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We would like to take this opportunity to express our gratitude to the 2012 Informs Computing
Society Prize Committee, which was chaired by Pascal Van Hentenryck and included Daniel Bienstock
and Dorit Hochbaum. Thank you Pascal, Dan, and Dorit for this very kind distinction. It is a great
honor to receive this prize.

The ICS Prize was awarded for our work in [4], [5], [6] on the study of some very basic questions
about convexity. The first paper [4] studies the computational complexity of recognizing convexity
of functions and sets in polynomial optimization. The second and third papers [5], [6] are on an
algebraic relaxation for convexity, known as sum-of-squares-convexity (sos-convexity), which has links to
semidefinite programming and plays a notable role in the emerging field of convex algebraic geometry [9].
Some of the results, we believe, turned out to be interesting—our complexity paper answered an open
question of Naum Shor from 1992; our study of sos-convexity revealed an unforeseen connection with a
classical result of Hilbert in real algebraic geometry. We welcome your feedback and hope that you also
find some aspects of the work interesting. A brief description of the main contributions follows with
more details to be found in references mentioned above or in [1].

1 Complexity of Deciding Convexity

Over the last century, the notion of convexity has established
itself as a central concept in the theory of optimization and
operations research. Extensive and greatly successful research
in the applications of convex optimization has shown that sur-
prisingly many problems of practical importance can be cast
as convex optimization problems. Moreover, we have a fair
number of rules based on the calculus of convex functions that
allow us to design—whenever we have the freedom to do so—
problems that are by construction convex. Nevertheless, in
order to be able to exploit the potential of convexity in opti-
mization in full, a very basic question is to understand whether
we are even able to recognize the presence of convexity in op-
timization problems. In other words, can we have an efficient
algorithm that tests whether a given optimization problem is
convex?

A class of optimization problems that allow for a rigorous study of this question from a computational
complexity viewpoint is the class of polynomial optimization problems. These are optimization problems
where the objective is given by a polynomial function and the feasible set is described by polynomial

1This note is to appear in the newsletter of the Informs Computing Society (ICS), in a column on the 2012 ICS Prize for
best series of papers at the interface of operations research and computer science, awarded to A.A. Ahmadi, A. Olshevsky,
P.A. Parrilo, and J.N. Tsitsiklis for papers listed in [4], [5], [6].
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inequalities. Our research in this direction was motivated by a concrete question of N. Z. Shor that
appeared as one of seven open problems in complexity theory for numerical optimization put together
by Pardalos and Vavasis in 1992 [17]:

“Given a degree-4 polynomial in n variables, what is the complexity of determining
whether this polynomial describes a convex function?”

The reason why Shor’s question is specifically about degree 4 polynomials is that deciding convexity
of odd degree polynomials is trivial2 and deciding convexity of degree 2 (quadratic) polynomials can
be reduced to the simple task of checking whether a constant matrix is positive semidefinite. So, the
first interesting case really occurs for degree 4 (quartic) polynomials. The main contribution of our first
paper [4] is to show that deciding convexity of polynomials is strongly NP-hard already for polynomials
of degree 4.

The implication of strong NP-hardness of this problem is that unless P=NP, there exists no algorithm
that can take as input the (rational) coefficients of a quartic polynomial, have running time bounded
by a polynomial in the numeric value of these coefficients (let alone in the number of bits needed
to represent the coefficients), and output correctly on every instance whether or not the polynomial
is convex. The reduction that establishes our result is purely algebraic. It shows that the NP-hard
problem of testing global nonnegativity of so-called biquadratic forms (a special subclass of quartic
polynomials) can be turned into the question of checking convexity by doubling the number of variables
and without changing the degree.

Although the implications of convexity are very significant in optimization theory, our results suggest
that unless additional structure is present, ensuring the mere presence of convexity is likely an intractable
task. It is therefore natural to wonder whether there are other properties of optimization problems that
share some of the attractive consequences of convexity, but are easier to check.

1.1 Complexity of deciding variants of convexity

In the same paper, we also study the complexity of recognizing some well-known variants of convexity,
namely, the problems of deciding strict convexity, strong convexity, pseudoconvexity, and quasiconvex-
ity of polynomials. The relationship between these notions is as follows (with none of the converse
implications being true in general):

strong convexity =⇒ strict convexity =⇒ convexity =⇒ pseudoconvexity =⇒ quasiconvexity.

Table 1: Summary of our complexity results. A yes (no) entry means that the question is trivial for
that particular entry because the answer is always yes (no) independent of the input. By P, we mean
that the problem can be solved in polynomial time.

property vs. degree 1 2 odd ≥ 3 even ≥ 4

strong convexity no P no strongly NP-hard
strict convexity no P no strongly NP-hard
convexity yes P no strongly NP-hard
pseudoconvexity yes P P strongly NP-hard
quasiconvexity yes P P strongly NP-hard

Strict convexity is a property that is often useful to check because it guarantees uniqueness of the
optimal solution in optimization problems. The notion of strong convexity is a common assumption in

2Independent of their coefficients, polynomials of odd degree are never (globally) convex, unless they are linear and
hence always convex.
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convergence analysis of many iterative Newton-type algorithms in optimization theory; see, e.g., [10,
Chaps. 9–11]. So, in order to ensure the theoretical convergence rates promised by many of these
algorithms, one needs to first make sure that the objective function is strongly convex. The problem
of checking quasiconvexity (convexity of sublevel sets) of polynomials also arises frequently in practice.
For instance, if the feasible set of an optimization problem is defined by polynomial inequalities, by
certifying quasiconvexity of the defining polynomials we can ensure that the feasible set is convex. In
several statistics and clustering problems, we are interested in finding minimum volume convex sets
that contain a set of data points in space. This problem can be tackled by searching over the set
of quasiconvex polynomials [14]. In economics also, quasiconcave functions are prevalent as desirable
utility functions [7]. Finally, the notion of pseudoconvexity is a natural generalization of convexity that
inherits many of the attractive properties of convex functions. For example, every stationary point or
every local minimum of a pseudoconvex function must be a global minimum. Because of these nice
features, pseudoconvex programs have been studied extensively in nonlinear programming [15], [11].

Our complexity results as a function of the degree of the polynomial are listed in Table 1.1. As you
can see, all of these properties are easy to decide for quadratics but hard for polynomials of even degree 4
or higher. Somewhat surprisingly, we were able to show that testing quasiconvexity and pseudoconvexity
can be done in polynomial time if the degree is odd.

2 Convexity and SOS-Convexity

Of course, NP-hardness of a problem does not stop us from studying it, but on the contrary, stresses
the need for finding good approximation algorithms that can deal with a large number of instances
efficiently. Towards this goal, we study in [5], [6] a semidefinite relaxation for convexity of polynomials
known as sos-convexity.

Definition 2.1. A polynomial p(x) = p(x1, . . . , xn) is sos-convex if its Hessian H(x) can be factored
as H(x) = MT (x)M(x) with a possibly nonsquare polynomial matrix3 M(x).

It is easy to see that sos-convexity is a sufficient condition for convexity of polynomials. Indeed,
if we have the factorization H(x) = MT (x)M(x), then H(x) must be positive semidefinite for all
x. Moreover, one can show that sos-convexity of a polynomial p can be decided by solving a single
semidefinite program whose size is polynomial in the size of the coefficients of p; see e.g. [5].

The idea behind sos-convexity is related to the concept of representing nonnegative polynomials as
sums of squares4—a deep-rooted subject in real algebraic geometry that has found widespread recent
applications in optimization theory. Just like a sum of squares (sos) decomposition produces an algebraic
certificate for nonnegativity, sos-convexity can be thought of as an algebraic certificate for convexity.
In [6, Thm. 3.1], we showed that if one applies the sos relaxation to the standard definition of convexity
or its first order characterization (as opposed to Definition 2.1, which appeals to the second order
characterization of convexity), then one ends up with conditions that are equivalent to sos-convexity.
This is reassuring in that it demonstrates the legitimacy of sos-convexity as the right semidefinite
relaxation for convexity.

2.1 The first example of a convex polynomial that is not sos-convex

The connection of sos-convexity to semidefinite programming has motivated its use in many application
domains, such as statistics (convex regression, minimum volume shape fitting, etc., [14]) and control
theory (stability of hybrid systems [3]). Aside from its computational implications, sos-convexity is a

3A polynomial matrix is simply a matrix whose entries are (multivariate) polynomials.
4A polynomial p is nonnegative if p(x) ≥ 0 for all x ∈ Rn, and it is a sum of squares if it can be written as p =

∑
q2i ,

for some polynomials qi.
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concept of interest in the field of convex algebraic geometry [9], which is devoted to the study of convex
sets with algebraic structure. In particular, one of the early results in this area, due to Helton and
Nie [12], states that any subset of Rn defined as {x| gi(x) ≤ 0}, with each gi an sos-convex polynomial,
can be represented as the projection of the feasible set of a semidefinite program.

Motivated by results of this type, it had been speculated whether sos-convexity of a polynomial was
in fact equivalent to its convexity. We showed in [5], via a concrete counterexample (a polynomial in
3 variables and degree 8), that the answer was negative. This example came before our NP-hardness
result in [4]. Indeed, complexity considerations alone suggest (assuming P6=NP) that convex but not
sos-convex polynomials should exist, at least when the number of variables goes to infinity.

For the curious reader, we include here the first example of a convex but not sos-convex polynomial,
published in [5]:

p(x) = 32x81 + 118x61x
2
2 + 40x61x

2
3 + 25x41x

4
2 − 43x41x

2
2x

2
3 − 35x41x

4
3 + 3x21x

4
2x

2
3

−16x21x
2
2x

4
3 + 24x21x

6
3 + 16x82 + 44x62x

2
3 + 70x42x

4
3 + 60x22x

6
3 + 30x83.

We found this polynomial with the help of a computer and as a solution of a carefully-designed
semidefinite program; see [5, Sect. 4] for details. In general, finding polynomials with such properties
is a nontrivial task. For example, the following closely related problem is still open.

Open problem.

Find an explicit example of a convex, nonnegative polynomial that is not a sum of squares.

Blekherman [8] has shown via volume arguments that for degree d ≥ 4 and asymptotically for large n
such polynomials must exist, although no examples are known. It is known, however, that such a convex
polynomial must necessarily be not sos-convex [12],[6]. The question is particularly interesting from an
optimization viewpoint since it implies that the well-known sum of squares relaxation for minimizing
polynomials [19], [18] is not always exact, even in the easy case of minimizing convex polynomials.

2.2 A full characterization of cases where convexity equals sos-convexity

One of the cornerstones of real algebraic geometry is Hilbert’s seminal paper in 1888 [13], where he
gives a complete characterization of the degrees and dimensions for which nonnegative polynomials can
be written as sums of squares of polynomials. In particular, Hilbert proves in [13] that there exist
nonnegative polynomials that are not sums of squares, although explicit examples of such polynomials
appeared only about 80 years later [16] and the study of the gap between nonnegative and sums of
squares polynomials continues to be an active area of research to this day.

Once we produced the first example of a convex but not sos-convex polynomial in [5], it was natural
to aim for a characterization of the dimensions and degrees for which such polynomials can exist, similar
to the characterization that Hilbert provided for nonnegativity and sum of squares.

The contribution of our final paper [6] is to provide such a characterization for the inclusion rela-
tionship between convexity and sos-convexity. The results are summarized in Figure 1 and cover both
the case of polynomials and forms (homogeneous polynomials). The entry (n, d) = (3, 4) in the table
on the right is particularly challenging and is joint work with G. Blekherman [2].
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Figure 1: The tables answer whether every convex polynomial (form) in n variables and of degree d is sos-

convex [6]. A similar characterization for nonnegativity and sum of squares was done by Hilbert in 1888 [13].

The remarkable overall outcome of this research is that convex polynomials (resp. forms) were
shown to to be sos-convex precisely in the cases where nonnegative polynomials (resp. forms) are sums
of squares, as shown by Hilbert. The proofs given in our work certainly do not use or depend on the
results of Hilbert and it is not clear to us at this point whether this similarity is just a coincidence.
It remains to be seen whether there is a more satisfying explanation of the resemblance of the two
results, perhaps revealing a more fundamental connection between two basic concepts, nonnegativity
and convexity.
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[13] D. Hilbert. Über die Darstellung Definiter Formen als Summe von Formenquadraten. Math. Ann.,

32, 1888.
[14] A. Magnani, S. Lall, and S. Boyd. Tractable fitting with convex polynomials via sum of squares.

In Proceedings of the 44th IEEE Conference on Decision and Control, 2005.
[15] O. L. Mangasarian. Pseudo-convex functions. J. Soc. Indust. Appl. Math. Ser. A Control, 3:281–

290, 1965.

5



[16] T. S. Motzkin. The arithmetic-geometric inequality. In Inequalities (Proc. Sympos. Wright-
Patterson Air Force Base, Ohio, 1965), pages 205–224. Academic Press, New York, 1967.

[17] P. M. Pardalos and S. A. Vavasis. Open questions in complexity theory for numerical optimization.
Mathematical Programming, 57(2):337–339, 1992.

[18] P. A. Parrilo and B. Sturmfels. Minimizing polynomial functions. Algorithmic and Quantitative Real
Algebraic Geometry, DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
60:83–99, 2003.

[19] N. Z. Shor. Class of global minimum bounds of polynomial functions. Cybernetics, 23(6):731–734,
1987. (Russian orig.: Kibernetika, No. 6, (1987), 9–11).

6


	Complexity of Deciding Convexity
	Complexity of deciding variants of convexity

	Convexity and SOS-Convexity
	The first example of a convex polynomial that is not sos-convex
	A full characterization of cases where convexity equals sos-convexity 


