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On the Capacity of Memoryless Rewritable Storage
Channels

Luis A. Lastras-Montaño, Michele M. Franceschini, ThomasMittelholzer, Mayank Sharma

Abstract

A significant number of modern storage technologies, when written to, exhibit substantial variability in the outcomes of a
write action. It is possible to mitigate the effect of the write uncertainty through the use of a feedback loop that rewrites the
memory whenever judged necessary, in effect reshaping the write noise. This scheme highlights a trade-off between the storage
capacity of the memory and the cost of writing to it, measuredfor example in the number of rewrites. The authors have developed
the model of arewritable channel to provide an explicit form for this trade-off and study other performance characteristics of
such memories.

In this paper, we describe some initial results on the information-theoretic analysis of the rewritable channel. We first consider
the problem of determining the capacity of this channel withinput cost constraints, and obtain a variety of results fromwhich we
extract insights that we believe are of value to memory designers. Our results include an upper bound on capacity of the form
log(Γκ) whereΓ is a constant that can be easily calculated from the channel’s statistics andκ is an average cost parameter. We also
provide a lower bound on capacity with a similar form. We analyze the particular case of uniform write noise in detail, obtaining
a closed form expression for the capacity-cost trade-off for all possible cost parameters. We explore this formula from thecapacity
per unit cost perspective and establish that in order to achieve optimal energy and memory-wear per bit, it is sometimes strictly
better to take advantage of the rewriting capability as opposed to writing only once; this observation has significant practical
implications. We also include a discussion of the relevanceof our work to three real emerging memory technologies.

I. Introduction

Memory technology developments have delivered to us media where uncertainty during the process of writing to the memory
is a major consideration. To attack the problem of write uncertainty, memory designers have adopted the strategy of using
feedback information gathered during the memory writing procedure. Obtaining the feedback information has an associated
cost, and the memory designer’s job is to carefully trade-off this cost to obtain desired memory capacity, performance, endurance
and energy usage attributes.

Examples of memory technologies with a write process that has outcomes only statistically determined include phase change
memory (PCM, [6]), spin-transfer torque magnetic RAM (STT-RAM, [7]) and, in general, various kinds of resistive RAM
(RRAM, see for example [8], [9], [10]). The most prominent example of such a memory technology is flash, an enormously
successful medium that relies heavily on feedback to attackwrite uncertainty even when only a single bit per memory cellis
to be written.

In this article we aim to provide a few basic elements for the construction of a Shannon theory that is aimed at understanding
write uncertainty in memories. Inspired by Shannon’s own approach to reliable communication, we adopt a minimalist approach
which focuses on a class of simple memory models and write controllers with the goal of establishing a foundation for later
analysis of models of more relevance to real memory technologies. As a result of this methodology, our model and results
will not be directly applicable to flash; nonetheless we willargue that despite our model’s simplicity, we are able to partially
capture some elements of other memory technologies such as PCM and STT-RAM.

Our work will illustrate a general trend in the class of rewritable memories and class of rewrite techniques that we consider.
For analog media, this trend can be summarized by saying thatstorage capacity increases approximately logarithmically as a
function of the effort spent writing to the memory. This result holds up with reasonable generality; as a matter of fact in some
cases it holds exactly.

Our first result is an upper bound on storage capacity of the form

C(κ) ≤ log(Γκ),

where κ measures the cost, in average number of write attempts, to write to the memory and whereΓ is a parameter that
depends on the shape of the noise distribution.

To complement this upper bound, we prove a lower bound based on a novel application of the principle of superposition
coding, and the associated decoding by interference cancellation, to memories. This result states that forκ1 > κ0,

C(κ1) ≥ C(κ0) + log

(

κ1

κ0

)

.

Some of the contents of this paper have appeared previously in conferences; see the references [1], [2], [3], [4], [5].
Luis A. Lastras-Montaño, Michele M. Franceschini and Mayank Sharma are with the IBM TJ Watson Research Center
Thomas Mittelholzer is with the IBM Zurich Research Laboratory
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Fig. 1. Our model for rewriting in one memory cell. The statistical relation between the outputYL and the input (X,D) is called the iterated channel.

In our work κ0 = 1 corresponds to the classical notion of channel capacity with no rewrites (write only once) and therefore the
result gives a lower bound on the rewrite channel capacity for any channel for which we know the classical storage capacity.

We also consider the specific case where a memory cell introduces noise that is uniformly distributed in some interval. In
this case, we are able to obtain a closed form expression for channel capacity that shows the existence of a ”critical cost”
beyond which capacity grows logarithmically but below which capacity grows slightly faster than a logarithm. For this model,
we also show that sometimes it is possible to improve memory density and the cost per written bit simultaneously. In these
settings, rewriting can be used in a memory not only as a tool to increase memory density, but also to reduce the cost of
writing per user bit.

We close the introduction by giving a description of other works which are of relevance to our work, and a description of
the organization of the article.

A. Related work

The information-theoretic study of the capacity/cost trade-off in memories created by write uncertainty appears to be
unexplored prior to the article [1]. The present journal article in essence subsumes the results presented in [1], [2], [3],
[4], [5] with the exception that the lower bound on capacity for the data-dependent model in [2] is not covered in detail in
our results. The special case of two writes can be studied using the concept of channels with action dependent states which
was introduced in [11]; in fact in this article the author explicitly gives results for a two write rewritable binary symmetric
channel with possible corrupted feedback. Furthermore, the results in [11] could conceivably be used to study other two-stage
versions of useful problems with physical relevance to rewritable memories. Other explorations of this subject treated the
case of maximum number of iterations [12], [13], the discrete memoryless case and the case of noisy observations [13], the
problem of computing rewritable channel capacity with maximum number of iterations using an efficient dynamic programming
algorithm [14] and the problem of hidden states in rewritable channels for the uniform noise case [15].

In his article on zero error communication systems [16], Shannon studied what is now considered the classical notion of
feedback is from a receiver back to the sender, proving the well known result that feedback does not increase channel capacity.
Both physically and mathematically, the kind of feedback weconsider is different from the classical notion of feedback, even
if one were to assign a cost to the feedback. The essential difference is that in classical feedback, the receiver has access to
all the data that is being sent by the transmitter, while in our model, overwritten data never reaches a receiver.

An early work treating the type of tradeoff that we explore in our article can be found in [17], where Cassutto et. al. introduced
novel coding techniques for asymmetric errors that can be used for creating a trade-off between effective information density
in a memory and the cost of writing to it. Our work is focused onthe information-theoretic aspects of this type of trade-off,
with an emphasis the simplest models of write uncertainty for which we can make non-trivial assertions.

B. Organization of the article

In Section II we lay the basic concepts for the study of i.i.d.rewritable channels with statistically independent writeoutcomes,
including the definition of the capacity of the rewritable channel under an average number of write iterations constraint. The
first goal of Section III is to give an information theoretic expression for such capacity, which is found in Theorem 1. This
expression serves as a foundation for the rest of the article. Also in Section III we introduce theuniform noise rewritable
channel model, which can be regarded as the simplest continuous input/output rewritable channel that one might consider.
Some simple assertions about the capacity of this storage channel are made, with a full treatment of it deferred to Section VI.

The article then follows with a general upper bound on capacity (Section IV) and a general lower bound on capacity (Section
V). In both of these sections as well as in Section VI, we have adopted the convention of stating the main theorem and then
immediately holding a discussion about the implications ofthe theorem, deferring the actual proof to a later subsection. During
such discussions, we use examples derived from the uniform noise rewritable channel or sometimes the Gaussian rewritable
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channel; in fact the reader will see that the insights gathered during the discussions in Section IV and Section V for the uniform
noise case are useful in obtaining the full solution in Section VI.

To connect the results of this article to real memory technologies, we address two key issues. The first issue is to document
whether write uncertainty is indeed a major consideration in memories. The second issue is whether the memory model that
we are considering captures an important aspect of a real memory technology. We address these issues in Section VIII; a
preview is that the former is easy to establish and that we have partial success in the latter.

Our conclusions can be found in Section IX.

II. M emory model

We propose a model of a memory that consists of discrete memory parts which we call cells. In response to a stimulus
x ∈ X, a cell takes on a valuey ∈ Y according to a statistical relationµY |X(y|x). The alphabetsX andY will be subsets of the
real line in the particular examples examined in detail in this article, but of course can be modified to fit particular storage
medium characteristics. We refer the reader to Section VIIIfor a short introduction on a selection of real memory technologies.

We shall be interested in storing information into a group ofn cells. The role of the write controller is to accept a message
U ∈ {1, · · · , 2nR}, whereR > 0 is a rate parameter, to be encoded in the memory and to provide input signals to be applied to
the memory so that a future requester can retrieve the intended message with very high probability.

The write controller plays a role similar to that of channel encoder in traditional transmission schemes. Nonetheless,an
extra degree of freedom is allowed: the write controller mayread after writing and decide to write again an arbitrary subset
of the n cells. Physically this increases the time for writing and also increases the amount of energy spent for encoding. For
memories that degrade after a large number of write/read cycles, the lifetime of the memory may also be affected. Nonetheless,
a write controller may find it advantageous to exercise the rewrite ability in order to increase the storage capacity and/or reduce
decoding error rates for the underlying memory system.

The cells are statistically independent from each other (spatial independence) and the outcome of the writing in one cell is
statistically independent from the prior history of that cell - we call that temporal independence. Furthermore, all parameters
of the statistical cell behavior are assumed to be known. As previewed at the beginning of this section, we will follow the
convention that upper case letters denote random variables, and lower case letters denote realizations of random variables. We
denote vectors withn entries withbold letters. Individual entries in a vector are denoted using the same letter without the
bold font and with a subscript denoting the index within the vector. We will use an superscript (as inY i) to denote a time
index. Suppose thatQA|B is some conditional probability law for random variables taking on values in an alphabetA where

the conditioning random variable is in an alphabetB. The notationA
QA|B←− B definesA to be a random vector withn entries,

each entry obtained by passing the corresponding entry inB through the channelQA|B in a stochastically independent manner.
A write process is associated with a cost, generally relatedto the number of iterations required to complete it. In this article,

we will place a limit on the average number of iterations as this is the setting that is easiest to analyze, and also has physical
significance; for example one expects the average number of iterations to be related to energy consumption during a write
process. In practice, we will generally want to additionally place a limit on the maximum number of iterations since in some
settings the time for encoding a message into then cells is dominated by the worst time across all cells; this problem was
addressed in [12].

Formally, a write controller is given by

1) A stimuli generator function

f : U → Xn

whereU = {1, ..., 2nR} is the set of possible messages to be encoded in the memory, and
2) a stopping criterion for each cellj ∈ {1, · · · , n} represented by the functionD j : U → 2Y, where 2Y represents the power

set ofY.

We assume that every write is followed by a read. In what amounts to a significant specialization in our work, we assume
in our article that the first action of a write controller is towrite to all cells; one alternative is to allow a read before the first
write which can affect what and which cells we subsequently write to. The latteris an interesting case that leads to a problem
with additional richness; we will delay discussion of this to subsequent publications. We assume that alln cells are written at
least once; if there is a prior agreement between encoder anddecoder to not use a subset of the cells at all, then we regard
that as a problem with a “smallern”.

We assume that the messageU ∈ U to be encoded in the memory is uniformly distributed overU. The write process is
defined by

X = f (U)

Yi µY |X←− X
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for time indicesi = 1, 2, · · · , and whereYi is statistically independent fromYk conditional onX, if i , k. The stopping criterion
D j(U) ( j ∈ {1, · · · , n}) is used to determine when it is that a cellj has an acceptable content,after the input stimulus is applied
and the resulting contents are observed through a read operation. Define the stopping time for thejth cell as

L j = min{i ≥ 1 : Y i
j ∈ D j(U)}.

whereY i
j denotes thejth entry of the vectorYi.

Physically, once a cell has met its stopping condition, the write controller will cease writing or reading to that cell. In a
situation in which all cells which need to be written to in anygiven iteration are written at the same time, the write controller
finishes the entire write operation at time max1≤ j≤n L j. The content of the cells after writing is then given byYL1

1 · · ·Y
Ln
n .

Assuming that each write attempt has cost equal to one, the average cost associated with this write controller is given by

1
n

n
∑

j=1

EL j. (1)

In this article we will wish to place an upper constraint on this average cost and we shall use the letterκ to denote the cost
value of this constraint. As we discussed earlier, other cost metrics may be employed; we choose the one above on the basis
of simplicity and relevance as the average is simultaneously suggestive of energy consumed and wear due to rewriting in
memories. The reading mechanism in the memory is given by a decoding functionh : Yn → {1, · · · , 2nR}.

The probability of error of this write controller is given by

P(h(YL1
1 · · ·Y

Ln
n ) , U).

We say that the rateR at a given costκ is achievable if for everyǫ > 0 there is a write controller with a stimuli generator
function f and read mechanismg with rateR for a sufficiently large number of cellsn, such that

P(h(YL1
1 · · ·Y

Ln
n ) , U) ≤ ǫ, 1

n

n
∑

j=1

EL j ≤ κ.

The largest suchR for a fixed costκ is the capacity of this rewritable storage channel and we usethe notationC(κ) to denote
it.

In real memories there are many other effects that can be taken into account. We list some of them below:

• Input stimuli affect an internal physical state, which in turn may only be observable indirectly through a statistical or
deterministic mechanism (see Weissman [11] and Bunte, Lapidoth [13] for a treatment of noisy reads),

• The type of stimulus one can apply and the change in state due to an input stimulus can be a function of the current state
of the cell.

• There could be parameters of a cell that are unknown to the writing mechanism at the beginning of the writing process
but which can be learned during the writing process.

• Writing to a cell can disturb the contents of other cells. Similarly, write noise can be correlated.
• Reading before starting the writing can be taken advantage of.
• The memory is also subject to noise unrelated to writing.

Each memory technology will exhibit some combination of theissues above to various degrees of severity.

III. A first basic analysis

For the type of writing controllers considered in this article, obtaining a generic information-theoretic expressionfor storage
capacity is elementary given the well established notion ofchannel capacity with input cost constraints. In this theory of
channel capacity, given a channelQB|A there is an input symbol cost functionc(a). A codeworda1, · · · , an that is input into
n independent copies of this channel has associated costn−1 ∑n

j=1 c(a j). We can then ask the question: what is the maximum
amount of information that can be transmitted over the channel QB|A with unbounded block length and assuming we want the
average cost of the codewords used in the code to be less than some valueκ? The answer is given by

max
A:Ec(A)≤κ

I(A; B)

whereB is the result of passing the random variableA throughQB|A (see for example [18]).
In order to view our problem in the context above, we set the cost function to be

c(x, d) =
1

µY |X (d|x)
.

Note that

c(X j,D j(U)) =
1

µY |X (D j(U)|X j)
= E

[

L j|X j,D j(U)
]
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and thus the average cost of the codewords is, as measured by the functionc(·), equal to

E

















1
n

n
∑

j=1

c(X j,D j(U))

















=
1
n

n
∑

j=1

EL j

which is precisely the average cost of the write controller in (1).
Having identified a suitable candidate for the cost function, in order to complete the association to channel capacity with

input cost constraints we focus on the notion of theiterated channel (see Figure 1), which is a single cell’s view of the process
of writing in a rewritable channel. The iterated channel hasinputsX andD, and a single outputYL. WhenX andD are input,
the signalX is applied to a cell as many times as needed until the output ofthe cell falls insideD. The random variableL
denotes the number of iterations until this happens, andYL is then the output of the cell. Note that 1/µY |X(d|x) is the expected
number of iterations conditional onX = x and D = d being the inputs and thusEL = E

[

1/µY |X(D|X)
]

.
At this point it should be clear that the iterated channel canbe thought of as a classical channel with inputs associated with

a cost. In light of the discussion above, we have arrived to the following result:
Theorem 1: The capacity of the rewritable channel with statistically independent memory cells and with memoryless write

outcomes governed by a lawµY |X is given by

C(κ) = sup
X,D:E[1/µY |X (D|X)]≤κ

I(X,D; YL), (2)

whereX is a random variable taking values on the alphabetX, D is a random subset ofY andYL is the output of the iterated
channel implied byµY |X (·|·). �

From now onwards, we will use the symbolsX and D and YL to denotesingle letter random entities that will be used in
entropy and mutual information expressions such as that onein (2), in contrast to the discussion in Section II where theywere
denoting, using appropriate subindices, specific quantities of a actual writing mechanism, as Theorem 1 ensures a connection
between the analysis of single letter expressions and actual rewriting techniques for rewritable channels.

The remainder of the paper can be seen as a series of attempts to extract insights from Theorem 1 that we hope have value
for practitioners or for further investigation of more elaborate information theoretic models. A first such attempt follows, where
we investigate what may be regarded as the simplest continuous input/output alphabet rewritable channel.

A. The uniform noise model

Consider the i.i.d. uniform noise model with average cost constraint. We assume thatY = [−a/2, 1+a/2] and thatX = [0, 1],
wherea is a positive real number (without any limitations on its magnitude) whose role will be evident shortly. We assume
thatµY |X is such that during the cell operationYi = x +Wi whereWi is a random variable uniformly distributed in the interval
[−a/2, a/2]. Then we have

Theorem 2: For the i.i.d. uniform noise model with average cost constraint κ ≥ 1,

log

⌊

1+ a
a

κ

⌋

≤ C(κ) ≤ log

(

1+ a
a

κ

)

. (3)

Proof. For the upper bound, we start from Theorem 1. Let∆ = D ∩ [X − a/2, X + a/2]. The significance of∆ is that it is
the effective stopping criterion, since given an inputX, one may only reach values in the interval [X − a/2, X + a/2]. Write
I(X,D; YL) = h(YL) − h(YL|X,D). First note thath(YL) ≤ log(1+ a). Next, using Jensen’s inequality, we write

h(YL|X,D) = E log |∆|

= −E

[

log
1
|∆|

]

≥ − logE

[

1
|∆|

]

≥ − log(κ/a), (4)

where|∆| denotes the total length of the subset of the real line∆; this immediately implies the upper bound.
The basic idea for the lower bound is to use rewrites for shaping the noise to be uniformly distributed with a smaller range.

To this end, let 0< b < a. We construct fromY disjoint open intervals each of lengthb. Then one can obtain a cell storage
capacity of log⌊ 1+a

b ⌋ bits by selecting as input the center of any of the⌊ 1+a
b ⌋ intervals1, and then attempting as many writes

as necessary in order to fall within the desired interval of lengthb. The average number of iterations is thena/b; one then

1An adjustment to this description is needed at the boundaries.
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simply setsb so thata/b = κ. �

In Section VI we explore the i.i.d. uniform noise model in more detail, giving an exact expression for the capacity/cost
function. As we will see there, it turns out that there is a ”critical cost” κ0 ≥ 1 dependent on the value ofa such that for all
κ > κ0, the upper bound in (3) is strictly tight. Furthermore, the same upper bound is not tight forκ < κ0, assuming thatκ0 > 1.

IV. A general capacity upper bound

In this section, we give an upper bound on capacity that depends on a single statistic computed from the cell’s noise
distribution. We will assume for this section that there exists a densityfY |X such that for everyx ∈ X, y ∈ Y,

µY |X ((−∞, y]|x) =
∫ y

−∞
fY |X (ξ|x)dξ.

Define the functionfsup : Y → [0,∞) as

fsup(y) = sup
x∈X

fY |X (y|x). (5)

and letDKL(A‖B) denote the Kullback-Leibler divergence between the distributions of the underlying random variablesA and
B. Our main result in here is given by

Theorem 3: For a given i.i.d. rewritable channel with write noise conditional density fY |X , assume that

Γ
∆
=

∫

Y
fsup(y)dλ(y) < +∞

whereλ(·) denotes the Lebesgue measure. LetYsup be a generic random variable distributed according toΓ−1 fsup(y). Then

C(κ) ≤ log(Γκ) − min
X,D:E[1/µY |X (D|X)]≤κ

DKL

(

YL ‖ Ysup

)

whereX,D, L andYL are defined in the discussion preceding Equation (2). �

The proof of this result is deferred to Subsection IV-B. Since divergence is always non-negative, as a corollary of the above
we have, for the same conditions as in Theorem 3:

Corollary 1: C(κ) ≤ log(Γκ) with equality if and only ifYL = Ysup almost everywhere. �

This corollary is useful in that it does not require an optimization to give an interesting upper bound, and it is sometimes tight
for the uniform noise case.

A. Discussion

As an example, note that for the uniform noise model,fsup(y) = 1/a and |Y| = 1 + a. Therefore,Γ = (1 + a)/a and we
immediately obtain

C(κ) ≤ log

(

1+ a
a

κ

)

which matches the result in (3). In Section VI, we further analyze the uniform noise case and obtain an exact result for rewritable
storage capacity. The key for the upper bound will be to obtain a sharp lower bound for the term minDKL

(

YL ‖ Ysup

)

, showing
that Theorem 3 gives a tight upper bound for the uniform noisecase.

One may consider instead a model where the width of the uniform noise depends on the input to the channel. This model,
which we call thedata-dependent uniform noise model, was explored in detail in [2]; as a matter of fact, Theorem 3 can
be considered to be a generalization of the upper bound on therewritable channel found in [2] to account for more general
channel models and write controllers. For the data-dependent model, the uniform noise is dependent on the input stimulus x,
i.e., a = a(x) for the noise width parameter. Theamin(·) function in [2], which plays a role similar to the functionfsup(·), was
used to show the tightness of the upper bound for very specialcases, where one can achieveYL = Ysup in Corollary 1.

For another application of Theorem 3 we consider the case of additive write noise:
Corollary 2: For an additive rewritable channel with noise densityfW , and a peak input stimulus constraintX ∈ [min(X),max(X)],

we have

C(κ) ≤ log













1+ (max(X) −min(X)) sup
ξ∈Y

fW (ξ)













+ log(κ).

�

The proof of this result is a straightforward calculation given Theorem 3.



8

B. Proof of Theorem 3

Our starting point is Theorem 1, which connectsC(κ) with the mutual informationI(X,D; YL), which we then upper bound:

I(X,D; YL)

(a)
= EYL ,X,D

[

log
fYL |X,D(YL|X,D)

fYL (YL)

]

= EYL ,X,D

[

log
fYL |X,D(YL|X,D)

fYL (YL)

fsup(YL)

Γ

Γ

fsup(YL)

]

= EYL ,X,D

[

log
fYL |X,D(YL|X,D)

fsup(YL)
Γ

]

+EYL

[

log
fsup(YL)/Γ

fYL (YL)

}

(b)
= EYL ,X,D

[

log
fYL |X,D(YL|X,D)

fsup(YL)
Γ

]

−DKL

(

YL
∥

∥

∥Ysup

)

(c)
= EYL ,X,D

[

log
fS |X(YL |X)

µY |X(D|X) fsup(YL)
Γ

]

− DKL

(

YL
∥

∥

∥Ysup

)

(d)
≤ EX,D

[

log
Γ

µY |X (D|X)

]

− DKL

(

YL
∥

∥

∥Ysup

)

(e)
≤ log

(

ΓE

[

1
µY |X (D|X)

])

− DKL

(

YL
∥

∥

∥Ysup

)

( f )
= log(ΓEL) − DKL

(

YL
∥

∥

∥Ysup

)

≤ log(Γκ) − DKL

(

YL
∥

∥

∥Ysup

)

where (a) follows from the definition of mutual information and (b) follows from the definition of the Kullback-Leibler (K-L)
divergence. The equality (c) follows from the definition of the operation of the rewritable channel and the associated random
variablesYL, X,D from which it can be deduced that

fYL |X,D(YL |X,D) =















fY |X(YL |X)
µY |X(D|X) if YL ∈ D

0 otherwise.

The inequality (d) follows from the definition of thefsup(·) function in (5) and the inequality (e) follows from Jensen’s inequality.
Finally, the equality (f) is due to the fact that the expectation of the time until success of a sequence of independent Bernoulli
trials is equal to the inverse of the success probability.

Finally, recall that the distribution of the random variable YL is completely specified given the distributions of the inputs to
the iterated channelX,D, which in turn are known to satisfy the constraintE1/µY |X(D|X) ≤ κ. From this observation, we can
readily lower bound the divergence term, obtaining the theorem statement.

V. Bounds based on superposition coding

The technique that we describe in this section for obtainingcapacity lower bounds is based on the notion ofsuperposition
coding, in which a decoder employssequential decoding in order to fully decode the message encoded in the memory. While
these techniques are well known in information theory in thecontext of multiuser communications [19], they have not been
applied, to our knowledge, to the problem of storage of information. In this context, we use them to create two virtual memories
out of a physical memory. The first virtual memory appears to adecoder as a classical memory in which a single write (no
rewrite iterations) was used to encode information. Upon decoding the message conveyed in the first virtual memory, the second
virtual memory, which contains additional message bits, isdecoded. While the amount of information that one may store in
the first virtual memory by definition does not change with theaverage number of iterations, the same is not necessarily true
for the second virtual memory, whose capacity, as we will show, grows at least as the logarithm of the average number of
iterations. The total rewritable channel capacity is then the sum of these two capacities.

We previously argued that the storage capacity of the rewritable channel when the average number of allowed write attempts
is at mostκ is given by the formula

C(κ) = sup
X∈X,D⊂Y,E[1/µY |X (D|X)]≤κ

I(X,D; YL). (6)
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In some problems we may be interested in further restrictingthe class of stimuli used in the write controller so as to incorporate
a stimulus cost constraint, not to be confused with the constraint on the average numberof iterations. Letρ : X → R be a
cost function, then referring back to Section II, we define the expected cost of the stimuli in the write controller to be

E

















1
n

n
∑

j=1

ρ(X j)

















.

We would like to find the capacity/cost function whenE
[

n−1 ∑n
j=1 ρ(X j)

]

≤ ρ∗ for someρ∗. As the reader may expect, this
capacity/cost function is then given by

C(κ) = sup
X∈X,E[ρ(X)]≤ρ∗ ,D⊂Y,E[1/µY |X (D|X)]≤κ

I(X,D; YL). (7)

The proof of this result can be easily obtained by following an argument similar to that in the beginning of Section III which
led to Theorem 1. We will develop the results of this section in the more general context afforded us through (7).

The role that superposition coding and sequential decodingplay in rewritable channels derives from a simple observation
based on the chain rule for mutual information. Recall that the iterated channel (see Figure 1) has two inputs: a stimulussignal
X that is used as a physical input to the cell, as well as a setD that determines when it is that the iterative write algorithm
will finish. For a given marginal distribution onX,D, the corresponding storage rate is given by

I(X,D; YL) = I(X; YL) + I(D; YL|X).

The rewriting of the mutual information as a sum of two mutualinformation expressions emphasizes the fact thatsequential
decoding can be used when interpreting the contents of a memory. In particular, if we can build a decoder for recovering the
first I(X; YL) bits by, in a loose sense, retrievingX, then in principle we can recover an additionalI(D; YL|X) bits by building
a decoder for the channel whose input isD, output isYL, under the assumption that both the encoder and decoder knowX.

One can take this analogy further and construct a mechanism for storing information at a costκ1 > κ0 by using an existing
technique for storing information at costκ0 as a scaffold. These observations are the basis of the following result:

Theorem 4: Assume a rewritable channel with write uncertainty governed by a conditional probability lawµY |X . We further
assume that the cost of an input to this channel is measured using the cost functionρ(·), and that the expected cost of the
stimuli of any write controller must be less thanρ∗. Further assume that for everyx ∈ X, µY |X(·|x) is absolutely continuous
with respect to the Lebesgue measure. For any 1≤ κ0 < κ1, the capacity/cost functionC(·) of the rewritable channel under a
constraint on the average number of iterations satisfies

C(κ1) ≥ C(κ0) + log

(

κ1

κ0

)

.

�

The proof of this result is deferred to Subsection V-C, with ateaser to the proof included in Subsection V-B.

A. Discussion

A particularly useful consequence of Theorem 4 is obtained by settingκ0 = 1: for all κ > 1,

C(κ) ≥ C(1)+ log(κ)

whereC(1) is simply the classical channel capacity of the channelµY |X . Thus we now have a lower bound on rewritable
channel capacity for any conditional write noise channel for which we know classical capacity.

For another application, consider the i.i.d. uniform noisewrite channel with noise widtha, and let

κ0 =
a

1+ a

⌈

1+ a
a

⌉

Note thatκ0 ≥ 1. Then in Theorem 2 the lower and upper bounds match when evaluated atκ0 and therefore

C(κ0) = log

(

1+ a
a

κ0

)

,

that is, capacity is known exactly atκ0. Furthermore, Theorem 4 implies that

log

(

1+ a
a

κ

)

(8)

is achievable for allκ > κ0, and Theorem 2 assures us that (8) is also a capacity upper bound. We conclude that we have
determined capacity exactly for allκ ≥ κ0. In Section VI we complete this analysis by examining the setting whereκ < κ0.
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Fig. 2. An example of a partition for the unit variance, zero mean Gaussian density which hasM = 5 bins, each with probability 1/5. These bins are
identified with a distinct integer.

As another example, suppose thatX = R and the lawµY |X(·|x) describes an additive Gaussian noise channel with variance
σ2

W . If we further assume that the inputX to the rewritable channel must satisfy an average stimulus cost constraint of the
form

E
[

X2
]

≤ σ2
X

for someσ2
X > 0, then Theorem 4 implies that

C(κ) ≥ 1
2

log













1+
σ2

X

σ2
W













+ log(κ).

Let us now assume thatX = [−max(X),max(X)] with max(X) < +∞ and that we do not have any average input stimulus
constraint. As before, we assume that the medium has additive Gaussian write noise with varianceσ2

W . Then Theorem 4
combined with the results of Raginsky [20] on the channel capacity of Gaussian channels with small peak power constraints
imply that as long as max(X) ≤ 1.05σW, then

C(κ) ≥ 1
µ∗

1
2

log













1+
max(X)2

σ2
W













+ log(κ) (9)

whereµ∗ is a constant satisfyingµ∗ ≤ 5/4. On the other hand, note that for this setting,

fsup(y) =







































1√
2πσ2

W

for y ∈ [−max(X),max(X)]

exp(−(y−max(X))2/(2σ2
W ))√

2πσ2
W

for y > max(X)

exp(−(y+max(X))2/(2σ2
W ))√

2πσ2
W

for y < −max(X).

Therefore,
∫

R
fsup(y)dλ(y) = 1+

√

2
π

max(X)
σW

< +∞.

Thus we can use Theorem 3 to obtain, for everyσW > 0,

C(κ) ≤ log















1+

√

2
π

max(X)
σW















+ log(κ)

as a counterpart to (9).

B. A preview of the proof: an example using the Gaussian rewritable channel

In order to motivate the arguments used to prove Theorem 4 we discuss informally the superposition coding concept using
an example with Gaussian write noise. During this discussion we will temporarily stop using the single letter information
theoretic characterization of rewritable channel capacity (Theorem 1) and instead will turn to arguments using actualblock
codes. Suppose that the memory cell write noise statisticsµY |X are such that the value of the cell after a write attempt is equal
to the input stimulus plus an additive offset that is a unit variance Gaussian random variable. We shall further assume that we
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hannelrewritable

aggregator
messageretrieved

originalmessage
splitterhannelenoder binenoder

b̃

hanneldeoder
x̃

deoderbin

x̃

b̃

Fig. 3. In the left we give an example of a codeword of a superposition code for the Gaussian rewritable channel withn = 7 andM = 5. The center of each
Gaussian is given by a vectorx̃ ⊂ CG, while the bin shown as a filled area is selected by a vectorb̃; the codeword is given bỹx + b̃. In the right we show a
general diagram of the encoding/decoding procedures for a superposition code.

will require an average input stimulus constraint of the form E{X2} ≤ ρ∗; this does not necessarily relate to any physically
meaningful constraint on any memory and is only used to make it easier for the reader to grasp our point. LetM > 1 an
integer, and partition the Gaussian density function inM bins each having the same probability. For the sake of simplicity, we
will assume that these bins are open intervals, possibly stretching out to−∞ or +∞. Figure 2 shows a specific such partition
for the caseM = 5. Define these open intervals as

B1,B2, · · · ,BM

whereBi ⊂ R.
As before, we usen to denote the number of cells that where we will be encoding our message. Letǫ > 0 be a parameter,

and letCG ⊂ Rn be a good code for the classical Gaussian channel with unit noise power and average input power constraint
ρ∗. We assume thatCG satisfies

1
n

log |CG| ≥ C(1)− ǫ. (10)

Thus, by good we mean a capacity-achieving code with vanishing probability of decoding error.
Recall that a write controller is specified by associating, for every messageu ∈ {1, · · · , 2nR}, an input stimulus for every one

of the n cells as well as astopping criterion, which is represented as a subset of the output alphabet. As we shall shortly see,
the codewords ofCG will be used as the input stimuli. We now discuss how to build the stopping criteria.

Let CV ⊂ {1, · · · , M}n, be a code over then dimensional space of bin indices. We assumeCV to have cardinality

1
n

log |CV | ≥ log M − ǫ (11)

and to additionally possess the property that for everyv ∈ CV,

M
∑

i=1

∣

∣

∣

∣

∣

N(i|v)
n
− 1

M

∣

∣

∣

∣

∣

< ǫ (12)

whereN(i|v) stands for the number of instances ofi within the vectorv. We assumen to be large enough so that (10), (11)
and (12) can all be accomplished. This can be done because forn large, the vast majority of vectors in{1, · · · , M}n satisfy
(12), a fact that follows from standard typical sequence arguments.

The vectorv is regarded as a vector of bin indices. We define thejth entry of the vector̃b to be the binBv j :

b̃ j = Bv j .

We now refer the reader to Figure 3. Split a message to be written into the memory into two submessages, one with rate
C(1)− ǫ bits/cell, and the other one with rate log(M)− ǫ bits/cell. Select an input stimulus̃x ∈ CG according to the submessage,
and select bin indices̃v ∈ CV according to the message section, associated with the vector of bins b̃. If S is a subset of the
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real line andt is a real number, define the translated subsetS + t = {ξ + t : ξ ∈ S }. Next define the stopping criterion for cellj
to be

d̃ j = b̃ j + x̃ j.

This fully specifies the write controller. Figure 3 illustrates a sample input codeword, which in the case of the rewritable
channel is given by an input stimulus and stopping criterionfor each cell.

As before, now that we have an input stimulus and a stopping criteria for the n cells, each cell will be programmed
independently. Recall that conditional on the input stimulus and the stopping criterion, the value in a cell after programming
is distributed according to a ”clipped” version of the writenoise distribution:

µYL |X,D(y|x, d) = µY |X (y|x)/µY |X(d|x)

if y ∈ d and µYL |X,D(y|x, d) = 0 otherwise. Because of the property (12), and due to the construction of the partition of the
Gaussian withM equal probability, the values of the cells, conditional on the stimuli, butnot on the stopping criteria, have an
approximately multivariate i.id. Gaussian distribution centered around the stimuli. Intuitively, when one does not condition on
the stopping criteria, the effect of selecting a bin is to ”restore” the clipped conditional distribution mentioned above to a full
non-clipped conditional distribution closely resemblingthe original Gaussian noise.

Given these observations, it is not very difficult to see that ifǫ is small enough, then a decoder can retrieve, with very high
probability the first message section using a decoder for thecodeCG. This implies that the decoder has also learnedx̃ and
thus it may subtract it from the codeword read from the memoryin order to deducẽv, from which the second message section
can be retrieved using a decoder forCV .

By using the formula for the capacity of the Gaussian channel, we have then argued that this superposition code allows us
to store approximately

1
2

log













1+
1

σ2
W













+ log(M) (13)

bits/cell at a cost ofM average iterations (since each bin has probability 1/M on a given write attempt). ThusC(M) is lower
bounded by (13). In what follows, we prove the more general statement in Theorem 4 using a generalization of the above.

C. Proof of Theorem 4

The key structure in the proof rests on the idea that a capacity-achieving input distribution for costκ0 will be used to
construct another (non necessarily capacity-achieving) input distribution for costκ1. Because of this, it will be necessary to
introduce two related iterated channels; see the discussion in Section III and Figure 1 for a reminder on the notion of an iterated
channel. Both iterated channels will have a common stimulusinput random variableX. Let {Y i}+∞i=1 be a random process that
is obtained by passingX through statistically independent copies of the channelµY |X . The random process{Y i}+∞i=1 will be also
shared between the two iterated channels.

The iterated channel for costκ0 will use for the encoding set the input random variableD0 ⊂ Y, with the associated number
of write iterations being

L0 = min{i ≥ 1 : Y i ∈ D0}.

Similarly, the iterated channel for costκ1 will use for the encoding set the input random variableD1 ⊂ Y, and as before, the
associated number of write iterations is defined as

L1 = min{i ≥ 1 : Y i ∈ D1}.

We are now ready to develop the proof of the result. Letǫ > 0, and letX,D0 be random variables such that for the rewritable
channel with conditional probability lawµY |X , output process{Y i}∞i=1 and random costL0, the average cost satisfies

E{L0} ≤ κ0, (14)

the stimulus cost satisfiesEρ(X) ≤ ρ∗ and furthermore

I(X,D0; YL0) ≥ C(κ0) − ǫ.

If κ0 = 1, then we chooseD0 = Y, and we chooseX so as to achieve the classical capacity of the channelµY |X within ǫ

bits/cell. For anyd ⊂ Y and x ∈ X with µY |X (d|x) > 0, let µYL0 |X,D0
(·, |x, d) denote the conditional probability law ofYL0 given

values forX and D0. Using the definition of the iterated channel, it can be easily shown that forψ ⊂ Y,

µYL0 |X,D0
(ψ|x, d) =

µY |X (ψ ∩ d|x)

µY |X (d|x)
. (15)
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Let ψ ⊂ Y be a set with Lebesgue measure zero, that is,λ(ψ) = 0. BecauseµY |X(·|x) is absolutely continuous, it follows that
µY |X(ψ|x) = 0 and sinceµY |X (ψ∩ d|x) ≤ µY |X (ψ|x) = 0, we thus conclude that whenever it is defined, the measureµYL0 |X,D0

(·|x, d)
is also absolutely continuous with respect to the Lebesgue measure.

It is a known fact from probability theory that the cumulative distribution function of a random variable whose probability
law is absolutely continuous with respect to the Lebesgue measure is a continuous function in the standard real analysissense.
Applied to the setting at hand, we see that ifµY |X(d|x) > 0, the cumulative distribution function

FYL0 |X,D0
(ξ|x, d) =

µY |X((−∞, ξ] ∩ d|x)

µY |X(d|x)
(16)

is a continuous function ofξ. Define thegain as

g
∆
= κ1/κ0 (17)

which necessarily satisfiesg > 1. For anyφ ∈ (0, 1), define the setγ(φ) ⊂ (0, 1) as follows:

γ(φ) =

{

(φ, φ + 1/g) if φ + 1/g < 1
(φ, 1)∪ (0,−1+ φ + 1/g) if φ + 1/g ≥ 1

.

Next, for anyd ⊂ Y, x ∈ X andφ ∈ (0, 1), let

πd,x(φ) =
{

ξ ∈ d : FYL0 |X,D0
(ξ|x, d) ∈ γ(φ)

}

.

We now make use of the following basic result (see for exampleBillingsley [21], Section 14).
Lemma 1: Let A be a real valued random variable with a continuous cumulative distribution functionFA(ξ) = µA((−∞, ξ]).

Then

µA({a : FA(a) ≤ u}) = u.

�

Using this lemma, we can then see that

µY |X (πd,x(φ)|x)

µY |X(d|x)
=

1
g
. (18)

Now letΦ be a random variable taking values in the alphabet [0, 1] that additionally is statistically independent fromX and
D0. The encoding set for costκ1 is now defined as

D1 = πD0,X(Φ). (19)

We now considerX,D1 to be the input distribution to the rewritable channelµY |X . The associated average cost can be evaluated
with

E [L1]
(a)
= E [E [L1|X,D1]]
(b)
= E

[

1
µY |X (D1|X)

]

(c)
= E

[

1
µY |X (πD0,X(Φ)|X)

]

(d)
= E

[

g
µY |X (D0|X)

]

(e)
≤ κ1. (20)

In this development, (a) follows from the basic properties of conditional expectation, (b) follows from the fact that the mean
of a geometric distribution with a trial success probability p is 1/p, (c) follows from the definition ofD1 in (19), and (e)
follows from the assumption (14). The step (d) follows from (18), which does not have any fundamental restriction onx, d, φ,
and hence will also hold in the case the arguments are random variables.

We remark that the resultE [L1] ≤ κ1 holds regardless of our choice for the marginal distribution of Φ. Nonetheless, in what
follows we will consider two explicit choices for the randomvariableΦ. The first choice works only wheng > 1 is an integer.
In this choice,Φ is a discrete random variable uniformly distributed on the set

{

0,
1
g
,
2
g
, · · · , g − 1

g

}

.

In the second choice, which works for allg > 1, Φ will be a random variable uniformly distributed on the interval (0, 1). In
both cases, as stated previously,Φ will be statistically independent ofX and D0.
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Since the second choice works for allg > 1, it suffices to prove the theorem. Nonetheless the first choice is associated
with a far simpler decoding scheme and thus we believe there is value in including it in this proof. Note that the example in
subsection V-B uses a scheme based on the first choice.

Using the chain rule for mutual information, write

I(X,D0,D1; YL1)

= I(X,D0; YL1) + I(D1; YL1 |X,D0)

= I(X,D1; YL1) + I(D0; YL1 |X,D1). (21)

Due to the construction of the iterated channels, it is not difficult to see that the following is a Markov chain:

YL1 → (X,D1)→ D0. (22)

Therefore from (21) we can deduce that

I(X,D1; YL1) = I(X,D0; YL1) + I(D1; YL1 |X,D0).

The following fundamental lemma characterizes the two quantities on the right. Its proof is included in the Appendix in order
to improve the flow of this paper.

Lemma 2: If Φ is chosen as a uniform random variable on (0, 1), we have

I(D1; YL1 |X,D0) ≥ log(g)

I(X,D0; YL1) = I(X,D0; YL0).

The same result holds ifg > 1 is an integer andΦ is chosen to be uniformly distributed on{0, 1/g, · · · , (g − 1)/g}.

�

In light of this result, we then find that

I(X,D1; YL1) ≥ I(X,D0; YL0) + log(g) (23)

≥ C(κ0) − ǫ + log(g). (24)

Using (20), the fact thatEρ(X) ≤ ρ∗ and the characterization of rewritable channel capacity in(7), as appropriate, we have
C(κ1) ≥ I(X,D1; YL1). Finally,

C(κ1) ≥ C(κ0) + log

(

κ1

κ0

)

− ǫ

where we have used the definition ofg in (17). Since this holds for everyǫ > 0, we have proved the theorem.

VI. A sharp result for the i.i.d. uniform noise model

Our goal for this section is to obtain a sharp characterization of the i.i.d. uniform noise model with an average cost constraint.
This will involve improving both the upper and lower bounds given in the earlier sections.

The following result fully characterizesC(κ):
Theorem 5: Let a be a given noise parameter, and letN = ⌈ 1+a

a ⌉. Then the capacity of the uniform noise rewritable channel
with noise widtha is given by

C(κ) = log

(

1+ a
a

κ

)

− DKL

(

πS

∥

∥

∥

∥

∥

ℓS
1+ a

)

(25)

for κ < κ0 and by

C(κ) = log

(

1+ a
a

κ

)

for κ ≥ κ0, whereDKL(p‖q) = p log
(

p
q

)

+ (1− p) log
(

1−p
1−q

)

and

ℓS = (N − 1)
(

(N − 1)a − 1
)

, πS = 1− 1− (N − 2)a
a

κ

κ0 = N
a

1+ a
.

�

The proof of this result is deferred to Subsection VI-B.
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Fig. 4. The capacity for the uniform noise rewritable channel with a = 2/3. For κ < κ0 the capacity is the dotted curve that is below the dashed curve. For
κ ≥ κ0, the capacity is given by the solid curve. This solid curve, which is a logarithm with an offset, is extended to the left ofκ0 (as the dashed curve) to
illustrate the gap between the upper bound log(κ(1+ a)/a) and the actual capacity.

A. Discussion

In Figure 4 we illustrate the capacity for a rewritable channel with a = 2/3. Forκ < κ0, capacity is given by the dotted curve
and for κ ≥ κ0 it is given by the solid curve, and where we defined, fori ∈ {0, 1, 2}, κi =

a
1+a (N + i). The value ofκ0 is the

same critical cost as defined in Theorem 5. The gap between thedotted and dashed curves for the regimeκ < κ0 corresponds
to the divergence term in (25).

The form of this capacity result is similar to the upper boundof Theorem 3 in that there is a logarithmically growing term
with a divergence subtracting from it. Indeed we will see that Theorem 3 is precisely tight in the uniform noise case. Thiswas
already made evident forκ > κ0 in the discussion leading to Equation (8) where we combined Theorem 3 (in the particular
weakened form of Corollary 1) and Theorem 4, and will be shownby lower bounding the divergence term in Theorem 3. The
key is to have a good notion of what the optimal output distribution’s properties are.

For κ < κ0, the optimal output distributionfYL for a capacity-achieving input distribution is piecewise constant and assumes
two values whereas forκ > κ0, the optimal output distribution is uniform on the interval[−a/2, 1+ a/2]. Since forκ < κ0 there
are only two possible values forfYL , it is possible to segment theY in two regions, each associated with one of the values.
In our development, the region associated with the higher probability value is labeledS, which stands for “center region” for
reasons that will be evident in the proof. It turns out that the divergence term is measuring the discrepancies in the probability
of S under the optimal output distribution ofYL and the distribution ofYsup.

The input distribution attaining capacity is by no means unique, with two capacity-achieving distributions potentially having
little resemblance to each other. This will be made evident by the proofs of the lower bounds for theκ < κ0 andκ ≥ κ0 cases,
which are quite distinct yet both constructions may be used to achieve capacity atκ0. It is important to note though that for
κ = κ0, either construction leads to a uniform output distribution.

Finally, we observe that the caseκ < κ0 includes the caseκ = 1, that is, the classical channel capacity problem with no
rewrites. The particular caseκ = 1 is proposed as an exercise in the textbook of Cover & Thomas [19, Chapter 9 “Uniform
distributed noise”]. As we will show, an optimal assignmentto X,D in the rewritable channel case can be obtained by having
the statistics ofX be identical throughout the rangeκ ∈ [1, κ0]. The additional bits that can be stored in the rewritable channel
by allowing a cost larger than 1 are thus obtained by an appropriate manipulation of the stopping criterionD.

B. Proof

The proof consists of 4 different arguments, addressing upper and lower bounds whenκ ≤ κ0 and whenκ > κ0.
1) The upper bound when κ > κ0: In here, we simply invoke either Theorem 2 or Theorem 3.
2) The lower bound when κ > κ0: In here, we could simply invoke the argument in the discussion after Theorem 4, but we

will give a slightly different (and self contained) argument which is better matchedto the lower bound in the caseκ < κ0. After
specifying the random variablesX,D, we will employ the relationI(X,D; YL) = I(X; YL) + I(D; YL|X) to evaluate the lower
bound. DefineZi = [−a/2+i 1+a

N ,−a/2+(i+1)1+a
N ]. DefineJ to be a random variable uniformly distributed over{0, 1, · · · ,N−1}.

Let {x0, · · · , xN−1} be any collection of distinct values such thatxi ∈ [0, 1] andZi ⊂ [xi − a/2, xi + a/2]. DefineX = xJ . Now
refer to Figure 5. Choose the random variableV to be uniformly distributed onZJ. Suppose thatV + a/κ ≤ maxZJ , then we
chooseD = [V,V + a/κ]. Otherwise, we choose

D = [V,maxZJ]
⋃

[

minZJ, a/κ −
1+ a

N
+ V

]

.
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Fig. 5. Illustration of general technique for output distribution shaping used in the lower bound forκ > κ0.

η
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y
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a
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ρ1ρ0 = 0

y

fY (y)

Signaling points

1
N

κ
a

Fig. 6. Optimal output distribution and construction of thecenter setS for the caseκ < κ0. There are two groups of intervals, each withN − 1 adjacent
intervals of lengtha.

Note thatEa/|D| = κ; note thatD ⊂ ZJ . By our assumptions,I(X; YL) = I(J; YL) and I(J; YL) = logN − H(J|YL). But since
YL ∈ D ⊂ ZJ we haveH(J|YL) = 0. From the identityI(D; YL|X) = h(YL|X) − h(YL|X,D), it can be seen that givenX, YL is
uniformly distributed over the intervalZJ. Similarly, we have thatYL → D → X and givenD, YL is uniformly distributed
over D, which has lengtha/κ. Thus I(D; YL|X) = log((1+ a)/N) − loga/κ. Taken together and after basic algebra, we have
the result of the theorem.

3) The upper bound when κ < κ0: Let S ⊂ [−a/2, 1+ a/2] be (for now) an arbitrary subset. DefineDKL(p‖q) to be the
divergence between two Bernoulli random variables with parametersp and q, respectively, and recall that from Theorem 2,
we have that

C(κ) ≤ log

(

1+ a
a

κ

)

− min
X,D:EL≤κ

DKL(YL‖Ysup)
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≤ log

(

1+ a
a

κ

)

− min
X,D:EL≤κ

DKL(P(YL ∈ S)‖P(Ysup ∈ S)) (26)

where the last inequality follows from the fact that divergence becomes smaller when the space of events is discretized,a fact
that can be easily derived using the log-sum inequality. Theupper bound we will derive will be obtained by suitably choosing
the setS as illustrated in Figure 6, and then obtaining a good lower bound for P(YL ∈ S). The choice forS in this case is
motivated by a “guess” of what is the optimal output distribution; of course the upper bound will hold for all possible input
distributions. Because 1/a is not an integer, it is not possible to fit an integer number ofintervals of lengtha in the output
alphabet [−a/2, 1+ a/2]. What will be done instead is to create two groups of intervals, each of which hasN − 1 contiguous
intervals of lengtha. The first group will have its first interval centered on 0, andthe second group will have its last interval
centered on 1. Mathematically, let

ρi = ai (27)

σi = ai + 1− (N − 2)a (28)

for i ∈ {0, · · · ,N − 2} for the first and second groups, respectively. Next define

S =
N−2
⋃

i=0

[

σi −
a
2
, ρi +

a
2

]

. (29)

It is immediate that

|S| = (N − 1)((N − 1)a − 1)
∆
= ℓS. (30)

and therefore, after recalling that for the uniform noise model Ysup is also uniformly distributed,

P(Ysup ∈ S) =
ℓS

1+ a
(31)

which is a constant asκ is varied.
We next derive a lower bound onP(YL ∈ S) under the assumption thatE{a/|D|} ≤ κ (as per Equation (26)). Write

P(YL ∈ S) =

∫

P(YL ∈ S|D = d)dµD(d) (32)

whereµD is the probability law governing the input distribution, which takes on all possible encoding sets that are reachable
fully by the noise widtha. Whend is selected as an encoding interval, the writing mechanism chooses a stimulusx such that
d ⊂ [−a/2+ x, a/2+ x] and repeats the stimulusx until the cell contains a value ind.

It can be checked that the construction ofS is such that no matter what the choice ofx ∈ [0, 1] is, we have that

|Sc ∩ [−a/2+ x, a/2+ x]| = 1− (N − 2)a

whereSc = [−a/2, 1+ a/2] \ S. Therefore

|S ∩ d| = |d| − |Sc ∩ d|
≥ |d| − |Sc ∩ [−a/2+ x, a/2+ x]|
= |d| − 1+ (N − 2)a.

Next, in reference to (32) and using the assumption of uniform rewritable channel noise, we have that

P(YL ∈ S) =

∫ |S ∩ d|
|d| dµ(d)

≥
∫ |d| − 1+ (N − 2)a

|d| dµ(d)

(a)
≥ 1− 1− (N − 2)a

a
κ

= πS (33)

where in the step (a) we made use of the assumption thatE{a/|D|} ≤ κ. Since we are only consideringκ < κ0, we have that

P(YL ∈ S) > 1− N
1− (N − 2)a

1+ a
=

ℓS
1+ a

= P(Ysup∈ S). (34)

Since the divergence on binary random variablesDKL(p||q) is monotonically increasing for fixedq and for increasingp > q,
it follows that
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min
X,D:EL≤κ

DKL(P(YL ∈ S)‖P(Ysup ∈ S)) ≥ DKL

(

πS‖
ℓS

1+ a

)

with equality if and only ifP(Y ∈ S) = πS, thereby proving the result.
4) The lower bound when κ < κ0 : We refer the reader to Figures 6 and 7 to support this discussion. The lower bound will be

obtained by defining, for a given costκ, random variablesX,D appropriately and then showing thatI(X,D; YL) meets the upper
bound on capacity evaluated atκ. The random variableX will take values on the discrete set{ρ0, ρ1, · · · , ρN−2, σ0, σ1, · · · , σN−2}
according to the following prescription:

P(X = ρi) =
N − 1− i
N(N − 1)

(35)

P(X = σi) =
i + 1

N(N − 1)
(36)

for every i ∈ {0, · · · ,N − 2}. We now specify how the random variableD ⊂ [−a/2+ X, a/2+ X] is chosen. Suppose that either
X = ρi or X = σi for somei. ChooseV to be a random variable uniformly distributed over the interval

[

σi −
a
2
, ρi +

a
2

]

which has length (N − 1)a − 1. Let η be such that
a

1− (N − 2)a + η
= κ (37)

and letD∗ = [V,V + η] if V + η < ρi +
a
2 and

D∗ = [σi −
a
2
,V + η − a + σi − ρi) ∪ (V, ρi +

a
2

]

otherwise; note that in either case,|D∗| = η. Finally, if X = ρi, define

D = D∗ ∪
[

ρi −
a
2
, σi −

a
2

]

and if X = σi, define

D = D∗ ∪
[

ρi +
a
2
, σi +

a
2

]

.

We pause to note that|D| = 1− (N−2)a+η. Thus because of (37), we haveEa/|D| ≤ κ as required. Recall the relation between
X,D and YL: the inputX is sent to the cell as many times as required untilYL ∈ D. Thus conditioned onX and D, YL is
uniformly distributed onD. Then we haveh(YL|X,D) = log a

κ
. We now analyze the marginal output distributionfYL (y). We do

this by splitting the analysis in sub-cases.
Suppose that there exists somei ∈ {0, · · · ,N − 2} such that

y ∈
[

σi −
a
2
, ρi +

a
2

]

.

Then fYL (y) = P(X = ρi) fYL |X(y|ρi) + P(X = σi) fYL |X(y|σi). Note that forv ∈ [σi − a/2, ρi + a/2] we have fV |X(v|σi) =
fV |X(v|ρi) = 1/((N − 1)a− 1) and that fory ∈ D∗, fYL |XV(y|ρi, v) = fYL |XV(y|ρi, v) = 1/(1− (N − 2)a) = κ/a and zero fory ∈ (D∗)c.
Then

fYL |X(y|ρi) =

∫

fYL |XV (y|ρi, v) fV |X(v|ρi)dv

=

∫

D∗
fYL |XV (y|ρi, v)

1
(N − 1)a − 1

dv

=
κ

a
η

(N − 1)a − 1
= fYL |X(y|σi)

and therefore

fYL (y) =
κ

a
η

(N − 1)a − 1
(P(X = ρi) + P(X = σi))

=
1

N − 1

(

κ

a
η

(N − 1)a − 1

)

(38)

=
η

ℓS

κ

a
(39)
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Fig. 7. Illustration of general technique for output distribution shaping used in the lower bound forκ < κ0. In the proof of this lower bound, the random
variableV selects the starting point for a region of lengthη which is included in the encoding set.

whereℓS is given by the assumptions of the theorem. The key remark is that the above expression depends neither oni nor
on y. Now let y ∈ [−a/2, σ0 − a/2). Then we have that

fYL (y) = P(X = ρ0)
1

1− (N − 2)a + η
=

1
N
κ

a
(40)

where to arrive to (40) we have additionally used (37). Through an identical analysis, we can show that fory ∈ (ρN−2+a/2, 1+
a/2], fYL (y) has exactly the same value as in (40).

Finally, for y ∈ (ρi+1 − a/2, σi + a/2) for i ∈ {0, · · · ,N − 3},

fYL (y) =
P(X = ρi+1) + P(X = σi)

1− (N − 2)a + η
=

1
N
κ

a
(41)

where in the last step we have used (37) again, in addition to (35,36). Note that (41) is identical to (40). Compare (40,41)
with (38). It can be easily checked that

η

ℓS
≥ 1

N

with equality being met whenκ = κ0, which justifies the manner in which we have depictedfYL (y) in Figure 6.
We now summarize the results obtained in (38, 40, 41). The function fYL (y) takes on at most two values. Ify ∈ S (refer to

(29)), then (38) holds whereas ify ∈ [−a/2, 1+ a/2] \ S, fYL (y) is given by the value in (40,41). This implies that

h(YL) = Hb(P(YL ∈ S)) + P(YL ∈ S) log |S|
+P(YL

< S) log(1+ a − |S|),

whereHb(·) denotes the binary entropy function. Finally recall from (30) that|S| = ℓS. Using this and (38), we get

P(YL ∈ S) = η
κ

a
=

(a
κ
+ (N − 2)a − 1

)

κ

a

= 1− 1− (N − 2)a
a

κ = πS.

Combined with the previous finding thath(YL|DX) = log(a/κ), we obtain the result stated in the theorem.
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Fig. 8. In bold, plot of the optimum average cost attaining capacity per unit cost (κup) as function of the channel noise parametera. The other plot (shown
only for a > 1/2) is κ0 as a function ofa (see Theorem 5 for a definition ofκ0).

VII. On energy and wear optimized storage in rewritable channels

Suppose one is not interested in operating a memory with a given number of bits/cell, but rather, what one wants is to obtain
an optimum ratio of information bits to the expected cost of writing. Our choice of write cost metric throughout this paper,
namely, average number of iterations, can be regarded as a rough proxy for the amount of energy and/or wear (when the latter
is relevant to the memory technology) that the memory is undergoing during the write process. This observation motivates us
to explore the notion ofcapacity per unit cost [22] in the context of rewritable channels.

The capacity per unit cost for the uniform noise model can be obtained from

Cuc(a) = sup
κ>1

C(κ, a)
κ

(42)

where we have added a second parameter in the expressionC(κ, a) to explicitly denote the noise width of the associated
channel. Let

κuc(a)

be such that

lim
κ→κuc(a)

C(κ, a)
κ
= Cuc(a)

be the limiting cost attaining the supremum. A particularlyinteresting question is whetherκuc(a) is strictly larger than 1 or
not. Whenever it is, it follows that one can improve the cost of writing to memory and memory density simultaneously by
allowing additional iterations beyond the first write to thememory. The fact that this can happen is not immediately obvious,
but it is a phenomenon that does arise in the context of rewritable storage and in particular, the uniform noise model.

In order to illustrate this, we refer the reader to Figures 8 and 9. In Figure 8 we plotκuc(a) againsta using a bold line.
As we can see,κuc(a) = 1 in the rangea ∈ (0, 0.5]; for a > 1/2, we haveκuc(a) > 1 and monotonically increasing. Also in
Figure 8 we can find a superimposed plot ofκ0 as a function2 of a for a > 1/2, that is, thecritical cost such that for costs
larger than this critical cost, capacity is strictly given by the expression log2(κ(1+ a)/a). Note that for valuesa ∈ [0.5, 1), the
optimum cost happens to be in the sub-critical cost regionκ < κ0, while for a > 1, then optimum cost happens strictly in the
regimeκ > κ0. One particular significance of theκ > κ0 region, as seen earlier during the detailed discussion of the uniform
noise model, is that coding strategies are far simpler than in the sub-critical cost regime.

In Figure 9 we have a plot ofC(κuc(a)) (not Cuc(a)) as a function ofa. The highlights of this plot are that in the regime
a > 1/2, capacity per unit cost decreases much more slowly than in the regimea < 1/2. As a matter of fact, whena > 1
capacity remains strictly flat:

C(κuc(a)) = log2 e if a > 1

This of course does not mean thatCuc(a) is flat in this regime; as a matter of fact the optimum cost keeps increasing according
to

κuc(a) =
a

1+ a
e if a > 1.

2We do not plot critical cost fora < 1/2 to maintain legibility of the plot
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Fig. 9. Plot of capacity evaluated at the optimum costκup, as function of the channel noise parametera.

Still, it is interesting that the capacity per memory cell, when operated at the optimum information bit/cost point flattens out
for very noisy channels.

We finalize this discussion by pointing out that this picturecan change dramatically whenever we allow a first read before
a write. In this case, one can model a memory in which there is asymbol that costs zero to write - the symbol that already
exists in the memory at that position. In this case, the interesting average cost regime starts fromκ = 0 instead ofκ = 1. We
expect the results in [22] to be of further relevance in the optimum capacity per unit cost analysis in this case.

VIII. W rite uncertainty in memory technologies

In the following, we will describe the basic mechanisms leading to write uncertainty in phase-change memory (PCM) [23],
spin-transfer torque magnetic RAM (STT-MRAM) [7] and, in general, various kinds of resistive RAM (RRAM) [8], [9], [10].
We also discuss, for PCM and STT-RAM, how a rewritable channel model is relevant for such memories.

A. Phase-Change Memory

PCM [23] is a memory technology that stores information in a cell by controlling the phase (either crystalline or amorphous)
of a material. Electrical pulses flowing through the memory cell are used to melt or anneal (crystallize) phase change material.
A change in phase corresponds to a change in the perceived electrical resistance of the memory cell. This allows one to sense
the contents of the cell by estimating its resistance. With proper control, PCM can be programmed into a continuous span of
resistance values, thus making it an analog memory suitablefor multiple bits per cell operation.

Write uncertainties in PCM are associated with a number of phenomena. A first reason is due to the steep relationship
between the energy of the programming signal and the final resistance [23]. Another important reason for write uncertainty in
PCM is the so-called resistance drift. This phenomenon manifests as a noisy increase in resistance [24], [25] which has been
empirically described as a logarithmic Wiener process [26]. The fast random evolution of PCM cell resistance immediately
after programming can be held in part responsible for the uncertain outcome of a write operation; in particular, it can be
characterized as a noisy read.

A programming pulse in PCM can be classified in two rough categories: pulses that cause melting of the cell, and pulses
that do not cause melting of the cell. A RESET pulse, which is intended to make a cell attain a high resistance state, or the
family of partial-RESET pulses (see [27]) which are able to attain intermediate levels of resistance, belong to the firstcategory.
A pulse that partially anneals a PCM cell starting from its current state belongs to the second category.

Programming pulses that cause melting of the cell will have an outcome that is not highly correlated to the prior state of the
cell, because the organization of the atoms prior to the pulse is in a sense ”forgotten” during the melting phase. Thus if one
is employing a programming technique in which every pulse includes a melting phase, we will be in a position to model such
programming with some variant of a rewritable channel with independent write outcomes. It turns out that such programming
techniques have been proposed in the past. For example in [28], a multilevel programming technique based on a melting pulse
with an ”annealing” tail was used to demonstrate the potential of attaining 4 bit/cell densities in PCM. On the other hand,
more recent work (see again [27]) uses a combination of pulses that melt and pulses that do not melt in order to attain its
programming goals. To understand programming techniques such as the latter, the theory of rewritable channels needs tobe
extended appropriately.
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B. Magnetic RAM

Magnetic RAMs are memory technologies that store data in themagnetization state of a medium enclosed in a memory cell
and exploit the magnetoresistive effect to sense the content of the cell by estimating its resistance which in turn is used to
predict the magnetization state. Among magnetic RAM technologies, the most promising one is today the spin-transfer torque
MRAM [7] (STT-MRAM), which promises high density of integration and low power operation. STT-MRAM is naturally
suited to store a digital content, in that it is designed to store two distinct states of magnetization. Nonetheless STT-MRAM is
a valid example of memoryless rewritable memory in that it isaffected by write uncertainty [7], [29], and, under the condition
that the cell is not in the desired state (i.e., convergence has not yet been attained) the outcome of a programming operation
does not depend on the previous programming operations. This suggests that an i.i.d. binary symmetric rewritable channel with
statistically independent write outcomes is an appropriate model for some methods for programming MRAM; for one such
Write-and-verify technique see [30].

C. Resistive RAM

Even though the broad category of resistive RAM includes allmemories which ultimately store information by controlling
and estimating the resistance of memory cells, the term resistive RAM (RRAM) is often used to denote a more specific
category of memories that store information in an insulating medium based on metal oxides and that control the resistance of
the memory cell by changing the chemical composition of the medium, usually in a localized volume within the memory cell.
This RRAM category includes several technologies, such as the HP memristor [8], based on a titanium oxide medium, as well
as other similar approaches based on different oxides, such as, for example hafnium oxide.

Most RRAM memory technologies rely on the formation of an initial conductive filament within the insulator medium.
Programming is then accomplished by controlling the thickness or the continuity of said filament, by applying a current that
is large enough to induce atom migration. The direction of the current (in the case of bipolar devices) or the shape of the
current signal (in the case of bipolar devices) controls whether the cell resistance increases or decreases.

RRAM, like PCM, is an intrinsically analog memory and fine control of the programming operation can be used to obtain
a storage density larger than one bit per cell [31].

As in all other nonvolatile memory technologies, the outcome of a write operation in RRAM is affected by uncertainty. This
uncertainty manifests itself as a relatively broad distribution of the stored resistance value, upon the application of a given
programming pulse [32]. In general, RRAM, similarly to PCM,exhibits a dependency between the initial cell state and the
final cell state after the application of a given programmingpulse. However, arguably techniques akin to those used in PCM
can be used to break such dependency and obtain a memoryless rewritable channel behavior from RRAM. To the best of our
knowledge, an accurate RRAM statistical model, suitable for defining a proper rewritable channel model, has not yet been
proposed.

IX. Concluding remarks

In this article, we have taken initial steps towards the formulation of an information theory for rewritable memories that
sheds light on the fundamental trade-off between storage capacity and the cost for writing to a memory. Our focus has been,
for simplicity reasons, concentrated in an i.i.d. memory model. For this model, we have given capacity upper and lower bounds
that show that in some cases capacity is sandwiched between two curves of the formC+ logκ for someC. The lower bound is
a particularly interesting and unusual application of the concept of superposition coding in storage channels that canbe used
to link rewritable channel capacity and classical channel capacity. These bounds, together with some additional refinements,
were used to give an exact formula of capacity for the uniformnoise channel model. An exploration of this result shows
that rewritable channels exhibit a dual behavior when one wants to write information in an optimal storage rate per unit cost
manner. For “cleaner” channels, one should not do any additional iterations beyond the first write; that is, we should treat this
as a regular storage channel. For noisier channels, one should always do some number of iterations to attain this optimum
operating point. This example and the capacity results above are examples of the types of insight with practical value that
information theory can shed in this important technological area.

Much work remains to be done. From an information theory perspective, we believe that there is still room to improve
significantly the models being studied while keeping the information theory tractable. Furthermore, we foresee that some of
these extensions will require the introduction of ideas from control and learning theory resulting in a very rich and interesting
field with significant practical impact potential.

X. Appendix

A. Proof of Lemma 2

1) Proof of I(D1; YL1 |X,D0) ≥ log(g): By using the definition ofD1 in (19), we have

I(D1; YL1 |X,D0) = I(πD0,X(Φ); YL1 |X,D0). (43)
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We next argue that

I(πD0,X(Φ); YL1 |X,D0) = I(Φ; YL1 |X,D0) (44)

which can be shown if we demonstrate that the functionπd,x(·) is invertible for anyd, x with µY |X (d|x) > 0. Suppose that there
exist φ1, φ2 ∈ (0, 1) such thatφ1 , φ2 and

πd,x(φ1) = πd,x(φ2)

Let ν be any open interval satisfyingν ⊂ γ(φ2) \ γ(φ1). Suchν must exist sinceφ1 , φ2. Then the set
{

ξ ∈ d : FYL0 |X,D0
(ξ|x, d) ∈ ν

}

⊂ πd,x(φ2) = πd,x(φ1) (45)

must be empty as otherwise we arrive to a contradiction. Choose two pointsu1, u2 ∈ ν with u1 < u2. Since the function
FYL0 |X,D0

(·|x, d) is continuous, there existsξ1 < ξ2 such that

FYL0 |X,D0
(ξi|x, d) = ui i ∈ {1, 2}

The set (ξ1, ξ2) ∩ d must be nonempty, since

µYL0 |X,D0
((ξ1, ξ2) ∩ d|x, d)

= FYL0 |X,D0
(ξ2|x, d) − FYL0 |X,D0

(ξ1|x, d)

= u2 − u1 > 0

but (ξ1, ξ2) ∩ d is a subset of the set in the left of (45) which in turn is empty.Since this is a contradiction, it establishes the
invertibility of πd,x(φ).

In summary, if we knowD0, X and πD0,X(Φ) we can retrieveΦ; clearly also if we knowD0, X andΦ we can construct
πD0,X(Φ). This establishes (44). Combining (43) and (44), we get

I(D1; YL1 |X,D0) = I(Φ; YL1 |X,D0). (46)

We now need to specialize the result according to the choice of Φ. If Φ is chosen as a discrete random variable, then it is
readily seen that

I(Φ; YL1 |X,D0) = H(Φ|X,D0) − H(Φ|X,D0, Y
L1)

= H(Φ) − H(Φ|X,D0, Y
L1)

(d)
= H(Φ)

= log(g) (47)

where (d) follows from the fact that knowledge ofX,D0 reveals a partition ofD0 in the form of
{

πD0,X

(

j
g

)}g−1

j=0

An element of this partition was chosen byΦ as the encoding set for the iterated channel for costκ1. But further knowledge
YL1 selects a unique element of this partition, thus revealingΦ.

On the other hand, ifΦ is chosen as uniformly distributed on [0, 1], then we employ differential entropy instead to obtain

I(Φ; YL1 |X,D0) = h(Φ|X,D0) − h(Φ|X,D0, Y
L1)

(e)
= −h(Φ|X,D0, Y

L1)
( f )
≥ − log

(

1
g

)

= log(g) (48)

where (e) follows from the assumption thatΦ is statistically independent fromX andD0 and from the fact that the differential
entropy of a random variable uniformly distributed on an interval of unit length is zero. The step (f) can be deduced as follows:
knowledge ofX,D0 andYL1 reveals that

Φ ∈ {φ : YL1 ∈ πD0,X(φ)}.

On the other hand,

|{φ : YL1 ∈ πD0,X(φ)}| = 1/g.

Finally, recall that the differential entropy of a random variable with a bounded supportis upper bounded by the logarithm of
the length of the support. This establishes (f) and hence thethe first part of the Lemma.
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2) Proof of I(X,D0; YL1) = I(X,D0; YL0): We claim that for either of the two choices forΦ (the first choice being valid only
wheng is an integer), the joint distribution of (X,D0, YL0) is identical to the joint distribution of (X,D0, YL1), hence implying
the result of the lemma. An examination of the probability law of YL0 and YL1 conditioned on specific values ofX,D0 will
suffice for this purpose.

We do not discuss the case wheng is an integer and thatΦ is chosen to be uniformly distributed over the discrete alphabet
{0, 1/g, · · · , (g − 1)/g}, since it is quite easy to see particularly after reading thefollowing proof for the case in whichΦ is
uniformly distributed in the real interval (0, 1). Let I(·) be the indicator function of a boolean event, that is, it is equal to one
if the event in the argument is true and equal to zero otherwise. The following result will be convenient in establishing our
desired result.

Lemma 3: Let FA(ξ) be the cumulative distribution function of a random variable A whose probability lawµA is absolutely
continuous with respect to the Lebesgue measure. Further define

π(φ) = {a : FA(a) ∈ γ(φ)}

Then for anyµA-measurable setδ
∫ 1

0
µA(δ ∩ π(φ))dλ(φ) = µA(δ)/g.

where the integral above is with respect to the Lebesgue measure.
Proof: Let FA(δ) denote the image of the setδ through the functionF, that is,

FA(δ) = {FA(ξ) : ξ ∈ δ}

Next write
∫ 1

0
µA(δ ∩ π(φ))dλ(φ) =

∫ 1

0

∫

F(δ)
I(ξ ∈ γ(φ))dλ(ξ)dλ(φ)

=

∫

F(δ)

∫ 1

0
I(ξ ∈ γ(φ))dλ(φ)dλ(ξ)

=

∫

F(δ)

1
g

dλ(ξ)

= µA(δ)/g.

�

We now proceed with the main proof. Letδ ⊂ d0. Then

µYL1 |X,D0
(δ|x, d0)

=

∫ 1

0
µYL1 |X,D0,Φ

(δ|x, d0, φ)dλ(φ)

=

∫ 1

0

µYL0 |X,D0
(δ ∩ πd0,x(φ)|x, d0)

µYL0 |X,D0
(πd0,x(φ)|x, d0)

dλ(φ)

= g
∫ 1

0
µYL0 |X,D0

(δ ∩ πd0,x(φ)|x, d0)dλ(φ)

where the last equality follows from (15) and (18). At this moment, we invoke Lemma 3 to deduce that
∫ 1

0
µYL0 |X,D0

(δ ∩ πd0,x(φ)|x, d0)dλ(φ)

= (1/g)µYL0 |X,D0
(δ|x, d0)

This proves the lemma. �
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