial if convex-

ity verification can be conducted very fast; for instance, by performing all expensive

computations at the root node. In the following, we briefly review existing automated

convexity assessment techniques, and subsequently describe our implementation.

3.1.1 Background

Due to its significant theoretical and algorithmic implications, assessing convexity prop-

erties of general optimization problems in a fully automated manner is of great interest.

The problem of determining whether or not a general optimization problem is convex

is NP-hard (cf. [4]). Nevertheless, several incomplete techniques have been proposed

in the literature that can effectively prove or disprove convexity of many practical

optimization problems. These approaches can be categorized in two main groups:

I. Symbolic methods. These techniques are based on the following observation.

Given (i) a set of primitive functions whose convexity and monotonicity properties
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are known a priori, and (ii) a set of convexity-preserving operations, we can con-

struct many more convex functions via a recursive application of these operations

on the primitive set. Similarly, given a general nonlinear function, we can utilize

this technique to possibly verify its convexity. This approach was introduced by

Grant et al. [30] for constructing convex optimization problems called disciplined

convex programs (DCP). The authors also developed a modelling framework called

CVX to support the DCP methodology [25]. The CVX system verifies if the input

problem is a valid DCP, converts it to a solvable form and sends it to a proper

solver. This symbolic technique was later adopted by Fourer et al. [21] to verify

the convexity of a given optimization problem. The resulting implementation is

available as part of DrAmpl [22], a meta solver for analyzing structural properties

of optimization problems including convexity. The main advantage of the symbolic

approach is its low computational cost. However, it may fail to prove or disprove

convexity for many cases, an outcome we will henceforth call inconclusive.

II. Numerical methods. Several techniques have been proposed to prove or disprove

convexity of a given problem by verifying various properties of convex functions.

Given a multivariate function, MProbe [15] checks the basic definition of convexity

over randomly generated line segments in the feasible region. Clearly, this approach

can only be used for disproving convexity. In DrAmpl [22], if the symbolic approach

described above returns an inconclusive flag, then the algorithm proceeds to the

numerical disproving phase in which it tries to find a direction of negative curvature

by solving an auxiliary quadratic program. Nenov et al. [35] assess convexity

by checking positive semi-definiteness of interval Hessians, an approach which in

spite of generality is often quite expensive. In [33], the author proposes an efficient

method to compute the bounds on eigenvalues of interval Hessians.

Our convexity detection technique is based on the symbolic approach with the ex-

ception of quadratic functions for which we check if the Hessian is positive semidefinite.

In other words, we include quadratic functions in the list of primitive functions, and

utilize a numerical approach to verify their convexity. As in the previous section, we

decompose quadratics into nonseparable components, and assess convexity properties

of each quadratic subexpression, independently. We will further detail our convexity

detection algorithm for quadratics in the next section. In addition, our convexity-

preserving ruleset consists of any operation implied by Lemma 1. For a given ruleset,

generality of the symbolic detection approach depends on the list of primitive functions.

As we described in Section 2, to generate sharp factorable-based polyhedral relaxations,

we have enhanced the list of BARON’s primitive functions by including a variety of con-

vex/concave functions that appear in applications. We utilize the same list of functions

for our convexity detector. In addition to affine functions and basic univariate/bivariate

functions of the form f(x) = xa, f(x) = ax, f(x) = log x, f(x) = x1x2, f(x) = x1/x2,

we have support for the six classes of functions listed in Subsection 2.2.

To assess convexity of a general nonlinear function, we start from its factorable

reformulation and associate the set of intermediate relations with a recursive applica-

tion of composition rules on a number of primitive functions. In addition, to determine

convexity and monotonicity of primitive functions, we make use of BARON’s bound prop-

agation facilities. We illustrate this technique by a simple example and refer the reader

to [25,6,21] for a detailed description of the symbolic convexity verification scheme.

Consider the inequality constraint (x21 + x22 + 1)2 ≤ 4, x ∈ R2. A factorable reformu-

lation of this constraint is given by y1 = x21, y2 = x22, y3 = y1 + y2 + 1, y4 = y23 ,
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y4 ≤ 4. Using interval arithmetic, BARON infers the following bounds: x ∈ [−1, 1]2,

(y1, y2) ∈ [0, 1]2, y3 ∈ [1, 2], y4 ∈ [1, 4]. To assess convexity properties of this con-

straint, we first identify convexity and monotonicity of all intermediate relations in the

lifted space: (i) y1 = x21 and y2 = x22 are convex; since y1 and y2 are functions of x

variables, no monotonicity analysis is required for these functions, (ii) y3 = y1+ y2+1

is affine and nondecreasing in each argument, (iii) y4 = y23 is convex and increasing

over y3 ∈ [1, 2]. Next, we employ convexity-preserving operations to deduce convexity

in the original space: (i) y3 = y1+y2+1 is affine and nondecreasing in both arguments,

and y1 and y2 are convex functions of x; thus, by Lemma 1, y3 is a convex function of

x, (ii) y4 is a convex increasing function of y3, and y3 is a convex function of x; again,

by Lemma 1, y4 is a convex function of x. It is important to note that BARON’s range

reduction strategies are highly important for our convexity detection scheme as they

utilize the feasible region of the original problem to infer tighter bounds for variables.

For example, consider the function f = (x1 − x2)
3, x ∈ [0, 1]2 with a factorable refor-

mulation given by y = x1 − x2, f = y3, y ∈ [−1, 1]. Clearly, f(x) is nonconvex over

the unit hypercube. Now, assume that we have an additional constraint of the form

x1 ≥ x2 in the model. Using this inequality, BARON infers y ∈ [0, 1]. Then, it follows

that f is a convex increasing function of an affine function, and is therefore convex.

3.1.2 Convexity detection for global optimization

We embed our convexity detection technique in BARON’s preprocessor as well as every

node in the branch-and-reduce algorithm. Our ultimate goal is to reduce the overall

execution time of the global solver for a wide range of optimization problems. Hence,

a highly efficient convexity verification algorithm is of crucial importance. Otherwise,

the detection algorithm may deteriorate the performance of the global solver, specially

for problems with a large number of nonconvex sub-problems in the branch-and-bound

tree. The main steps of our convexity detection algorithm are outlined next.

I. Reformulation. Prior to the application of convexity detector, we utilize a number

of simple transformations that are beneficial for the purpose of convexity assess-

ment:

(i) log(ax) is replaced by x log a,

(ii) alog x is replaced by xlog a,

(iii) (xa)b is replaced by xab with the exception of non-differentiable functions (see

Subsection 2.4),

(iv) (ax)b is replaced by (ab)x,

(v) (x1 . . . xn)
a is replaced by xa1 . . . x

a
n,

(vi) quadratic functions are converted to an expanded form: (1) all products are

disaggregated, i.e., x0(a0 + a1x1 + . . .+ anxn) is replaced by a0x0 + a1x0x1 +

. . . + anx0xn; a similar reformulation is employed for the more general form

(a0 + a1x1 + . . . + anxn)(b0 + b1y1 + . . . + bnyn), (2) monomials of the form

(a0+ a1x1+ . . . anxn)
2 are expanded only if such a reformulation is needed for

convexity detection. If in the same constraint: (i) there exists a bilinear with

a common variable; e.g. (x1 + x2)
2 − 2x1x2 ≤ 1 is replaced by x21 + x22 ≤ 1,

(ii) there exists another monomial whose coefficient has the opposite sign and
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the two monomials have common variables; e.g. (x1 + 2x2)
2 + x21 − 2x22 ≤ 1 is

replaced by 2x21 + 4x1x2 + 2x22 ≤ 1.

For instance, consider the reformulation (i) above. As a composite function, f =

log(ax) is a concave increasing function (log) of a convex function (ax), a case

whose convexity or concavity does not follow from Lemma 1. However, in the

reformulated form, f = x log a is clearly an affine function. The above operations are

applied in a recursive manner until we obtain a formulation for which none of these

operations are applicable; for example f =
√
2log(x+y) simplifies to f = (x+y)0.35.

To establish convexity, it suffices to verify that the objective function f0 and all

inequality constraint functions fi, i = 1, . . . , m as defined in Problem (CV) are

convex, and that the equality constraints are affine. In the following, we discuss

various strategies to examine convexity properties of a multivariate function f(x);

all these techniques are used to establish convexity of objective and constraint

functions.

II. Initial convexity assessment. With the objective of minimizing the overall com-

putational cost of convexity detection, prior to the initialization of the branch-and-

bound tree, we mark all convex expressions in the problem, identify various sources

of nonconvexity, and store the information in proper data structures for later in-

vestigation. In particular, we classify variables that contribute to the nonconvexity

of the problem as follows. Consider an optimization problem whose convexity is

verifiable by the proposed detection scheme only if a subset of (original) variables

become fixed. We refer to this subset as the set of nonconvex variables. For ex-

ample, consider the constraint x21 + log x2 ≤ 1; in this case, x2 is a nonconvex

variable, whereas, for the constraint x21 + log(x1 + 2x2) ≤ 1, both x1 and x2 are

marked as nonconvex variables. Now, consider the function f(x) = (x1 − 2x2)
3,

x ∈ R2. Clearly, f is neither convex nor concave. However, if at some node in the

branch-and-bound tree, we have x1−2x2 ≥ 0 (resp. x1−2x2 ≤ 0), then f is convex

(resp. concave) in that node. Accordingly, we define a concavoconvex variable as an

original variable or an affine combination of original variables that appears in con-

cavoconvex monomials, i.e., f = x2k+1, k = 1, 2, . . ., x ∈ [x, x̄] such that x < 0 < x̄.

In addition, with each concavoconvex variable xj (or yj = aTx + b), we associate

a domain restriction flag ηj , defined as: (i) ηj = 1, if xj appears in concavoconvex

monomials with positive coefficients, in which case the problem is convex only if

xj takes nonnegative values, (i) ηj = −1, if xj appears in concavoconvex mono-

mials with negative coefficients; in this case, if the problem becomes convex, then

we have xj ≤ 0 and, (iii) ηj = 0, if xj appears in concavoconvex monomials with

positive and negative coefficients; in this case, if xj takes nonzero values then the

problem is nonconvex. We should remark that each variable can appear in at most

one of the above lists based on the following dominance relations: (i) if a variable

appears in concavoconvex terms with ηj = 1 (or ηj = −1 ), and nonconvex terms,

then we append it to the list of nonconvex variables, (ii) if a variable appears in

concavoconvex terms with ηj = 0 and nonconvex terms, then we mark it as a con-

cavoconvex variable with ηj = 0. In the following, we describe the procedure for

initial convexity assessment of a general factorable NLP.

Consider a constraint of the form h1(x1) + . . .+ hm(xm) ≤ α, m ≥ 1, x ∈ [x, x̄] ⊆
Rn, where each hj(xj) is a primitive function or a composition of primitive func-

tions, xj ∈ Rnj , nj ≤ n contains some components of x, α ∈ R is a scalar, and

hj(xj) cannot be represented as hj =
∑K

k=1 hjk , where each hjk is a primitive func-
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tion (or a composition of primitive functions). For example, consider the constraint

x21+1.5(x1 log x1)
2+x22+2x1x2−exp(−x22) ≤ 1 with h1(x1, x2) = x21+2x1x2+x22,

h2(x1) = 1.5(x1 log x1)
2, and h3(x2) = − exp(−x22). In this case, we do not further

decompose h1 to square and bilinear terms, as a nonseparable quadratic function

belongs to the list of primitive functions. In addition, a decomposition of the form

h2 = 1.5(x1 log x1)
2−exp(−x22) is not valid, since this expression is not a primitive

function, and can be decomposed into two subfunctions h21 = 1.5(x1 log x1)
2 and

h22 = − exp(−x22), each of which is obtained by an application of composition rules

to primitive functions. First, suppose that hj(xj) is not a quadratic function con-

taining bilinear terms. We associate a convexity flag ωj with each hj(xj), defined

as follows:

(i) ωj = 1: the convexity detector verifies convexity of hj(xj). We mark this func-

tion as convex, and do not re-examine its convexity in subsequent nodes.

(ii) ωj = −1: the convexity detector either verifies concavity of hj(xj) or returns

an inconclusive flag that is unchangeable unless all variables in hj(xj) become

fixed. In this case, we append xj to the list of nonconvex variables, and do not

revisit hj later in the search tree. For example, consider f = log(x21+x22+1). As

a composite function, f is a concave increasing function of a (strictly) convex

function; a structure that is not covered by Lemma 1, and will not change

during the search tree unless both x1 and x2 are fixed.

(iii) ωj = 0: the convexity detector returns an inconclusive flag; however, convexity

properties of hj may change later, as a result of range reduction or branching

operations. In this case, hj is marked for later check in the branch-and-bound

tree. Moreover, if hj = (cT xj + d)2k+1, k = 1, 2, . . . is concavoconvex, then

we append y = cTxj + d to the list of concavoconvex variables. For example,

consider f = (x21 − x2)
2, x ∈ [−1, 1]2. In this case, f is a convex nonmonotone

function of a convex function, which is an inconclusive composition. In fact,

it is simple to verify that, over [−1, 1]2, the function f is neither convex nor

concave. However, if at some node in the search tree x1 is fixed or the inequality

x21 − x2 ≥ 0 is satisfied, then convexity of f is verifiable by the proposed

detection scheme.

Now, suppose that hj(xj) is a nonseparable quadratic function containing bilinear

terms. For notational simplicity, we drop the subscript j from xj in the following.

To assess convexity properties of hj(x) = xTQx =
∑n

i=1

∑n
k=1 qikxixk, we first

check the sign of first- and second-order principal minors of Q. Namely, (i) if hj
contains a square term x2i with a negative coefficient, then we append xi to the

list of nonconvex variables, (ii) for any bilinear term xixk in hj with qii ≥ 0 and

qkk ≥ 0, if qiiqkk − q2ik < 0, then we add xixk to the list of nonconvex bilinears,

i.e., if hj is convex at a certain node, then either xi or xk is fixed. Subsequently,

we classify hj as follows:

(i) if all square terms in hj have negative coefficients, then hj does not become

convex unless all x variables are fixed. In this case, we let ωj = −1, and do not

revisit hj later in the search tree.

(ii) if Q has at least one negative first- or second-order principal minor, then we let

ωj = 0, and mark hj for later check in subsequent nodes.

(iii) if all first- and second-order principal minors of Q are nonnegative, then we

compute its eigenvalues. If all eigenvalues of Q are nonnegative, we mark hj as
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convex, i.e., ωj = 1; otherwise, we let ωj = 0, and utilize the following criterion

to determine whether it is necessary to recalculate eigenvalues of the Hessian

in descendent nodes:

Lemma 4 Consider a quadratic function h(x) = xTQx, x ∈ Rn. Suppose that Q

has p negative eigenvalues. Let h(x̃) denote a convex quadratic function obtained

by fixing a subset of variables in h(x). Then, h(x̃) has at most n− p variables.

Proof Suppose that h(x̃) has n − p + 1 variables and, without loss of generality,

assume that h(x̃) is obtained by fixing the last p − 1 components in x, i.e., x̃ =

[x1, . . . , xn−p+1]. Denote by S the subspace spanned by all x̃ ∈ Rn−p+1. Let V =

{vi}ni=1 denote a set of n orthonormal eigenvectors of Q, and let V ′ = {vi1 , . . . vip}
be the set eigenvectors associated with negative eigenvalues (λ) of Q. Denote by T
the p-dimensional subspace spanned by the eigenvectors in V ′. It follows that S∩T
contains at least one nonzero vector of the form u =

∑

j∈J αjv
j , J = {i1, . . . , ip},

α ∈ Rp. By orthonormality of the vectors in V ′, it follows that h(u) = uTQu =
∑

j∈J λjα
2
j < 0, which is in contradiction with the assumption that the restriction

of h(x) to S is convex. Thus, h(x̃) has at most n− p variables.

Therefore, for each nonconvex quadratic hj with nonnegative first- and second-

order principal minors, we store the number of negative eigenvalues pj , and re-

examine positive-semidefiniteness of the Hessian only if at least pj variables in hj
are fixed. A similar procedure is applied for convexity assessment of quadratic forms

that are composed with other nonlinear functions.

The techniques outlined above are utilized in the first call to convexity detector

during BARON’s preprocessor. Subsequently, at the root node, we update the initial

assessment, if applicable. For instance, if at the root node a nonconvex variable is

fixed or a concavoconvex variable has the proper domain, then they are removed

from the corresponding lists. The purpose of such updates is to minimize the com-

putational cost of convexity detection in subsequent nodes in the branch-and-bound

tree. Clearly, if during the initial assessment or at the root node it turns out that

ωj = 1 for all j, then the problem is convex, and the detection algorithm terminates.

III. Early termination tests. Consider a bilinear program (P), i.e., the problem of

minimizing a bilinear function subject to bilinear inequality constraints. Clearly, P

becomes convex if and only if, for every bilinear term xixj in the formulation, at

least one of xi and xj is fixed to a certain value. In other words, problem (P) is

convex only when it reduces to an LP. The same argument holds for QCQPs con-

sisting of component-wise concave quadratic functions. Clearly, for these examples,

the global solver does not benefit from convexity detection. In general, we would

like to identify cases for which convexity detection is not useful so as to avoid the

extra computational cost in the branch-and-bound tree.

At every call to the convexity detector, we first mark all fixed variables and elim-

inate them from the factorable reformulation of the optimization problem. More

precisely, we call xi ∈ [xi, x̄i], a fixed variable, if x̄i−xi ≤ ǫ, for some ǫ > 0. Denote

by nf the number of (original) variables that are fixed at the current node. Sub-

sequently, we mark all variables that appear linearly in the problem; let nl denote

the number of such variables. Define nr = n− nf − nl, where n is the number of

variables in the original problem. Clearly, if nr = 0, then this problem is an LP and
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the convexity detector terminates. Let nc denote the number of nonconvex vari-

ables and denote by no the number of original concavoconvex variables with η = 0,

at the current node. It follows that, if nr = nc +no, then the convexity detector is

not beneficial as the problem remains nonconvex unless all variables that appear

in nonlinear expressions become fixed. In particular, if this equality holds during

preprocessing or at the root node, then the convexity detector will be deactivated

for this problem.

IV. Fast convexity detection strategies. At every node in the branch-and-bound

tree, we utilize the information stored during the initial convexity assessment to

speed up the convexity detector. We start by examining the list of nonconvex

and concavoconvex variables. If a nonconvex variable is not fixed in this node

or a concavoconvex variable does not have the proper domain, then the problem

is still nonconvex and the convexity detector terminates. For problems containing

multivariate quadratic expressions, we employ the following tests: (i) if a nonconvex

bilinear is not linear in this node or, (ii) if a quadratic function with n variables and

k negative eigenvalues has more than n− k unfixed variables, then the problem is

still nonconvex. If the above conditions do not disprove the problem’s convexity, we

proceed to the next step and scan the list of nonlinear expressions with ωj = 0, as

defined in Step II. If convexity of any of the functions is not verifiable or a function

is found to be nonconvex, then the convexity detector terminates. Otherwise, the

problem is marked as convex in this node.

Finally, since convexity of QCQPs does not depend on variable bounds, we define

a list of convexity patterns LC = {lk}k∈K for this problem class. Namely, once

convexity of the QCQP is verified at a given node, we append the index set of

fixed variables l̃ to the list of convexity patterns. In addition, we keep the size of

LC minimal by removing any lk from the list that is implied by l̃. In subsequent

nodes, prior to the utilization of convexity detection tests, we compare the index

set of fixed variables l0 with those stored in LC and, if l0 ) lk for any k ∈ K, we

conclude that the problem is convex.

With the exception of quadratic functions, our convexity detection tool relies on

an efficient use of symbolic operations. In general, existing numerical verification al-

gorithms are too expensive to be embedded in the branch-and-bound tree. However,

an interesting possibility would involve utilizing the numerical approach of [33] to ex-

amine convexity properties of certain functional types for which the symbolic test is

inconclusive.

3.2 Dynamic local solver selection

Once convexity of the continuous relaxation of a sub-problem is verified at a given node

in the branch-and-bound tree, we employ a local solver to compute a lower bound by

solving the convex NLP. Hence, a highly efficient and reliable local solver is key to the

success of this approach. Through our experiments with several state-of-the-art local

solvers, we have observed that each solver behaves quite differently on various problem

types and, more importantly, there is no single solver that outperforms others on a

wide range of optimization problems. In fact, even for a single problem in the course

of the branch-and-bound tree, as the global solver searches through different parts of

the feasible region, the most suitable local solver may vary. Consequently, to maximize
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the impact of convexity detection and increase the likelihood of finding better upper

bounds on the global solution, we devised a dynamic local solver selection scheme that

alternates among various solvers based on their performance in the branch-and-bound

tree.

Suppose that we have access to a number of local solvers for the global search. Prior

to the application of each local search in the branch-and-bound tree, we would like to

employ a simple algorithm that selects a solver with the highest chance of success. To

measure the success rate of a local solver, we associate a binary flag win with each

call to that solver defined as follows: (i) for upper bounding, the local solver wins

(win = 1), if it returns a solution that passes our feasibility test and improves the

value of the best known upper bound, (ii) for lower bounding, the local solver wins

(win = 1), if it returns a solution that satisfies the KKT conditions. We store this

information in global and local data structures. For each solver, we store (i) the total

number of wins in the branch-and-bound tree denoted by Nwins and (ii) the number of

consecutive wins/losses denoted byNgains, where a positive number for Ngains indicates

the number of consecutive wins, whereas a negative number corresponds to the number

of consecutive losses. Furthermore, if m consecutive wins (resp. losses), are followed by

a loss (resp. win), then Ngains is reset to zero. Finally, we define a rank rs ∈ [1, r̄] for

each solver s. At a given node, solvers are selected for local search based on this rank. A

smaller value for rank implies a higher chance of success. We initialize the rank of each

solver based on our prior knowledge regarding solver average performance on a large

number of test problems, and update rs during the global search as follows. If a solver

fails η consecutive times, then we decrease the frequency at which the solver is called

by downgrading its rank: rs = min(2rs, r̄). Similarly, if a solver wins η consecutive

times, we upgrade its rank using the relation rs = max(1, rs/2). Prior to each local

search, we employ the above learning procedure to select a local solver as follows. If all

local solvers have failed too often, i.e., rs = r̄ for all solvers, then the solver with the

largest total number of wins (Nwins) is selected; otherwise, a solver with the best rank

is utilized for local search.

3.3 Combining polyhedral and nonlinear relaxations

If convexity of an NLP is verified during preprocessing or at the root node, then as soon

as a local solver returns a solution that satisfies KKT conditions, BARON terminates.

To avoid branching for convex problems, at the root node, we utilize all available local

solvers based on their rank, and proceed to the branching step only if they all fail

to find an optimal solution. In the following, we describe the integration of nonlinear

relaxations into BARON’s branch-and-cut framework.

Suppose that the convexity detector verifies that a sub-problem in the branch-and-

bound tree is convex. We select a local solver from the list of available solvers using the

dynamic scheme outlined in the previous section. It is well known that, even for convex

problems, a good starting point can highly affect the performance of local solvers.

Indeed, providing a near-optimal starting point often expedites the convergence rate of

Newton-type methods significantly. We construct a crude polyhedral relaxation of the

convex NLP using BARON’s polyhedral relaxation constructor and utilize its solution

as the starting point for the local solver. If the solution reported by the local solver

satisfies the KKT conditions, then the optimal value of the convex NLP is used as the

lower bound in this node; otherwise, the local solver’s solution is discarded and BARON
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continues with the conventional polyhedral relaxation scheme as detailed in [44]. In

addition, to avoid the extra cost of solving many NLPs for which the local solver fails

to find an optimal solution, we adjust the frequency at which the NLP lower bounding

scheme is used based on the performance of local solvers.

Now, consider the case where the primal-dual pair (x̃, ν̃) returned by the local solver

is not optimal but is dual feasible, i.e., the gradient of the Lagrangian with respect to

x vanishes at (x̃, ν̃). By weak duality, the value of the Lagrangian function L(x, ν) at

(x̃, ν̃) serves as a lower bound to the optimal value of the convex NLP. In this case, we

set the lower bound to LB = max(L(x̃, ν̃), f̂), where f̂ is the lower bound obtained by

BARON’s polyhedral relaxation constructor. Finally, if both the LP and NLP solves fail,

we resort to calculating a simple interval extension of the objective function in order

to obtain a lower bound for the current node.

In this paper, we make use of local NLP solvers for lower bounding only if the

continuous relaxation of the original problem is convex at the current node. More

generally, local NLP solvers can be utilized to optimize nonlinear factorable relaxations

of nonconvex problems of the type considered in [39]. However, these relaxations often

have many more variables and constraints compared to the original problem and are

more prone to solver failures. Designing efficient hybrid schemes for optimizing these

nonlinear factorable relaxations is a subject of future research.

4 Numerical Experiments

The purpose of this section is to demonstrate the computational benefits of the pro-

posed techniques by incorporating them in the branch-and-reduce global solver BARON [40,

44]. To this end, we consider a variety of NLPs and MINLPs from widely-used collec-

tions of test problems: 980 NLPs from PrincetonLib [37], 369 NLPs from GlobalLib [24],

and 250 MINLPs from MINLPLib [14]. These test sets were obtained after eliminating

problems involving trigonometrics, error functions and other expressions that BARON

cannot handle from the original collections. In Table 1, we provide some statistics on

the size of the problems used in our computations in terms of the numbers of con-

straints (m), variables (n), discrete variables (nd), nonzero elements in the constraints

and objective (nz), and nonlinear nonzero elements in the constraints and objective

(nnz). Each test set contains a wide range of nonlinear problems, ranging from uni-

variate optimization problems to problems with more than 20,000 variables, most of

which have a significant nonlinear component.

Throughout this section, all experiments are performed with GAMS 24.0.2 on a 64-

bit Intel Xeon X5650 2.66Ghz processor; all implementations are single-threaded. In

addition, all problems are solved with relative/absolute optimality tolerance of 10−6,

and a CPU time limit of 500 seconds. Other algorithmic parameters are set to the de-

fault settings of the GAMS distribution for all solvers. When comparing the performance

of different algorithms, we call a problem trivial if all algorithms take less than half a

second to solve it to optimality. Denote by fp,s, s ∈ S the feasible solution returned

by solver s upon termination for model p, and let f∗p denote the best feasible solution

among all solvers, i.e., f∗p = mins∈S fp,s. To measure the relative quality of the solution

returned by each algorithm, we define

∆p,s =

{

fp,s − f∗p , if |f∗p | < 1,

(fp,s − f∗p )/|f∗p |, otherwise.
(4)
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In particular, we say that solver s finds the best solution for problem p, if ∆p,s < 10−3.

In addition, we say that problem p is solved to global optimality by global solver s, if

(i) the solver claims optimality upon termination, (ii) the final lower and upper bounds

satisfy our optimality tolerances, and (iii) ∆p,s < 10−3. As we detail in the following,

to perform fair comparisons, we include additional safeguards to detect cases for which

solvers make incorrect optimality claims.

To evaluate and compare the performance of different solvers on our test set, we

make use of performance profiles, as described in [16]. The performance profile of a

solver is a (cumulative) distribution function for a performance metric. Throughout

this section, we use the ratio of the time that an algorithm takes to solve a problem

versus the best time of all algorithms as the performance metric. For the purpose of

constructing performance profiles, by ‘solve’ we imply that the algorithm finds the best

solution among all solvers for a given problem within the time limit. We utilize the

GAMS performance tools [1] to construct all performance profiles.

Table 1 Size statistics for the test set. For each collection, we list the numbers of constraints
(m), variables (n), discrete variables (nd) (for MINLPs), nonzero elements in the constraints
and objective (nz), and nonlinear elements in the constraints and objective (nnz).

(a) 980 NLPs from PrincetonLib

m n nz nnz

minimum 0 1 2 0
first quartile 0 3 7 4
median 3 10 41 14
third quartile 112 492 2347 691
maximum 14001 20201 7970301 120001

(b) 369 NLPs from GlobalLib

m n nz nnz

minimum 0 1 2 0
first quartile 4 5 20 6
median 10 14 62 20
third quartile 76 126 665 442
maximum 26758 19314 128411 31261

(c) 250 MINLPs from MINLPLib

m n nd nz nnz

minimum 0 2 1 3 1
first quartile 10 11 6 52 10
median 63 91 30 338 21
third quartile 269 195 72 1441 127
maximum 24971 23826 10920 106857 61108
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4.1 Impact of proposed relaxation techniques on the performance of BARON

The cut generation and range reduction schemes of Section 2 and the hybrid LP/NLP-

based lower bounding framework of Section 3, are implemented in BARON 12.0. To

demonstrate the impact of these techniques, we will compare BARON 12.0 against the

same version of BARON but with all these techniques disabled. We will refer to the latter

version of the solver as BARON X. Additionally, BARON X will be restricted to utilize

MINOS 5.5 for local search, whereas BARON 12.0 performs dynamic local search using

CONOPT 3 [18], IPOPT 3.9.0 [45], MINOS 5.5 [34], and SNOPT 7.2.4 [23] as local NLP

sub-solvers. Both BARON 12.0 and BARON X use CPLEX 12.4 [26] as the default LP

solver.

To compare the performance of BARON 12.0 and BARON X, we first eliminate from

the test set all problems that are trivial and problems for which both algorithms fail

to return a feasible solution or cannot guarantee global optimality due to numerical

difficulties. Subsequently, for a given problem, we classify the relative performance of

the two algorithms with respect to their computational time, as follows:

(i) Solver A is considered infinitely faster than Solver B if Solver A solves the problem

to global optimality within the time limit, while Solver B fails due to numerical

difficulties or does not return a feasible solution upon termination.

(ii) A solver is considered much faster than another if it is more than 50% faster.

(iv) A solver is considered faster than another if it is faster by less than 50%.

(v) Solution times are considered the same, if they are within 10% of each other.

Comparative statistics for the test set are listed in Table 2. The first line of Table 2 pro-

vides the number and, in parentheses, the percentage of problems for which BARON 12.0

is infinitely faster than BARON X for each test library. The subsequent lines of the table

provide similar statistics based on the classification described above. For more than

50% of the problems, the proposed relaxation techniques lead to significant perfor-

mance improvement. For about one quarter of the problems, BARON X fails, whereas

BARON 12.0 returns a globally optimal solution within the time limit. For the second

quarter of the problems, the proposed techniques reduce the CPU time of the global

solver by at least a factor of two. We observe performance degradations for about

12% of the test problems, most of which are due to incorporating more conservative

cut generation and bounding strategies, as described in Subsection 2.4. In Table 3, we

compare the number of problems solved to global optimality with and without the pro-

posed relaxation techniques. As can be seen, the new relaxations increase the number

of solvable models by 37% for PrincetonLib, 15% for GlobalLib, and 8% for MINLPLib.

Table 2 Effect of proposed relaxation techniques on the performance of BARON for 621 NLPs
and MINLPs from PrincetonLib, GlobalLib, and MINLPLib.

PrincetonLib GlobalLib MINLPLib Total models

BARON 12.0 infinitely faster 129 (32%) 27 (23%) 7 (7%) 163 (26%)
BARON 12.0 much faster 117 (29%) 18 (16%) 23 (23%) 158 (26%)
BARON 12.0 faster 14 (3%) 6 (5%) 5 (5%) 25 (4%)
Solvers perform the same 96 (24%) 51 (44%) 48 (48%) 195 (32%)
BARON X faster 17 (4%) 8 (7%) 8 (8%) 33 (5%)
BARON X much faster 25 (6%) 5 (4%) 8 (8%) 38 (6%)
BARON X infinitely faster 8 (2%) 0 (0%) 1 (1%) 9 (1%)
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Table 3 Number of problems solved to global optimality within 500 seconds, with and without
the proposed relaxation techniques.

Test library BARON 12.0 BARON X

PrincetonLib 726 532
GlobalLib 238 206
MINLPLib 136 126

Total models 1100 864

Next, we investigate the impact of the proposed techniques on hard problems, i.e.,

models that are not solvable by either of the two algorithms within the time limit, while

a feasible solution is returned by at least one of the algorithms upon termination. In

Table 4, we compare the quality of lower and upper bounds of BARON 12.0 and BARON X

after 500 seconds for hard problems from the test set. A solver is considered to provide a

better upper bound (resp. lower bound), if the relative objective value difference (resp.

relative lower bound difference) is greater than δ = 10−3. For objective values (resp.

lower bounds) below one, we use absolute differences. Table 4(a) gives the numbers,

and in parentheses the percentage, of problems for which BARON 12.0 returns a better

solution, the two algorithms return the same solution, and BARON X returns a better

solution for each collection. Table 4(b) provides similar statistics with respect to the

quality of final lower bounds. The results in this table demonstrate that the proposed

convexification methodology has a positive impact on the quality of lower and upper

bounds for hard problems from the three test libraries. Clearly, the proposed techniques

are most beneficial for continuous problems.

Table 4 Relative performance of BARON 12.0 and BARON X for 328 NLPs and MINLPs that
are not solvable to global optimality within 500 seconds.

(a) Quality of best feasible solution

Test library BARON 12.0 better same solutions BARON X better

PrincetonLib 137 (74%) 39 (21%) 9 (5%)
GlobalLib 49 (58%) 29 (34%) 7 (8%)
MINLPLib 29 (50%) 10 (20%) 19 (30%)

Total models 215 (66%) 78 (24%) 35 (10%)

(b) Quality of lower bounds upon termination

Test library BARON 12.0 better same lower bounds BARON X better

PrincetonLib 136 (73%) 29 (16%) 20 (11%)
GlobalLib 43 (51%) 28 (33%) 14 (16%)
MINLPLib 31 (54%) 6 (10%) 21 (36%)

Total models 210 (64%) 64 (20%) 54 (16%)

In Figure 3, we compare the performance of BARON 12.0 and BARON X with respect

to the following factors: (i) execution time, (ii) total number of nodes in the branch-

and-bound tree (iterations), and (iii) maximum number of nodes stored in memory

(memory). Comparisons are performed on nontrivial problems for which neither of the

two algorithms fails due to numerical difficulties and at least one of the algorithms
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finds the global solution within the time limit. As seen in this figure, incorporating the

proposed techniques in BARON results in average reductions of 40% in CPU time, and

35% in number of iterations as well as in maximum number of nodes in memory.
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Fig. 3 Performance of BARON with and without the proposed convexification methodology
for 288 problems from PrincetonLib, GlobalLib, and MINLPlib. In these figures, nontrivial
problems that are solved to global optimality by at least one of the two algorithms are compared
with respect to (a) CPU time, (b) total number of nodes in the branch-and-bound tree, and
(c) maximum number of nodes stored in memory.

In Table 5, we report the percentage of CPU time spent on generating cutting

planes for convex intermediates as well as automatic convexity detection. By ηcut, we

denote the average percentage of time spent on recognition and cut generation for

the expressions described in Section 2, while ηconv denotes the average percentage of

time spent on convexity detection. In addition, the numbers in parentheses denote the

standard deviations from each mean value. As can be seen from this table, on average,

less than one percent of the total time is spent on convexity detection, while the average

time spent on generating cutting planes is slightly higher. For large convex problems

with high-dimensional dense quadratic expressions, convexity detection may take up

to 5 seconds. However, without convexity detection, BARON is not able to solve such

problems within hours. Therefore, a careful time allocation for convexity detection

based on the size and structure of the problem is of crucial importance.

Next, we examine the impact of the hybrid lower-bounding scheme of Section 3

on the performance of BARON for convex problems. In particular, we consider those
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problems whose continuous relaxations are proved to be convex in the first call to the

convexity detector; that is, during preprocessing. In the first line of Table 6, we list the

number of problems in each collection that are not solved to global optimality prior to

the first call to the convexity detector. The second line contains the number of these

problems that are found to be convex during preprocessing. In subsequent lines, we

report the number of convex models that are solved to global optimality by BARON X and

BARON 12.0, respectively. Clearly, employing highly efficient local solvers along with

an examiner facility to test the optimality of the reported solution is very effective for

continuous problems. For convex MINLPs, however, the impact of nonlinear relaxations

is less significant. This is mainly due to the hard combinatorial component of MINLP

models, as we discuss below.

Table 5 Relative computational cost of convexity exploitation operations in BARON.

Test library ηcut (%) ηconv (%)

PrincetonLib 1.50 (5.44) 0.45 (4.45)
GlobalLib 0.87 (1.54) 0.07 (0.41)
MINLPLib 1.87 (6.39) 0.003 (0.02)

Table 6 BARON’s performance for convex NLPs and MINLPs.

Number of problems PrincetonLib GlobalLib MINLPLib

nontrivial models 740 337 232
convex models 250 30 86
solved by BARON X 137 17 43
solved by BARON 12.0 237 30 47

4.2 Impact of LP/NLP sub-solvers on the performance of BARON

Global solvers utilize LP/MIP and local NLP solvers at various stages during the

global search. For instance, BARON uses LP codes for solving polyhedral relaxations of

nonconvex problems as well as reducing the domain of variables via probing techniques

(see [43] for details). Local NLP solvers are crucial for finding good feasible solutions,

and they are used by BARON 12.0 to construct hybrid LP/NLP relaxations. In this

section, we examine the impact of various LP and local NLP solvers on the performance

of BARON.

By default, GAMS/BARON uses the commercial code CPLEX [26] as the LP solver.

Nonetheless, the Coin-OR LP solver CLP [20], is competitive with CPLEX on a wide range

of problem types. Figure 4 shows the performance profiles of BARON with CPLEX and CLP

as its LP solvers. As can be seen from this figure, performance of the two algorithms

is similar for continuous models while, for MINLP models, CPLEX outperforms CLP by

a relatively small margin. This difference could be due the fact that CPLEX exploits

special structures that are often encountered in combinatorial optimization problems.
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Fig. 4 Performance profiles of BARON 12.0 using CPLEX as the LP solver (denoted by BARCPLEX)
versus BARON 12.0 using CLP as the LP solver (denoted by BARCLP) for problems from
PrincetonLib, GlobalLib, and MINLPLib.

In general, however, we conclude that CPLEX and CLP are equally effective when used

under BARON to solve BARON’s LP relaxations.

Next, we examine the impact of various local solvers on the performance of BARON.

To this end, we consider the following cases: (i) BARMINOS: BARON with MINOS 5.5 [34]

as the local solver, (ii) BARSNOPT: BARON with SNOPT 7.2.4 [23] as the local solver, (iii)

BARCONOPT: BARON with CONOPT 3.0 [18] as the local solver, (iv) BARIPOPT: BARON with

CoinIPOPT 3.9.0 [45] as the local solver, and (v) BARDyn: BARON with dynamic local

solver selection strategy, which employs all aforementioned local solvers, as described

in Subsection 3.2. Performance profiles for different local search strategies are shown

in Figure 5. In Table 7, for each algorithm, we report the percentage of problems for

which (i) global optimality is guaranteed within the time limit (optimal), (ii) the best

solution is found among all solvers (best solution), (iii) a feasible solution is returned

upon termination (feasible), and (iv) no feasible point is returned after 500 seconds due

to solver failure or numerical difficulties (failure). While BARIPOPT is often slower than

other solvers for all three collections, the choice of the best local solver varies depend-

ing on the problem type. For continuous models from PrincetonLib and GlobalLib,

BARSNOPT and BARMINOS perform similarly, and they are outperformed by BARCONOPT.

However, for MINLPs, we observe a notable performance degradation for BARCONOPT,

while BARMINOS and BARSNOPT represent the best solvers. More importantly, it can be
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seen that BARDyn is competitive with and even better than the best static configura-

tions for all test libraries. Comparing the results provided in Tables 2, 3, and 7, we find

that the choice of LP/NLP solvers does not have a critical impact on the performance

of BARON. For the most part, the superior performance of BARON 12.0 is due to the

lower-bounding facilities proposed in this paper.
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Fig. 5 Impact of various local NLP solvers on the performance of BARON for problems from
PrincetonLib, GlobalLib and, MINLPLib

Finally, we discuss the failure rate of LP and local NLP solvers in the branch-and-

bound tree. As we alluded to in Section 2.4, both LP and local NLP solvers occasionally

make false optimality claims. Hence, accepting their solution without verifying opti-

mality may deteriorate the performance of global solvers. Figure 6 shows LP/NLP

subsolver failure rates in the branch-and-bound tree, on a total number of 1599 NLPs

and MINLPs from PrincetonLib, GlobalLib, and MINLPLib. All experiments are done

with the default version of BARON 12.0, which utilizes CPLEX as the LP solver and dy-

namic local solver selection to optimize nonlinear sub-problems. By failure, we imply

incorrect infeasibility and optimality claims for LP models, and incorrect local opti-

mality claims for NLP sub-solvers. In particular, we say that a local solver fails if it

declares the problem as locally optimal, while the reported solution does not pass the

KKT test. At the time of this writing, BARON discards all infeasibility claims made by

local NLP solvers. Verifying the infeasibility of convex NLPs requires the solution of

certain auxiliary problems, and is the subject of future research. The distribution of

the total number of LP/NLP calls over which the failure test is conducted is shown in
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Table 7 Comparative statistics for the impact of various local NLP solvers on the performance
of BARON.

(a) 980 NLPs from PrincetonLib

% problems BARDyn BARMINOS BARSNOPT BARCONOPT BARIPOPT

optimal 74% 70% 70% 73% 67%
best solution 93% 88% 89% 94% 93%
feasible 98% 96% 97% 97% 97%
failure 2% 4% 3% 3% 3%

(b) 369 NLPs from GlobalLib

% problems BARDyn BARMINOS BARSNOPT BARCONOPT BARIPOPT

optimal 64% 63% 62% 64% 60%
best solution 92% 88% 87% 95% 91%
feasible 96% 95% 95% 97% 95%
failure 4% 5% 5% 3% 5%

(c) 250 MINLPs from MINLPLib

% problems BARDyn BARMINOS BARSNOPT BARCONOPT BARIPOPT

optimal 54% 54% 54% 54% 51%
best solution 70% 68% 68% 63% 55%
feasible 80% 78% 76% 71% 63%
failure 20% 22% 24% 29% 37%

Figure 6(a). In Figures 6(b)-6(c), we have eliminated those models for which no failure

has been reported. For 63% (resp. 67%) of the models, the LP solver (resp. dynamic

local search) does not make incorrect claims. For the remaining problems, the failure

rate of CPLEX is mostly under 5%, while, for a few models, the LP solver makes incor-

rect optimality/infeasiblity claims for a high percentage of LP sub-problems. For local

solvers, however, the failure rate is more evenly distributed, highlighting the impor-

tance of optimality verification steps. It is important to note that the failure rates of

LP vs. NLP solvers should be interpreted carefully as, on overage, the number of LP

calls is significantly larger than the number of NLP calls in BARON’s search tree (see

Figure 6(a)).

4.3 Comparisons with other local and global solvers

In this section, we provide extensive comparisons with several state-of-the-art local and

global algorithms. We consider the following solvers:

(i) Local NLP sovlers: CONOPT 3, IPOPT 3.9.0, MINOS 5.51, SNOPT 7.2.4.

(ii) Convex MINLP solvers: AlphaECP 2.09.02 [46], DICOPT [19], SBB [3]; all using CPLEX

as the LP solver and CONOPT as the NLP solver.

(iii) Global solvers: Couenne 0.4 with CLP as the LP solver and IPOPT as the NLP solver,

Lindo API v 7.0.1 with CONOPT as the NLP solver, SCIP 3.0.1 with CPLEX as the

LP solver and IPOPT as the NLP solver.

We should remark that GAMS/IPOPT, which we use for the following comparisons, bene-

fits from second-order derivatives and commercial factorization codes, neither of which

are available in the version of CoinIPOPT that is incorporated by BARON as a local solver.
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Fig. 6 Failure rate of LP and local NLP sub-solvers in BARON’s search tree for 1599 NLPs and
MINLPs from PrincetonLib, GlobalLib, and MINLPLib. In Figure 6(a), blue bars represent the
distribution of LP calls, while red bars represent the distribution of NLP calls. In Figures 6(b)
and 6(c), we have eliminated those models for which no sub-solver failure was diagnosed in
the branch-and-bound tree by BARON’s examiner.

To conduct a fair comparison, optimal solutions returned by all solvers are further

tested using GAMS/EXAMINER [2]. The optimality checks done in EXAMINER are first-order

optimality conditions. EXAMINER takes the solution reported by the solver and tests for

primal feasibility, dual feasibility, and complementarity slackness. While such a test

is not sufficient to verify optimality for nonconvex problems, as we will see shortly,

EXAMINER is an effective tool to identify many incorrect optimality claims made by

different solvers. We employ EXAMINER’s first-order optimality test for BARON and local

NLP solvers. However, since SCIP and Couenne do not return optimal dual values

upon termination, we merely use EXAMINER’s primal feasibility check for SCIP, Couenne,

LindoGlobal, and all convex MINLP solvers. In addition, we set EXAMINER’s feasibility

tolerance to 10−5, which is larger than the default value for the feasibility tolerance of

the solvers under consideration.

Performance profiles of local and global solvers for the 980 NLPs from PrincetonLib,

and the 369 NLPs from GlobalLib are shown in Figures 7 and 8, respectively. In com-

parison to other global solvers, BARON is strongly dominant for both test libraries:

for all performance ratios, BARON is ahead of the next best global solver by a 25%

margin for PrincetonLib, and a 20% margin for GlobalLib. However, when local

solvers are included in the solver pool, BARON is outperformed by CONOPT and IPOPT for
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Fig. 7 Performance profiles of local and global solvers for 980 NLPs from PrincetonLib

PrincetonLib, as this collection includes many large-scale problems for which BARON

is not efficient at this point. For the GlobalLib collection, BARON outperforms CONOPT

quickly, but requires about two orders of magnitude more CPU time to overtake IPOPT.

It is interesting to note that, for both collections, BARON performs better than MINOS

and SNOPT, both of which are highly efficient local solvers. This success is in part due

to inability of local solvers to find global solutions of nonconvex problems and, more

importantly, demonstrates the remarkable progress of global optimization algorithms

and solvers over the past decade; BARON is capable of building on local solvers, such

as MINOS and SNOPT, in ways that outperform the capabilities of each local solver in

isolation.

Performance profiles of convex MINLPs and global solvers for MINLPLib are de-

picted in Figure 9. For this test set, SCIP dominates all other solvers, thanks to its

MIP technologies. This result is not surprising since, at this stage, BARON does not

include standard MIP features, such as cutting planes, heuristics, and branching rules

tailored to integer programs. To confirm this hypothesis, next, we relax the integrality

requirements for all problems in MINLPLib, and obtain a collection of 250 NLPs, which

we denote by RMINLPLib. Figure 10 shows the performance profiles of local and global

solvers for RMINLPLib, where again BARON is by far ahead of all other global solvers.

The relative performance of BARON and SCIP for MINLPLib and RMINLPLib highlights

the importance of incorporating standard MIP techniques in MINLP solvers.
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Fig. 8 Performance profiles of local and global solvers for 369 NLPs from GlobalLib

In Table 8, we compare all solvers with respect to their solution quality. For each

solver, we report the percentage of problems for which (i) global optimality is proved

within the time limit (globally optimal), (ii) the best solution is found among all solvers

(best solution), (iii) a feasible solution is returned upon termination (feasible), (iv) no

feasible point is returned after 500 seconds due to the solver failure or numerical diffi-

culties (failure), and (v) the reported solution does not pass EXAMINER’s test (examiner).

By globally optimal, we refer to the cases for which a global solver (i) declares them

as globally optimal and passes EXAMINER’s test, (ii) finds the best solution among all

solvers and, (iii) closes the relaxation gap as defined by our optimality tolerances. As

can be seen from Table 8, BARON is the only global solver for which no EXAMINER fail-

ure has been reported over the entire test set. LINDOGlobal takes the second place

with a few incorrect claims, while SCIP and Couenne return infeasible solutions, for

around 5% and 10% of the problems, respectively. In addition, we observe a high rate

of false optimality claims for MINOS and SNOPT, while IPOPT and CONOPT are more reli-

able solvers. For continuous models, the lowest rate of solver failure belongs to BARON,

followed by IPOPT and CONOPT, while other local and global solvers fail for about 10-20

percent of the models. For MINLPs, SCIP has the lowest rate of solver failure, followed

by AlphaECP and BARON. LINDOGlobal has the highest number of solver failures for all

three collections. Overall, we conclude that, for continuous models, BARON is the most

robust solver, while CONOPT and IPOPT are often the fastest solvers, especially for large-
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Fig. 9 Performance profiles of local and global solvers for 250 MINLPs from MINlPLib

scale problems. For mixed-integer models, SCIP is ahead of all other MINLP solvers,

local and global ones. Over the entire test test, BARON is ahead of all other global solvers

by a 20% margin as seen in Figure 11.

5 Conclusions

This paper demonstrates that convexity detection and exploitation is a powerful tool

in global optimization of NLPs and MINLPs. We extended a widely-used polyhedral

relaxation framework, by including cut generators for a variety of convex functions

that appear frequently in applications. To capitalize on state-of-the-art in nonlinear

programming, we developed a highly efficient convexity detector and proposed a hy-

brid LP/NLP-based lower bounding scheme that alternates between polyhedral and

nonlinear relaxations at every node in the branch-and-bound tree. Results show that

the proposed techniques significantly accelerate the branch-and-bound solver BARON

and enable it to solve many more problems to global optimality.

References

1. GAMS Performance tools. Available at www.gamsworld.org/performance/tools.htm.



34

10
0

10
1

10
2

10
350

60

70

80

90

100

Time factor

P
er

ce
nt

 o
f m

od
el

s 
so

lv
ed

 

 

BARON
CONOPT
Couenne
LINDOGlobal
MINOS
SNOPT
SCIP
IPOPT
Can solve

(a) local and global solvers

10
0

10
1

10
2

10
350

60

70

80

90

100

Time factor

P
er

ce
nt

 o
f m

od
el

s 
so

lv
ed

 

 

BARON

Couenne

LINDOGlobal

SCIP

Can solve

(b) global solvers

Fig. 10 Performance profiles of local and global solvers for 250 NLPs from RMINLP

10
0

10
1

10
2

10
340

50

60

70

80

90

100

Time factor

P
er

ce
nt

 o
f m

od
el

s 
so

lv
ed

 

 

BARON 

Couenne

LINDOGlobal

SCIP

Can solve 

Fig. 11 Performance profiles of global solvers for the entire test set consisting of 1599 NLPs
and MINLPs (980 NLPs from PrincetonLib, 369 NLPs from GlobalLib and, 250 MINLPs
from MINLPLib).



35

Table 8 Comparative statistics for local and global solvers.

(a) 980 NLPs from PrincetonLib

% problems BARON Couenne Lindo SCIP MINOS SNOPT CONOPT IPOPT

globally optimal 75% 48% 59% 54% – – – –
best solution 94% 73% 74% 74% 69% 67% 86% 83%
feasible 99% 78% 80% 84% 74% 74% 94% 91%
failure 1% 14% 20% 12% 14% 13% 4% 5%
examiner 0% 8% 0% 4% 12% 13% 2% 4%

(b) 369 NLPs from GlobalLib

% problems BARON Couenne Lindo SCIP MINOS SNOPT CONOPT IPOPT

globally optimal 65% 43% 58% 42% – – – –
best solution 93% 72% 77% 68% 52% 47% 66% 70%
feasible 96% 76% 82% 75% 75% 69% 90% 89%
failure 4% 14% 17% 16% 14% 11% 9% 7%
examiner 0% 10% 1% 9% 11% 20% 1% 4%

(c) 250 MINLPs from MINLPLib

% problems BARON Couenne Lindo SCIP DICOPT SBB AlphaECP

globally optimal 53% 43% 43% 54% – – –
best solution 62% 48% 52% 69% 36% 54% 59%
feasible 78% 65% 66% 84% 58% 66% 84%
failure 20% 24% 31% 10% 40% 34% 15%
examiner 0% 12% 3% 6% 2% 0% 1%

2. GAMS/EXAMINER, User’s Manual. Available at www.gams.com/dd/docs/solvers/

examiner.pdf.
3. GAMS/SBB, User’s Manual. Available at www.gams.com/dd/docs/solvers/sbb.pdf.
4. A. A. Ahmadi, A. Olshevsky, P. A. Parrilo, and J. N. Tsitsiklis. NP-hardness of decid-

ing convexity of quartic polynomials and related problems. Mathematical Programming,
137:453–476, 2013.

5. M. Avriel, W. E. Diewert, S. Schaible, and I. Zang. Generalized concavity. Plenum Press,
1988.

6. X. Bao. Automatic convexity detection for global optimization. Master’s thesis, Depart-
ment of Chemical Engineering, University of Illinois at Urbana-Champaign, 2007.

7. X. Bao, A. Khajavirad, N. V. Sahinidis, and M. Tawarmalani. Global optimization of
nonconvex problems with multilinear intermediates. Mathematical Programming Compu-
tation, submitted, 2012.

8. E. M. L. Beale and J. J. H. Forrest. Global optimization using special ordered sets.
Mathematical Programming, 10:52–69, 1976.

9. E. M. L. Beale and J. A. Tomlin. Special facilities in a general mathematical programming
system for nonconvex problems using ordered sets of variables. In J. Lawrence (ed.),
Proceedings of the Fifth International Conference on Operational Research, Tavistock
Publications, London, pages 447–454, 1970.

10. P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wächter. Branching and bounds tightening
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