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Abstract

We present a polynomial time approximation scheme (PTAS) for the minimum value of the classical
Ising Hamiltonian with linear terms on the Chimera graph structure as defined in the recent work of
McGeoch and Wang [MW13]. The result follows from a direct application of the techniques used by
Bansal, Bravyi and Terhal [BBT09] who gave a PTAS for the same problem on planar and, in particular,
grid graphs. We also show that on Chimera graphs, the trivial lower bound is within a constant factor of
the optimum.

1 Introduction

The classical Ising spin glass problem is defined as follows. Given a graph G(V,E) along with real numbers
du for all vertices u and cuv for all edges (u, v), the classical Ising spin glass problem is to the minimize the
following Hamiltonian,

H(S) :=
∑

(u,v)∈E

cuvSuSv +
∑
u∈V

duSu, (1)

over all {−1, 1} assignments to the vertices given by S = {Su ∈ {−1, 1}}u∈V . It is useful to note that
ES [H(S)] = 0, and thus the optimum of H(S) is non-positive.

The Ising spin glass problem is used to model the interactions in physical spin systems and its minimum
value is a measure of the ground state-energy of the system. As such this computational problem has received
significant attention from both, the algorithmic and complexity perspectives. For a detailed discussion on
this problem we refer the reader to the related work of Bansal, Bravyi and Terhal [BBT09] who gave a
PTAS for this problem on planar graphs. In this work we focus on the approximability of this problem on
the Chimera graph structure which we formally define below.

The Chimera Graph Structure. We shall work with the Chimera graph structure as defined in [MW13],
with a different notation for convenience. For a positive integer r, the Chimera graph Gr is constructed as
follows.

Vertices V . The set of vertices V consists of the integer tuples {(i, j, k, l) ∈ Z4 | 1 ≤ i, j ≤ r, 1 ≤ k ≤
4, l = 0, 1}. The indices i and j specify the location in a r×r grid, k indicates one of four possible vertices,
and l specifies the layer in which the vertex belongs. The number of vertices is 8r2.
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Edges E. The edge set is a disjoint union of E0, E1 and E01, where E0 is the set of edges in layer 0, E1

is the set of edges in layer 1, and E01 is the set of edges across the the two layers. These sets of edges are
defined as follows:

E0: For any 1 ≤ i ≤ r − 1, 1 ≤ j ≤ r, and 1 ≤ k ≤ 4, E0 contains an edge between (i, j, k, 0) and
(i+ 1, j, k, 0).

E1: For any 1 ≤ i ≤ r, 1 ≤ j ≤ r − 1, and 1 ≤ k ≤ 4, E1 contains an edge between (i, j, k, 1) and
(i, j + 1, k, 1).

E01: For any 1 ≤ i ≤ r, 1 ≤ j ≤ r, 1 ≤ k0 ≤ 4 and 1 ≤ k1 ≤ 4, E01 contains an edge between (i, j, k0, 0)
and (i, j, k1, 1).

Note that E0 is a disjoint collection of 4r (r − 1)-length paths, one each for a fixed pair of values for j and
k. Similarly, E1 is a disjoint collection of 4r (r − 1)-length paths, one each for a fixed pair of values for i
and k. Also, E01 is a disjoint collection of r2 K4,4 graphs, one for each value of (i, j) with the bipartition
given by the sets ∪4k=1{(i, j, k, 0)} and ∪4k=1{(i, j, k, 1)}.

Note that the Chimera graph structure is non-planar as it contains the K4,4 graph, as well as a Kr,r minor.
Thus, the results of Bansal et al. [BBT09] are not directly applicable. However, utilizing the symmetries in
the above construction we are able to adapt the techniques of [BBT09] to prove the following algorithmic
results.

Our Results. This work shows the existence of a polynomial time approximation scheme (PTAS) for the
classical Ising spin glass problem on the Chimera graph structure. Formally we prove the following theorem.

Theorem 1.1. Given a Chimera graph structure Gr on n = 8r2 vertices, the Hamiltonian H(S) can be
approximated to (1− ε) of its minimum value in time O

(
εn · 2

32
ε

)
.

The above result is obtained by noting that the graph Gr can be disconnected into constant width strips
by removing a small fraction of edges from E0 (or E1). This allows the application of the partitioning tech-
nique used by Bansal et al. [BBT09] for their PTAS on grid graphs. The analysis requires a straightforward
lower bound on the magnitude of the optimum value of H(S) in terms of sum of the absolute values of the
bilinear coefficients in H(S) corresponding to edges in E0.

A somewhat more involved analysis yields the following result which shows that the trivial lower bound
is within a constant factor of the optimum.

Theorem 1.2. Let H∗ be the optimum value of H(S) on the Chimera graph structure. Then, H∗ ≤
−(C/(3C + 4))

[∑
(u,v)∈E |cuv|+

∑
u∈V |du|

]
, for some constant C > ln(1+

√
2)

π . In particular, the ap-
proximation factor is (3C + 4)/C < 17.26.

The above result is obtained by extending the straightforward lower bound used to prove Theorem 1.1
with a complementary bound obtained via the Grothendieck constant.

2 PTAS on Chimera Graphs

Let Gr = G(V,E) be the Chimera graph on n = 8r2 vertices and H(S) be the Hamiltonian given in
Equation (1) for some real values {cuv}(u,v)∈E and {du}u∈V . Recall that E is the disjoint union, E =
E0 ∪ E1 ∪ E01. For convenience we split H(S) as,

H(S) := M0(S) +M1(S) +M01(S) +D(S), (2)
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where,

Ml(S) :=
∑

(u,v)∈El

cuvSuSv, l = 0, 1,

M01(S) :=
∑

(u,v)∈E01

cuvSuSv,

D(S) :=
∑
u∈V

duSu.

We also define the following quantities.

Al :=
∑

(u,v)∈El

|cuv| for l = 0, 1.

A01 :=
∑

(u,v)∈E01

|cuv|.

B :=
∑
u∈V
|du|. (3)

The following lemma follows from the structure of G.

Lemma 2.1. Let H∗ be the minimum value of H(S). Then, H∗ ≤ −(A0 +A1).

Proof. From the construction of Gr we have that E0 is a disjoint collection of 4r (r − 1)-length paths in
layer 0. Similarly, E1 is a disjoint collection of 4r (r − 1)-length paths in layer 1. Thus, E0 ∪ E1 is a
disjoint collection of 8r (r− 1)-length paths. Thus, there exists an assignment S′ such that M0(S

′) = −A0

and M1(S
′) = −A1. We can ensure that M01(S

′) ≤ 0, otherwise the values assigned to all the vertices in
layer 0 – i.e. all vertices of the form (i, j, k, 0) – can be flipped which changes the sign of M01(S

′) while
preserving M0(S

′) and M1(S
′). Thus, we can ensure that M0(S) + M1(S) + M01(S) ≤ −(A0 + A1).

Now, if D(S′) is positive, then S′ can be flipped for all vertices to ensure that H(S′) ≤ −(A0 +A1).

Let us define a strip graph with m levels and width b as any graph which has m levels of b vertices each
such that all edges between levels are between adjacent levels. The levels may have edges within them. To
be precise, a vertex in level j may have edges only to other vertices in levels j, (j − 1) or (j + 1). Bansal
et al. [BBT09] showed that the problem of minimizing the Hamiltonian on m× b strip graphs can be solved
using dynamic programming in time O(m4b). The dynamic program computes for level j and each of the
2b assignments to the vertices in that level, the value of the best solution with that assignment to level j for
the Hamiltonian on the subgraph induced by levels 1, . . . , j. Going from level j to j + 1 requires O(4b)
operations, a constant number for each pair of assignments to levels j and j + 1. Thus, the total time taken
is O(m4b). Our goal in designing the PTAS is to describe a way to decompose the graph G into strip graphs
with constant width while not losing much in the objective value. This is similar to the decomposition in
[BBT09] for grid graphs with a slightly different analysis.

Recalling the structure of Gr, for any i = 1, . . . , r let,

Ei0 := {((i, j, k, 0), (i′, j, k, 0)) | i′ = {i− 1, i+ 1} ∩ {1, . . . , r}, 1 ≤ j ≤ r, 1 ≤ k ≤ 4}.
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In other words, Ei0 consists of all edges within layer 0 which are incident on the vertices (i, j, k, 0). Let T
be a large positive integer which we shall set later. For any k = 0, 1, . . . , T − 1, let,

Ek
0 :=

⋃
i ≡ k mod T,

1≤i≤r

Ei0,

Ak0 :=
∑

(u,v)∈Ek
0

|cuv|,

Hk(S) :=
∑

(u,v)∈Ek
0

cuvSuSv,

Hsub,k(S) := H(S)−Hk(S).

Since every edge in E0 is present in exactly 2 of the subsets Ek
0 , we obtain by averaging that there is a k∗

such that Ak
∗

0 ≤ (2/T )A0. Further, it can be seen that Hsub,k(S) is the Hamiltonian on a disjoint collection
of at most dr/T e strip graphs of dimensions r × 8T and at most dr/T e strip graphs of dimensions r × 8.
To complete the analysis we first assume because of symmetry that A1 ≥ A0. Thus, by Lemma 2.1, the
minimum value of H(S) is at most −2A0. Let S′ be the assignment that minimizes the value of Hsub,k∗ ,
and Sopt the assignment that minimizes the value of H(S). We have,

Hsub,k∗(S
′) ≤Hsub,k∗(S

opt)

≤H(Sopt) +Ak
∗

0

≤H(Sopt) + (2/T )A0

≤(1− 1/T )H(Sopt),

and,

H(S′) ≤Hsub,k∗(S
′) +Ak

∗
0

≤(1− 1/T )H(Sopt) + (2/T )A0

≤(1− 2/T )H(Sopt).

Since H(S′) ≥ H(Sopt), from the above we get that H(S′) is a (1 − 2/T ) approximation to H(Sopt). We
now set T = 2/ε to obtain a (1− ε) approximation to H(Sopt). To compute the value H(S′), we compute
the assignment S′ that minimizes Hsub,k(S) for each k = 0, 1, . . . , T − 1, and take the one that gives the
minimum value of H(S′). For each k, this involves minimizing the Hamiltonian on at most (2r/T +2) strip
graphs of r levels and width at most 8T . As discussed above, the computation time for one such strip graph
is O(r48T ) which adds up to O(r248T /T ) time for all the strip graphs. Thus, the total computation time to
obtain a (1− ε) approximation is O

(
εr24

16
ε

)
= O

(
εn2

32
ε

)
.

3 A constant factor bound

In this section we prove Theorem 1.2. The key ingredient is the following lemma which bounds the bilinear
quadratic form on K4,4 in terms of the sum of the absolute values of the coefficients.
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Lemma 3.1. Let G(U, V,E) be a K4,4 graph with U = {u1, . . . , u4} and V = {v1, . . . , v4} giving the
bipartition and E = U × V the edge set. There is a universal constant C > 0 such that for any real
numbers {cij | 1 ≤ i, j ≤ 4},

min
S

∑
1≤i,j≤4

cijSuiSvj ≤ −C
∑

1≤i,j≤4
|cij |, (4)

where S = {Su | u ∈ U} ∪ {Sv | v ∈ V } is a {−1, 1} assignment to the vertices of G. In particular, the

above holds for some C > ln(1+
√
2)

π .

Proof. Let us first assign unit vectors xi for vertices ui and yj for vertices vj (1 ≤ i, j ≤ 4). The seminal
work of Grothendieck [Gro53] implies the following:

max
xi,yj∈S7

1≤i,j≤4

∑
1≤i,j≤4

cij〈xi, yj〉 ≤ Kmax
S

∑
1≤i,j≤4

cijSuiSvj . (5)

Here K is a universal constant for which the above inequality holds for any Kt,t, wherein our case t = 4.
Determining the exact value of K has been a major open question. The work of Krivine [Kri77] showed
that K ≤ π

2 ln(1+
√
2)

and in more recent work Braverman, Makarychev, Makarychev and Naor [BMMN11]
showed that in fact K < π

2 ln(1+
√
2)

. The following claim helps to leverage the above inequality.

Claim 3.2. There exists a set of unit vectors vectors {xi | 1 ≤ i ≤ 4} ∪ {yj | 1 ≤ j ≤ 4} such that,

∑
1≤i,j≤4

cij〈xi, yj〉 ≥
(
1

2

) ∑
1≤i,j≤4

|cij |. (6)

Proof. We first set the vectors {xi | 1 ≤ i ≤ 4} to be a set of 4 orthonormal vectors. For j = 1, 2, 3, 4 we
let the unit vector yj = (1/2)

∑4
i=1 sgn(cij)xi. It is easy to check that this setting of the vectors satisfies

the inequality in the claim.

Using the above claim in conjunction with Equation (5) along with the bound on the value of K we
obtain,

max
S

∑
1≤i,j≤4

cijSuiSvj ≥ C
∑

1≤i,j≤4
|cij | (7)

Reversing the signs of the assignments to the vertices in U , we complete the proof of the lemma.

The following lemma provides a bound on the minimum value of H(S).

Lemma 3.3. Let H∗ be the minimum value of H(S). Then H∗ ≤ A0 +A1 − CA01.

Proof. Since the set of edges E01 is a disjoint collection of r2 K4,4 graphs, using Lemma 3.1 one can set
the assignment S such that M01(S) ≤ −CA01. The maximum values of M0(S) and M1(S) are A0 and
A1 respectively. Also, by flipping the sign of S if necessary, one can simultaneously ensure that D(S) is
non-positive.
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Combining the above lemma with Lemma 2.1 we obtain,

(C + 2)H∗ ≤ −(C + 1)(A0 +A1) +A0 +A1 − CA01,

⇒ (C + 2)H∗ ≤ −C(A0 +A1 +A01),

⇒
(
C + 2

C

)
H∗ ≤ −(A0 +A1 +A01). (8)

Moreover, an appropriate assignment of S ensures that D(S) = −B. Thus, we also have the following
bound,

H∗ ≤ A0 +A1 +A01 −B.

Combining the above with Equation (8) yields,(
2(C + 2)

C
+ 1

)
H∗ ≤− 2(A0 +A1 +A01) + (A0 +A1 +A01 −B),

⇒ H∗ ≤−
(

C

3C + 4

)
(A0 +A1 +A01 +B)

which completes the proof of Theorem 1.2.
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