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Abstract

We describe a methodology for identifying and ranking

candidate audit targets from a database of prescription

drug claims. The relevant audit targets may include vari-

ous entities such as prescribers, patients and pharmacies,

who exhibit certain statistical behavior indicative of po-

tential fraud and abuse over the prescription claims dur-

ing a specified period of interest. Our overall approach

is consistent with related work in statistical methods for

detection of fraud and abuse, but has a relative emphasis

on three specific aspects: first, based on the assessment

of domain experts, certain focus areas are selected and

data elements pertinent to the audit analysis in each fo-

cus area are identified; second, specialized statistical mod-

els are developed to characterize the normalized baseline

behavior in each focus area; and third, statistical hypoth-

esis testing is used to identify entities that diverge sig-

nificantly from their expected behavior according to the

relevant baseline model. The application of this over-

all methodology to a prescription claims database from a

large health plan is considered in detail. Audit,Fraud and

Abuse

1 Introduction

The audit process for health care claims must take
into account two somewhat conflicting concerns. On
the one hand, health care costs must be controlled
by identifying and eliminating error, fraud and waste
in the claims settlement process. On the other hand,
within reason, the claims review process should not
inhibit or constrain legitimate medical professionals
and patients from achieving the best possible health

outcomes based on the most effective treatments.
This intrinsic dilemma is an understated yet over-
riding concern for the design and implementation of
a computer-aided audit methodology for health care
claims.

Most computer-aided audit systems invariably rely
on business rules of thumb or heuristics to discover
instances of fraud and abuse, although this approach
may have many limitations in the health care claims
context. For instance, these heuristics are often for-
mulated in an ad hoc fashion, and may not ade-
quately incorporate relevant domain knowledge and
data modeling expertise. Furthermore, a rigid ap-
plication of these heuristics may be inappropriate
in certain situations, and may lead to a large num-
ber of claims reviews that will undermine the utility
of the computer-aided audit process. Lastly, while
this approach may be quite adequate for subverting
the known or obvious patterns of fraud and abuse,
it may be less than adequate for unanticipated and
emerging patterns, or for sophisticated “under the
radar” schemes, since respectively, these either com-
pletely bypass or completely conform to the prevail-
ing heuristics. In the light of these limitations, this
class of computer-aided audit approaches may not
have the required flexibility and effectiveness for the
health care claims context.

Many aspects of the investigative process for de-
tecting fraud and abuse in health care claims are hu-
man intensive, and rely on the expertise of a small
number of professionals with specialized knowledge
and forensic skills. However, computer-aided audit
techniques are increasingly being used to supplement
the human-intensive effort, and in particular, may be
part of a preliminary screening process to identify a
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smaller set of targets for detailed investigation and
prosecution. The use of computer-aided audit tech-
niques as an adjunct and precursor to the human-
intensive process will be credible and effective, only
if the audit targets are provided with high selectivity
and, preferably, ranked in some order that empha-
sizes the severity of departure from expected audit
norms. In addition, the results should be supported
by a deep-dive analysis that provides background ev-
idence for investigating the top-ranked audit targets.
The need for high selectivity in identifying poten-
tial audit targets is equivalent to ensuring that the
number of false positives (among the top-ranked tar-
gets) and false negatives (among the bottom-ranked
targets) is small, since each false positive represents
wasted time and effort in an essentially futile audit
investigation, while each false negative represents a
monetary loss due to an undetected instance of fraud
and abuse in the audit process.

The development of a suitable computer-aided au-
dit methodology can be an iterative process where,
for instance, the results from the initial implementa-
tion may reveal certain deficiencies that can be over-
come by incorporating additional data elements and
algorithmic refinements. However, the difficulty with
carrying through this iterative process in the health
care claims context, is that the confirmation of the
false positives and false negatives is expensive and
time-consuming, so that the required feedback is un-
likely to be provided in a timely fashion. Therefore,
it is highly desirable to be able to identify poten-
tial audit targets with high selectivity in the first ef-
fort itself, without any expectation of confirmatory
feedback on the results; this, in turn, is only possi-
ble by incorporating a high level of domain exper-
tise supported by all relevant data elements in the
computer-aided audit analysis, rather than deferring
these considerations to the human-intensive steps in
the deep-dive analysis. This aspect is quite cru-
cial for the successful implementation of a computer-
aided audit process, but is particularly challenging to
achieve in the health care domain, where the claims
circumstances are often obscured by complex medi-
cal diagnoses, the immense variety of procedures and
treatment protocols, and by the pharmacological sub-
tleties of the prescribed medications. The inclusion

of all these relevant factors, consequently, leads to
a very high-dimensional, albeit sparse, set of predic-
tors, and a particular novelty of our approach, as de-
scribed further below, is the use of specialized tech-
niques for storing and processing the claims data in
order to perform this modeling and analysis in an
efficient, even tractable, manner.

The scope and extent of health care fraud is de-
scribed in [22], who also advocate the use of statisti-
cal methods for detecting fraud and abuse in various
scenarios such as identity theft, fictitious or deceased
beneficiaries, prescription forgery, phantom or dupli-
cate billing, bill padding, upcoding of services and
equipment, and service unbundling [23].

In contrast, our approach in this paper, as applied
to fraud and abuse in prescription claims data, is to
specifically identify those entities who are associated
with abnormal and excessive prescriptions for certain
classes of medications that are of great concern and
interest from an audit perspective. In particular, we
do not attempt to develop statistical models for each
individual scenario above [23] that might be the un-
derlying mechanism for any of these abnormal and ex-
cessive prescriptions (e.g., forged prescriptions, doc-
tor shopping, or prescription selling); instead, devia-
tions from normative or baseline behavior are identi-
fied, taking into account the particular context of the
interaction between the patient, prescriber and phar-
macy for each prescription claim, and aggregated over
the set of claims for each entity.

Although this approach and methodology has been
described here for prescription claims data, it can be
seen to be quite broadly applicable to many other fo-
cus areas in health care claims. However, there are
some compelling reasons for considering prescription
claims audit as an initial priority, even if the financial
impact may be greater in some of the other focus ar-
eas in health care claims. First, as pointed out to us
by the audit group at the large health care plan that
advised this project, any fraudulent activity in the
prescription claims data is often the proverbial tip
of the iceberg, and can lead to the unravelling of a
chain of supporting fraudulent billing claims for med-
ical treatments and office visits involving the same
entities. Second, the societal impact of prescription
fraud is staggering and disproportionate to its direct
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financial impact, since it is one of the main conduits
for the illegal diversion of drugs, which is responsible
for the huge challenges of substance abuse and ad-
diction, drug shortages, and an active black market
that involves and compromises the health of legiti-
mate patients [11, 17].

In the health care claims domain, fraud detection
can be carried out in both off-line or on-line modes
of analysis (e.g., see [1], who consider both these
modes for prescription fraud detection). In the off-
line mode, the analysis can be used by audit investi-
gators to augment the process of retrospectively re-
viewing claims data in order to identify target enti-
ties for further investigation. In the on-line mode,
the emphasis is on early and reliable identification
of a potential fraud outcome, either from an isolated
claim, or from an aggregate set of claims, so that
an appropriate early intervention can be initiated to
restrict further losses associated with the suspected
outcome.

The impact of computer-aided fraud detection
methodologies for claims auditing must be evaluated
carefully in terms of its repercussions in the health
care domain, similar to the issues discussed in [8, 10].
For instance, the anticipated changes in the prescrib-
ing patterns of opiods induced by any enhancements
in the prescription claims audit process, may lead
to pro-active concerns from patients that their treat-
ment options are compromised (e.g., patients who
suffer from chronic pain symptoms that are effec-
tively treated by this class of drugs). This issue is
related to, and subsumed by, a larger set of concerns,
viz., the possible impact of aggressive fraud detection
systems on legitimate medical services and practices
(e.g., leading to excessive delays in claims process-
ing and reimbursement, or even to incorrect claims
denials).

Our overall approach described here is consis-
tent with previous work on statistical methods for
detection of fraud and abuse in various domains
such as financial trading, credit card transactions,
telecommunications, network intrusion and health
care [3, 4, 21, 2, 7, 1]. We direct the reader to survey
papers on fraud detection, from a general perspective
in [18], and from a specific health care perspective
in [16]. In contrast with much of this work, however,

our approach does not require any explicitly labeled
instances of fraudulent claims or entities. This as-
pect may rule out the use of techniques for directly
modeling the fraud outcomes based on supervised or
semi-supervised statistical methods. However, in the
health care domain, as observed earlier, the rapidly-
changing nature of the fraud and abuse concerns, as
well as the difficulty in obtaining timely feedback and
validation on potential fraud cases, provides a good
rationale for adopting the approach that is proposed
here.

We now compare and contrast our approach with
the closest previous work that we are aware of [1, 12],
which in particular, also share the same characteristic
of not requiring any explicitly labeled instances of
fraudulent claims or entities in the analysis.

For instance, [1] consider fraud detection in pre-
scription claims data using both the off-line and on-
line application modes. The historical claims data
was used to obtain pairwise co-occurrence frequen-
cies in the individual prescriptions for each medica-
tion (drug) in combination with other factors such as
age, gender, medical diagnosis, or other co-prescribed
medications. A notion of risk (i.e., likelihood of
fraud) was associated with the particular medication
in a given prescription claim, for each of these co-
occurrence dimensions. This risk value was specified
using an exponential scale, which intuitively assigns
a very high value when remaining factors in the given
prescription claim have small values for the relevant
co-occurrence frequencies, when compared to appro-
priate reference frequencies. Based on domain ex-
pertise, appropriate thresholds were defined for each
risk score, and claims with risk scores above these
thresholds were flagged, and the associated trigger
conditions were also provided. In contrast to this
approach [1], our approach is, first, to identify enti-
ties (prescribers, pharmacies, patients) who exhibit
abnormal prescription behavior in the off-line audit
setting, with sufficient statistical evidence over multi-
ple claims instances to justify further audit investiga-
tion. Second, the baseline model for normal behavior
(note that in this case, the behavior that is being
modelled is the prescription rate for a specific medi-
cation, or specific class of medications), is capable of
representing the more complex and high-dimensional
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interactions that are inherent in claims data. For
instance, any patient medical history, such as pa-
tient medication profile, that can be gleaned from
the anonymized claims data, can also be used to re-
fine the normalizations in the expected prescription
behavior. Similarly, prescriber attributes (e.g., their
practice and specialties, and their profiles and pat-
tern of diagnoses and procedures) can also be used
in a similar way. The appropriate set of condition-
ing attributes and their interactions, is not predefined
but rather determined from data, and this attribute
selection is based on rigorous statistical criteria cus-
tomized to each individual segment in the attribute
space that is homogeneous in the model response.
The need for such complex behavioral models based
on the analysis of sparse, high-dimensional data is il-
lustrated below with several examples. Finally, one
essential difference between [1] and our work, is that
for the claims data set that was used here, it was
not possible to link individual prescriptions to a cor-
responding single-valued patient diagnosis. We note
that in general, prescription claims are filed by the
pharmacy and contain the medication information,
while medical claims are filed by the prescriber and
contain the diagnosis information. These two sets
of claims may even be handled by different insurance
programs. The correspondence between the prescrip-
tion and medical claims data requires having linked
patient information between the two sets of claims;
and even when this linked patient information is pro-
vided accurately, elicitation of the direct correspon-
dence between an individual prescription claim and
an individual medical claim in these two disparate
claims data sets will be an imperfect exercise at best.

We have adopted much of our methodology
from [12], although that work is concerned with ex-
pense auditing for corporate travel and entertain-
ment. For instance, [12] consider expense claims
submitted by employees in various focus areas (e.g.,
different categories such as ground transportation,
restaurant tips, etc.), and the expense claims of dis-
tinct auditable entities, such as individuals or even
entire departments, was evaluated in these focus ar-
eas. For each entity, any abnormal behavior was high-
lighted if there were significant departures from the
expected behavior posited by a normalized baseline

model for that focus area. This approach assumes
that any abnormal behavior is only exhibited in a
small fraction of the overall set of expense claims so
that normalized baseline models can be reliably es-
timated. The identification of the entities with ab-
normal behavior is then based on a Likelihood Ra-
tio (LR) score, which is computed from the actual
behavior over the set of encounters for each entity,
relative to the predictions of the normalized baseline
model over this same set of encounters. The statisti-
cal significance of this LR score is based on evaluation
of the relevant p-values using Monte Carlo methods
similar to those used in scan statistics [13]. In spite
of the similarities in the overall approach, the health
care domain is significantly more challenging in the
terms of the data and modeling complexities. For
this reason, we have developed new algorithms, as
described further below, which are based on learn-
ing homogeneous segments for the model response
in a given focus area from sparse, high-dimensional
data. For any focus drug or drug class that is of
audit interest, the model response used in the base-
line model is the corresponding prescription rate, and
from this baseline model, entities with significant ab-
normal behavior are then ascertained using methods
similar to [12, 13].

To summarize, we describe a methodology for the
off-line application of fraud detection to augment the
audit and investigative process for prescription claims
data. The proposed approach relies on incorporat-
ing all available data (e.g., diagnosis codes, procedure
codes, medication history, and other prescriber and
patient attributes). The baseline models that we ob-
tain are often relatively easy to interpret and, when
this is the case, they can be described to audit in-
vestigators and domain experts in an intuitive and
transparent format that encourages discussion and
constructive feedback. From the technical perspec-
tive, the main goal in developing this methodology
has been to reduce the false alarm rate for selecting
candidates for the audit investigation process. Conse-
quently, the goal is to provide a good balance between
maintaining program integrity and cost containment
on the one hand, and providing good health outcomes
and ensuring appropriate patient care on the other.

An overview of this report is as follows. Section 2
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provides the project background, and describes the
prescription claims data set that was used in our
analyses. Section 3 describes some of the scenarios
and focus areas that we have identified as important
for prescription claims fraud and abuse. Section 4
describes our methodology and algorithms, including
the rule-generation algorithm that is used to obtain
normalized baseline models in a scalable and efficient
way, the scoring of entities to identify abnormal be-
havior, and the selection and ranking of these entities
for further investigation. Section 5 discusses the em-
pirical evaluation and results, and provides analyses
for audit investigations in four different drug ther-
apeutic classes. Section 6 describes the significance
and impact of the work, and a discussion of some
extensions that are of ongoing interest. Section 7
provides a concluding summary.

2 Background and Motivation

Our project to develop methods for computer-aided
auditing of prescription claims data was done in part-
nership with the audit group responsible for detect-
ing and preventing fraud and abuse within a large
health care plan. The prescription claims data set
used in the analysis was obtained from the fee-for-
service part of the health plan, and included pre-
scriptions that were dispensed in both in-patient and
out-patient settings.

The individual records in this prescription claims
data set contained the relevant recorded informa-
tion, including the participating pharmacist, pa-
tient, prescriber, formulary, prescription frequency,
length and dosage, and the claims and co-payment
amounts. (All patient information was encrypted and
anonymized in compliance with the Health Insurance
Portability and Accountability Act privacy require-
ments).

Other supporting data tables included a list of cer-
tified prescriber profession codes, prescriber specialty
codes (which were often self reported and possibly
unverified), and a drug classification table (which
contained the packaging, dosage, formulation and
drug therapeutic class for each individual formulary).
Other relevant information such as the descriptive de-

tails for the International Classification of Diseases,
9th Revision (ICD-9) codes, the Current Procedural
Terminology (CPT) codes, and the Clinical Classifi-
cations Software (CCS) codes, were all obtained from
reliable public sources.

In addition to the prescription claims, a set of sup-
porting medical claims data was also acquired for all
the patients in the prescription claims database. This
additional data was obtained after the initial data
analysis indicated that the medical claims would be
useful for constructing an objective profile for the pa-
tients and prescribers, and for establishing the med-
ical context for individual prescription claims.

In summary, for the audit analyses corresponding
to a certain analysis time window of interest, the pre-
scribers were profiled by their top diagnoses codes
and top procedure codes from the medical claims data
in a certain history time window (this history time
window typically consists of the period up to and in-
cluding the analysis time window). The patients, on
the other hand, were profiled by gender, age inter-
val, and by their medications taken in the history
time window. In this profile, the medications are ab-
stracted to the drug therapeutic class level (compris-
ing of around 90 distinct classes) to avoid a prolifer-
ation of profile elements corresponding to equivalent
or very similar medications.

For the experiments reported in this paper, a three
month period in 2011 was chosen as the history win-
dow to extract the prescriber and patient profiles.
The analysis window was the last month of the his-
tory window. In order to report on the generaliza-
tion performance of the model, we split the data in
the analysis window into equal sized training and test
sets. Since we will illustrate our methods using exam-
ples of abnormal prescribers, the training/test split
was done based on prescribers (i.e., all the transac-
tions in the analysis window for any given prescriber
were either entirely in the training data set or entirely
in the test data set). In a production setting, the en-
tire data will typically be used for training. The rule
list generation system was given the entire data in the
training set, and the relevant data summaries were
then listed to provide the scale at which the analyses
were done. To give an idea of the scale of the data
used in the experiments described in this paper, the

5



training set consisted of 8.1 million individual drug
prescriptions involving some 2.3 million patients, 4.5
thousand pharmacists, 99 thousand prescribers, and
19 thousand distinct formulary codes. The patient
drug profile based on the three-month history win-
dow had around 11.8 million elements.

3 Prescription Drug Fraud and
Abuse Scenarios

Most cases of prescription drug fraud and abuse are
associated with specific drugs which invariably belong
to two categories: the first consists of high-volume
drugs that can be resold to pharmacies and double-
billed to the health plan, while the second consists of
drugs that have high street value due to their associ-
ation with non-medical and recreational abuse.

Our analyses have been primarily directed towards
the second category of drugs mentioned above and,
in particular, the focus areas for modeling prescrip-
tion rate behavior are defined at the drug therapeutic
class level, specifically on four classes listed below:

• Narcotic Analgesics: This class contains two
of the most widely abused prescription medica-
tions, oxycodone and hydrocodone, and also con-
tains a variety of combination drugs which are
often abused because they may have less strin-
gent controls on dispensing and distribution.

• Ataractics-Tranquilizers: This class includes
medications with benzodiazepines that are pre-
scribed as anti-anxiety drugs but are also sus-
ceptible to addiction and abuse.

• CNS Stimulants: This class includes medications
like the generic methylphenidate that are pre-
scribed for attention deficit hyperactivity disor-
der (ADHD), but are also abused due to their
euphoria-inducing effects.

• Amphetamine Preparations: These drugs are of-
ten abused for their performance-enhancing ben-
efits and euphoria-inducing effects.

Our approach to defining the focus areas at this
level of abstraction is a simplification. For example,

Figure 1: Schematic of methodology for identifying
entities with potential abnormal claims behavior

from an addiction and abuse perspective, the specific
active ingredients in various drugs, their potencies
and equivalences, and their normal dosage and pre-
scription frequencies are also considered to be impor-
tant by domain experts. However, such a detailed
analysis would require deeper pharmacological do-
main expertise, as well the development of quanti-
tative models that can capture this expertise in the
analyses. Nevertheless, despite simplifications, the
choice of focus areas at the abstraction level of the
drug therapeutic class provides a good starting point
for obtaining useful results.

4 Methods and Technical Solu-
tions

A schematic overview of the analytical methodology
is described in Figure 1, which consists of three steps,
viz., first, the selection of a focus area and construc-
tion of a baseline model to predict the expected be-
havior of all entities in this focus area; second, the
scoring of each entity based on its encounters in the
analysis time window with respect to the baseline
model; and third, the ranking and selection of scored
entities as potential audit targets for fraud and abuse.

A basic assumption in this methodology is that the
majority of data to be audited consists of normal pat-
terns of behavior, so that robust estimates are ob-
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tained for the baseline models without explicit labels
for abnormal transactions. In addition, we note that
any abnormal behavior may not always be a conse-
quence of fraud or abuse, since incomplete data, in-
correct data and lack of context may also contribute
to the observed abnormal behavior.

4.1 Baseline Model Structure

The baseline model is developed separately for each
focus drug class. Each distinct combination of a pre-
scriber (e.g., physician, nurse practitioner), a patient
and a pharmacy that is encountered in the analy-
sis time window period in the prescription claims
data represents an instance for learning the baseline
model. For each such instance, the counts of the total
number of prescriptions and the counts for prescrip-
tions of the focus drug therapeutic class are obtained.
The proportion of these two quantities is the focus
drug “prescription rate” which is modeled.

The baseline model is generated by learning the
relationship between patient and prescriber profiles,
and the rate of focus drug prescriptions. While our
methodology can also incorporate pharmacy charac-
teristics in a straightforward way, these are typically
not of primary relevance for determining the prescrip-
tion rate. Therefore for brevity, the discussion of re-
sults with the pharmacy profiles is not included in
this paper.

While there are many possible model structures
that can be used for obtaining the baseline models,
we chose a rule list model structure to segment the
sparse high dimensional input space into relatively
homogeneous segments with respect to the prescrip-
tion rates. These models have a transparent struc-
ture, which allows for an easy inspection and valida-
tion of the model details by expert audit investiga-
tors. Another reason for the choice of rule list model
structure is its ability to capture the broad segments
of prescribing behavior for any focus drug class that
can be determined using only claims data. The algo-
rithm to generate the rule list model was tailored to
this application and is described in the next subsec-
tion.

Clearly, predicting whether a prescription for a cer-
tain focus drug class will be given in any specific en-

counter between a prescriber and a patient requires
detailed information about the patient profile (e.g.,
health status, diagnostic history and test results) and
the prescriber profile (e.g., specialization and clinical
expertise). However, due to various technical rea-
sons, at the present point the prescription claims and
medical claims data could only be linked for the pre-
scribers, and hence, the analyses and results reported
in this paper were only obtained with prescriber pro-
files. In future work, we expect to resolve the techni-
cal reasons, and be able to incorporate the relevant
patient profiles and medical history in the analyses,
since this may lead to further improvements in the
quality of the baseline model predictions.

As mentioned earlier, the prescriber and patient
profiles are represented in a sparse binary form and
are based on the claims data in the history window.
Our initial approach for generating prescriber pro-
files was to use the information on the profession
codes and specialty codes elements that was provided
with the claims data. However, the profession codes,
which cover broad licensing categories, are too coarse
to be useful. The specialty codes, which are self-
reported and unverified, are often inconsistent and
missing. Therefore, after this initial experimenta-
tion, rather than using either of these data elements,
we instead characterized prescribers by their clini-
cal behavior as gleaned from the claims data. For
each prescriber, these profile elements included their
top five diagnoses (abstracted to the first three dig-
its/characters in the ICD-9 taxonomy), and their top
five procedures (abstracted to the corresponding CCS
classifications for single level procedures developed
by Agency for Healthcare Research and Quality [5]).
Based on our experiments, this new approach for ob-
taining the prescriber profiles is a much more ob-
jective reflection of the patient population that they
serve and the medical conditions that they treat.

For the patient, the profile elements included gen-
der and age intervals which were dummy-encoded to
separate out children under 11 years, with the re-
maining population in 20-year interval bins (e.g., 11–
30 years, 31–50 years, etc.). In addition, the patient
profile elements also included their drug usage pro-
files in the history time window (abstracted at the
drug therapeutic class level). Note that the focus
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drug class being modeled is not included as a predic-
tor in the patient drug profile, in order to avoid circu-
larity, and to ensure that the resulting model can use
the patient conditions in terms of usage in the other
drug classes that influence the prescription rate in the
focus drug class. Finally, for clarity, we note here and
further emphasize in Section 6, that our models use
aggregate data over identical encounters during the
history time window, and therefore do not attempt
to model the temporal aspects of prescription behav-
ior in this short time period, either for patients or for
prescribers,

4.2 Rule List Model Generation

The algorithm for rule list model generation is tai-
lored to the characteristics of the sparse data that
arise in this domain. All the inputs are either nat-
urally in binary form (e.g., presence or absence of
diagnoses or procedures) or have been transformed
into binary form by binning (e.g., age). The struc-
ture of the rule list model is an ordered list of rules
where each rule is a conjunction of terms and each
term specifies either the presence or the absence of
some input binary variable. As in any ordered rule
list model, an instance is said to be covered by a par-
ticular rule R if it satisfies the conditions of rule R
but not those of any rule preceding R in the rule list.
Hence, the rule list partitions all instances into dis-
joint segments corresponding to each of the rules and
a default segment covering instances not covered by
any rule in the list. There is a predicted rate of fo-
cus drug prescriptions associated with each segment
(including the default segment).

The rule list generation algorithm is sketched out
in Figure 2. The algorithm starts out with an empty
rule list and all the training instances to be covered.
Each iteration of the outer loop potentially adds a
rule R to the rule list RL. Each iteration of the inner
loop potentially adds a term T to the current rule R
being generated. The criterion used to select the term
for possible addition to the rule and the stopping cri-
teria for rule refinement and rule list expansion are
tailored for this application. The candidate term for
addition to the rule is selected in a greedy fashion us-
ing the metric from a Likelihood Ratio Test (LRT) as

xAlgorithm: Generate Rule List
Initialize RL to empty.
Initialize set S of instances = training set
L1: Loop Forever (add rule to rule list)

Initialize current rule R to null
L2: Loop Forever (add term to rule)

For each possible additional term
Evaluate each term
Greedily select best term T
Check significance of chosen term T
If significant

Add best term T to current rule R
If not significant and rule R is not null

Add rule R to rule list RL in order
Remove instances covered by R from S
Exit inner loop L2

If not significant and rule R is null
Exit outer loop L1

end loop L2
end loop L1

end algorithm

Figure 2: Schematic of rule list generation algorithm.

described next using the illustration in Figure 3. We
consider all terms that have not already been used
in the current rule being generated (in any order).
For each candidate term T, the LRT compares two
hypotheses for modeling the instance space S at that
point. The null hypothesis models the entire set of
instances S with a single Bernoulli model using the
mean rate over S. The alternate hypothesis models
the instances R∩T covered by the candidate updated
rule (R with term T added) and those remaining in S
using separate Bernoulli distributions with their re-
spective mean rates. The candidate term T with the
highest LRT scores is chosen greedily for considera-
tion. However, it is added to the rule R only if a
second LRT test passes a significance threshold. The
second LRT test considers only the instances covered
by the rule R. The null hypothesis models these in-
stances with a single Bernoulli distribution using the
mean rate over R. The alternate hypothesis models
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Figure 3: Greedy term selection illustration

the instances in R ∩ T and the remaining instances
in R using separate Bernoulli distributions with their
respective mean rates. The term T is added to the
rule R only if the second LRT test is significant at a
user specified threshold. This significance test based
heuristic for adding terms (and rules) is the reason
the rule list model tends to not overfit the training
data as experimental results indicate.

We will use examples of rules from one of our ap-
plications to further clarify the intuition behind our
heuristic. Consider an intermediate stage in the rule
list generation process with the focus on tranquil-
izers. After three rules had been generated in se-
quence, there were 1,669,832 instances of the triplet
(prescriber, patient, pharmacy) to be covered by the
remaining rules and the corresponding rate for tran-
quilizer prescriptions for these instances was 2.2%.
The first term chosen for consideration to build the
fourth rule restricted the prescribers with “Distur-
bance of conduct” as one of their top five diagnoses.
The rule with just this one term resulted in a segment
(refer to region R in Figure 3) with 6,415 instances
and a significantly higher rate of tranquilizer pre-
scription at 20.5%. The next term to be considered
by the greedy heuristic was to further refine the al-
lowed set of prescribers by adding the constraint that
the procedure “Psychological and psychiatric evalu-

ation and therapy” was one of their top five proce-
dures. This additional term satisfied the significance
threshold for the second LRT and further refined the
space (refer to region R∩T in Figure 3) to have only
2,252 instances but with an even higher tranquilizer
prescription rate of 38.7%. This example illustrates
how using prescribers top diagnoses and procedures
allows refinement in the model beyond the broad spe-
cialty categories we also had available. Two more
terms were added to further refine this segment to
finally cover 2,106 instances with a tranquilizer pre-
scription rate of 40.2%. The corresponding prescrip-
tion rate for this segment in the test set was 36.2%.

Continuing with the same rule list, we will also
consider the next rule generated to illustrate the role
of patient attributes in the model. The tranquilizer
rate in the 1,667,726 remaining instances was 2.15%.
The first term chosen for the next rule was to con-
sider patients who had filled at least one prescrip-
tion for anti-arthritics (in the history time window)
to start the definition of a segment with lower (than
2.15%) rate of tranquilizer prescriptions. The rule
generator added 18 additional terms related to other
medications (e.g., anti-depressants, anti-convulsants
etc.) and related to prescribers based on their top
diagnoses and procedures. The final segment de-
fined by this rule had 321,580 instances with a signif-
icantly lower rate of 0.47% for tranquilizer prescrip-
tions. The corresponding prescription rate for this
segment in the test set was 0.5%. This also illustrates
how the model allows for complex interactions to be
modeled from the data; the segment in this exam-
ple cannot be modeled by only considering pairwise
interactions [1].

Next, we will contrast our rule generation heuristic
with that used in classical algorithms like FOIL and
RIPPER [19, 6]. First, our rule generator typically
mixes in rules with either low or high rates in the
ordered rule list being generated based on the LRT
metric. Secondly, consider a hypothetical stage in
the rule generation where the instance space to be
covered has a total prescription count of 1000 and a
focus drug count of 20, corresponding to a rate of 2%.
Suppose there were two interesting choices of binary
variables to build the next rule. Choice A partitions
the space into two sub-spaces with (focus drug count,

9



total count, focus drug rate) values of (19, 400, 4.75%)
and (1, 600, 0.17%). Choice B, on the other hand,
partitions the space into two sub-spaces with (fo-
cus drug count, total count, focus drug rate) val-
ues of (5, 9, 55.6%) and (15, 991, 1.51%). The FOIL
information gain metric would prefer choice B over
choice A, whereas, our LRT based heuristic would
pick choice A. This is consistent with our desire to
build rules with significant evidence in the data and
is consisten with the approach used for entity scoring
that is described in the next subsection. In conse-
quence, we have found empirically that subsequent
phases to perturb and refine the rule list provide lim-
ited improvement to the model quality in contrast
with many other rule generation algorithms.

Our heuristic leads to a rule refinement and rule
list generation process that is self limiting, so that
the generated rule lists do not overfit the training
data when the user-defined threshold for the p-value
is set quite low (e.g., 0.0001) as shown in the ex-
perimental results section. The number of segments
and their sizes are not explicitly controlled with user
specified parameters, but fall out as a consequence
of the recursive partitioning process as the sequential
list of rules is generated using the heuristic based on
the significance tests described above. This is also
illustrated in the results section.

The final step in the generation of the rule-list
based baseline model is to determine the predicted
rates of the focus drug class. For each segment in-
duced by the rule list model the predicted focus drug
class rate is simply the mean rate observed in the
training set instances covered by the segment. We
would anticipate some segments to cover situations
where high rates of focus drug prescriptions are ex-
pected and others to cover circumstances that typi-
cally have very low rates.

4.3 Entity Scoring for Abnormalities

The rule list baseline model represents the expected
behavior for focus drug prescriptions under various
circumstances as represented in the rules involving
patient and prescriber characteristics. The next step
in the methodology is to score the target entities (pre-
scriber, patient or pharmacy) quantifying their exces-

sive prescriptions for the focus drug as measured by
the deviation from the baseline model. It is impor-
tant to note that a target entity can have prescrip-
tion activity that falls into more than one segment. A
simple example of this could be a physician when pre-
scribing for a child is covered by a different segment
(rule) when compared to the same physician prescrib-
ing for an adult. The scoring for an entity should ag-
gregate the deviation from the baseline model over all
the segments that the prescription activity falls into.
The scoring for an entity should reflect the magni-
tude of the deviation and the volume of transactions
with excessive prescription rates. Scoring is based on
Likelihood Ratio Tests as in previous work in spatial
scan statistics [13, 14].

The score for an entity E (e.g., a prescriber) is com-
puted as follows. Consider each segment S defined by
the baseline model. In this segment S, let A be the
total count of prescriptions in S and F be the count
for the subset corresponding to focus drug prescrip-
tions. The expected rate of focus drug prescriptions
for this segment is F/A. Consider all the data in-
stances d for E that belong to the segment S. Let
a and f be the counts for all prescriptions and focus
drug prescriptions in d, respectively. Then the contri-
bution to the score for entity E from this segment S
is given by computing the log likelihood ratio based
on the Bernoulli distribution as shown below. The
score contributions for entity E from each segment S
are aggregated by summing up after assigning a sign
to each contribution based on whether the focus drug
rate for the entity in that segment was higher (+) or
lower (−) than the expected rate in the segment [14].

The entity scores can be transformed to more
meaningful values by estimating the corresponding p-
values. Monte Carlo methods provide a direct way for
estimation [13]. The distribution of these scores un-
der the null hypothesis as represented by the baseline
model can be determined empirically by performing
N randomized experiments as follows. In each ex-
periment, a synthesized data set is created where the
number of focus drug prescriptions for each instance I
is determined using pseudo-random generators mod-
eling the Bernoulli distribution with the focus drug
rate expected for the segment that instance I belongs
to. The maximum score achieved by any entity using
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this synthesized data set is recorded. The set of these
maximum scores achieved in the N Monte Carlo ex-
periments is used to transform the entity score to the
estimated p-value [13].

Score(E,S) =f log f/a + (a− f) log(a− f)/a

+ (F − f) log(F − f)/(A− a)

− F logF/A− (A− F ) log(A− F )/A

+ [(A− a)− (F − f)]

× log [(A− a− F + f)/(A− a)] .

(1)

5 Empirical Evaluation and
Results

This section has the experimental results from the
analyses of prescription claims over a three month
time window in 2011 for all the focus drug classes
discussed in Section 3. First, we assess the ability of
the baseline models to explain the need for focus drug
prescriptions. Then, we apply these baseline models
to score and rank entities based on their abnormal
behavioral patterns of excessive prescriptions for each
of these focus drug classes.

5.1 Baseline Model Evaluation

The baseline model was evaluated using a 50-50 train-
ing/test split of the data. Figure 4 shows the ROC
curves for the four focus drug classes. Table 1 has the
key characteristics of the baseline model including the
area under the ROC curve (AUC). The AUC metrics
achieved (in the range 0.8–0.9) for both training and
test sets indicate an acceptable baseline model that
does not overfit the training data.

The number of segments in the baseline model
ranges from 29 to 127 considering the four drug
classes. The number of variables used as terms in the
rule list range from 123 to 506. The baseline model
for the narcotic analgesic class is the most complex
utilizing 506 variables in the rule terms out of the
1281 available binary variables. The next subsection
explores the baseline model for the narcotic analgesic
class further.
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Figure 4: Baseline models:Recall versus False Posi-
tive Rate (Solid: Amphetamine Preparations, Dash-
dotted: Ataractics-Tranquilizers, Dotted: CNS stim-
ulants, and Dashed: Narcotics, Analgesics)

5.2 Baseline Model: Example Rules
and Details

Some examples of segment defining rules that were
generated in the baseline model for the narcotic anal-
gesics drug class are given below.

• A rule with 29 terms covers children ages 10
and under and predicts them to have very low
rates (0.16%) of prescriptions for narcotic anal-
gesics compared to the base rate across the en-
tire population (3.5%) when they are not seen
by prescribers who perform various surgical and
dental procedures. (Approximately 319,000 and
329,000 instances are covered by this rule in the
training and test set, respectively.)

• A rule with 62 terms covers patients ages 11
through 70 who are taking muscle relaxants but
are not on certain other medications (e.g., for
diabetes) when they see certain types of pre-
scribers (e.g., exclude gastroenterologists, ex-
clude prescribers treating the lacrimal system)
and predicts that they will have a moder-
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Focus No. of No. of AUC
drug class segments variables train test

A 127 506 0.83 0.81
B 86 283 0.88 0.88
C 29 123 0.92 0.91
D 46 151 0.83 0.81

Table 1: Baseline models: Characteristics and Per-
formance. The focus drug classes are: A. Nar-
cotics, Analgesics, B. Ataractics-Tranquilizers, C.
Amphetamine Preparations, and D. CNS Stimulants

ately high narcotic analgesic prescription rate
(15.3%). (Approximately 88,600 and 90,900 in-
stances are covered by this rule in the training
and test set, respectively.)

• A rule with 21 terms covers older patients (age >
70) and predicts them to have low rates (0.19%)
of narcotic analgesic prescriptions if they are
not also taking muscle relaxants, certain antibi-
otics and have not been administered certain
local anesthetics and when they are not seeing
prescribers who typically perform various sur-
gical procedures. (Approximately 147,000 and
140,000 instances are covered by this rule in the
training and test set, respectively.)

As illustrated above, rules can have many terms to
include or exclude patient conditions based on their
medications and the type of prescribers they are see-
ing. A review of some of these rule terms with do-
main experts and the literature suggests that rules
are extracting patterns from the data that conform
to known phenomena like drug/disease or drug/drug
interactions (e.g., narcotic analgesics and hypothy-
roidism). Such patterns are not easy to incorporate
into investigations and analyses done manually.

The model induces segments whose size span sev-
eral orders of magnitude, as seen in Figure 5. This
figure plots a measure of segment size (total num-
ber of prescriptions covered in the training and test
sets) on the x-axis (log scale) and the rate of narcotic
analgesic drug prescriptions on the y-axis (log scale).
The horizontal line marks the overall base rate of

1e+01 1e+03 1e+05

5
e

−
0

4
1

e
−

0
2

5
e

−
0

1

Segment size (number of prescriptions)

P
re

s
c
ri

p
to

n
 r

a
te

Figure 5: Narcotics prescription rates by segment size

around 3.5% for narcotic analgesics. The model has
identified small and medium size segments with rel-
atively high rates and some medium and large seg-
ments with low rates. This figure also illustrates
that there is room for improvement in the baseline
model by having more of the identified segments (big
and small) have expected rates significantly higher or
lower than the overall base rate. As mentioned ear-
lier, without clinical data one would not expect en-
counter level prediction for a drug class prescription.
But having patient linked diagnoses and procedure
codes will help improve the baseline model signifi-
cantly. For example, one of the rules indicates that
high rates of narcotic analgesic prescriptions (52%)
are expected when patients see prescribers perform-
ing surgical procedures on joints (with some exclu-
sions). The model cannot refine this further without
data on procedures and diagnoses linked to patients.
This additional data would allow separation of en-
counters that involved, for example, orthopedic surg-
eries from those that simply were consults not leading
to any surgical intervention.
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Entity Total Focus Score
prescrip- drug

tions prescriptions
actual expected

1 1245 849 103 1771
2 4072 2504 1223 1273
3 746 643 85 1250
4 1257 712 143 1029
5 3010 646 78 1025
6 1730 953 253 928
7 2098 961 262 921
8 1037 676 147 885
9 2668 831 346 842
10 958 640 132 774

Table 2: Examples of entities identified by the model

5.3 Entities Identified: Examples

Our methodology, described in Section 4, utilizes the
baseline model to identify entities with abnormal be-
havior with respect to prescriptions for any chosen
focus drug class. Since the instance in our data and
analyses is defined by the triplet (prescriber, phar-
macy, patient), the model can be used to identify
prescribers, pharmacies or patients with abnormal
behaviors. We will illustrate the application of our
models by focusing on prescribers. The characteris-
tics of some of the prescribers identified by the model
as being abnormally excessive in the prescribing of
narcotic analgesics are given in Table 2. The table
has actual counts for the focus drug prescriptions
and total prescriptions in a 3 month analysis win-
dow for these prescribers. The expected number of
focus drug prescriptions estimated by the model is
also shown. The very high LR based scores for these
entities correspond to p-values < 0.0001. It is in-
teresting to note that the expected rate for narcotic
analgesics for these entities ranges from 2.6% to 30%,
considering all their encounters with patients. Their
scoring and ranking for being abnormally excessive
is being done taking into account these widely vary-
ing expectations on prescribing behavior for narcotic
analgesics.

The validation of the entities identified by the

model as being abnormal and excessive in focus drug
prescriptions is ongoing. The validation process is
done at various levels of rigor and human expert in-
volvement. The first level of validation that we have
completed is to determine if the model identified list
includes the few known cases of fraud. For the nar-
cotic analgesics drug class, all the known cases of
fraud were correctly identified by the model as be-
ing very abnormal and excessive.

The next level of validation will be to have investi-
gators and audit experts manually evaluate whether a
sample of the specific entities identified by the model
are suitable candidates for further investigation.

6 Significance, Impact and Dis-
cussion

The objective of the methodology described in this
report is to consider a given focus area or scenario
in the health care claims context, and obtain ranked
lists that selectively identify entities with behavior
that is indicative of potential fraud and abuse in this
scenario. Our approach significantly extends the oft-
used approach of identifying entities as audit targets
based on simply ranking them according to some ag-
gregate metrics (such as prescription counts or pre-
scription rates). Even though these aggregate met-
rics may be intuitive and relevant, they ignore any
normalizations that would explain and account for
much of the behavior in these aggregate metrics, and
which would hence modify the rankings considerably.
Furthermore, our approach also goes beyond the ap-
proaches for normalizing the expected behavior of
each entity based on the consideration of their peer
groups at the entity level, since our baseline model is
able to capture the relevant normalization from the
data at finer level of granularity than the peer group,
namely, at each individual and distinct encounter be-
tween the prescriber and patient. Our models and
methodology, by virtue of using detailed patient and
prescriber profiles based on a considerable amount of
relevant context that includes medications, diagnoses
and procedures, is more likely to detect “under the
radar” cases where claims and supporting data have
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been misreported or intentionally falsified to cover
the fraudulent behavior.

Any approach that learns a baseline model of nor-
mal behavior based on training data can potentially
be impacted by the abnormal instances in the data.
We can get some insights into the sensitivity of our
model to the abnormal instances in the training data
by examining some model characteristics. Consider
the rule examples and the corresponding segments il-
lustrated in Section 5.2. The predicted mean rates for
these segments are based on relatively large number
of instances in the training data and unlikely to be in-
fluenced by small proportions of abnormal instances.
But smaller segments can have their mean rate im-
pacted by abnormal instances. But typically even for
the smaller segments we have transactions from sev-
eral entities reducing the impact of any one entity
(abnormal or normal). This leaves open the question
whether we could learn a rule that is based on data
from a largely abnormal segment of instances, which
can lead to false negatives. We hope to mitigate this
possibility in the rules list validation step done by
domain experts as part of our usage methodology.

In the experiments reported in the paper, we split
the available data into training and test sets so that
we can report on lack of overfitting by our models. In
real life applications we advocate using all (or most)
of the data for training. There may be reasons to
keep aside a small fraction for model validation pur-
poses. Generally, rule list models (and the closely
related decision tree models) are known to be un-
stable, implying perturbations to the training data
can impact the resulting model. However, our signif-
icance test based approach is tailored to identifying
rules (and corresponding segments in instance space)
that represent significant departures in behavior from
the rest of the instance space. This benefits the sta-
bility characteristic of the resultant models. We ran
the following experiment on a narcotics prescription
data set to shed some insight on this aspect of these
rule list models. We randomly split the data into two
equal halves, H1 and H2. One model M1 was trained
on H1 and used H2 as a test set. The other model
M2 was trained on H2 and used H1 as a test set.
The model performance achieved was comparable in
terms of the ROC AUC (M1: training = 0.836, test =

0.822, M2: training = 0.831, test = 0.825). The rule
list models, M1 and M2 were not the same, but had
many similarities. For example, the first rule in both
models focused on young children having very low
rates of prescriptions except when they are seen by
certain specialists (e.g., surgeons). Model M1 defines
this rule with 9 terms and model M2 with 8 terms
(dropping one specialty). The segments defined by
these models differ by less than 20 instances from a
total of more than 400K instances. The models dif-
fered more in the smaller segments and model M1
had a total of 60 segments compared to 66 segments
in model M2. A more interesting issue is the impact
of the two distinct samples of training data on the ab-
normal entities identified. We applied both models,
M1 and M2, to the entire data and used our method-
ology to identify the top abnormal prescribers. The
top five entities identified were exactly the same and
in the same order. The next five entities were the
same for both models but the order differed due to
small differences in the entity abnormality scores.

The application of our models was illustrated by
focusing on prescribers in Section 5.3. We have also
applied our models to identifying pharmacies and pa-
tients with abnormal behavior. The larger volumes
associated with prescribers and pharmacies would
typically suggest more audit focus on them. In some
cases, we have observed a strong transactional link
between a prescriber and a pharmacy both of which
have been identified as having abnormal behavior.
Future work will explore systematic approaches to
identify such links.

Typical application of our methodology utilizes his-
tory windows from three months to one year. The
analysis window tends to range from one month to
three months for large health care plans (and would
typically not exceed a year). The relatively short
analyses windows would not get impacted signifi-
cantly with the normal progressions in medical prac-
tices except when a disruptive and abrupt change in
practice happens related to the focus drug being an-
alyzed.

We reiterate that the approach and methodology
described in this paper for prescription claims data,
can be extended to many other focus areas in health
care claims data. Since the data for prescription
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and medical claims vary across fee-for-service health
plans, our approach will have to be adapted to the
data elements that are available in each plan. A key
aspect of our approach is to construct and use de-
tailed profiles for all entities (patient, prescriber and
pharmacy) to condition the expected normal behav-
ior, and on statistical significance testing to detect
abnormal behavior for each entity. Hence, the avail-
ability of detailed entity profiles in the data will de-
termine the performance of our baseline models and
the identification of abnormal entities.

7 Summary

To summarize our approach, a given focus area (e.g.,
prescription rate in a certain drug therapeutic class)
is selected for audit analysis, and baseline models
with the appropriate normalizations are constructed
to describe the expected behavior within the fo-
cus area. These baseline models are then used, in
conjunction with statistical hypothesis testing, to
identify entities whose behavior diverges significantly
from their expected behavior according to the base-
line models. A Likelihood Ratio score over the rel-
evant claims with respect to the baseline model is
obtained for each entity, and the p-value significance
of this score is evaluated to ensure that the abnormal
behavior can be identified at the specified level of
statistical significance. In particular, our approach is
designed to be used as a preliminary computer-aided
audit process in which the relevant entities with the
abnormal behavior are identified with high selectivity
for a subsequent human-intensive audit investigation.
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