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SOS-Convex Lyapunov Functions
with Applications to Nonlinear Switched Systems

Amir Ali Ahmadi and Raphaël M. Jungers

Abstract— We introduce the concept of sos-convex Lyapunov
functions for stability analysis of discrete time switched sys-
tems. These are polynomial Lyapunov functions that have
an algebraic certificate of convexity, and can be efficiently
found by semidefinite programming. We show that sos-convex
Lyapunov functions are universal (i.e., necessary and sufficient)
for stability analysis of switched linear systems. On the other
hand, we show via an explicit example that the minimum degree
of an sos-convex Lyapunov function can be arbitrarily higher
than a (non-convex) polynomial Lyapunov function, whose
induced Minkowski functional is also a valid (non-polynomial)
convex Lyapunov function. In the second part of the paper,
we show that if the switched system is defined as the convex
hull of a finite number of nonlinear functions, then existence of
a non-convex common Lyapunov function is not a sufficient
condition for switched stability, but existence of a convex
common Lyapunov function is. This shows the usefulness of
the computational machinery of sos-convex Lyapunov functions
which can be applied either directly to the switched nonlinear
system, or to its linearization, to provide proof of local switched
stability for the convex hull of the nonlinear system. An example
is given where no polynomial of degree less than 14 can
provide an estimate to the region of attraction under arbitrary
switching.

I. INTRODUCTION

The most commonly used Lyapunov functions in control,
namely the quadratic ones, are always convex. This con-
vexity property is not always purposefully sought after—
it is simply an artifact of the nonnegativity requirement of
Lyapunov functions, which for quadratic forms coincides
with convexity. If one however seeks Lyapunov functions
that are polynomial functions of degree larger than two—
a task which was intractable in the previous millennium
but has now become widespread thanks to advances in sum
of squares optimization [31]—then convexity is no longer
implied by the nonnegativity requirement of the Lyapunov
function. In this paper we ask the question, what do we gain
(or lose) by requiring a polynomial Lyapunov function to be
convex. We also present a computational methodology, based
on semidefinite programming, for automatically searching for
convex polynomial Lyapunov functions.

Our study of this question is motivated by, and for the
purposes of this paper exclusively focused on, the stability
problem for discrete time switched systems. We are con-
cerned with an uncertain and time-varying map:

xk+1 = f̃(xk), (1)
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where
f̃(xk) ∈ conv{f1(xk), . . . , fm(xk)}, (2)

f1, . . . , fm : Rn → Rn are m different (possibly nonlinear)
maps with fi(0) = 0, and conv denotes the convex hull oper-
ation. The question of interest is (local or global) asymptotic
stability under arbitrary switching; i.e., we would like to
know whether the origin attracts all initial conditions for all
possible values that f̃ can take at each time step k.

The special case of this problem where the maps
f1, . . . , fm are linear has been and continues to be the
subject of intense study in the control community, as well as
the mathematics or computer science community [9], [13],
[16], [22], [25], [26], [30], [39]. A switched linear system
in this setting,

xk+1 ∈ conv{Aixk}, i = 1, . . . ,m, (3)

is defined by m real n×n matrices A1, . . . , Am and its (local
or equivalently global) asymptotic stability under arbitrary
switching is equivalent to the joint spectral radius of these
matrices being strictly less than one.

Definition 1 (Joint Spectral Radius – JSR [37]): the
joint spectral radius of a set of matrices M is defined as

ρ(M) = lim
k→∞

max
A1,...,Ak∈M

||A1 . . . Ak||1/k, (4)

where ‖ · ‖ is any matrix norm on Rn×n.
Deciding whether ρ < 1 is notoriously difficult. No finite

time procedure for this purpose is known to date, and the
related problems of testing whether ρ ≤ 1 or whether the
trajectories of (3) are bounded under arbitrary switching are
provably undecidable [40]. On the positive side though, a
large host of sufficient conditions for this stability property
are known, mostly based on the numerical construction
of special Lyapunov functions, and some with theoretical
guarantees in terms of their quality of approximation of the
joint spectral radius [8], [19], [23], [33], [34].

It is well-known that if the switched linear system (3) is
stable1, then it admits a common convex Lyapunov function,
in fact a norm [22]. It is also known that stable switched
linear systems also admit a common polynomial Lyapunov
function [33]. It is therefore natural to ask whether existence
of a common convex polynomial Lyapunov function is also
necessary for stability. One would in addition want to know
how the degree of such convex polynomial Lyapunov func-
tion compares with the degree of a non-convex polynomial

1Throughout this paper, by the word “stable” we mean asymptotically
stable under arbitrary switching.



Lyapunov function. We address both of these questions in
this paper.

It is not difficult to show (see [22, Proposition 1.8]) that
stability of the linear inclusion (3) is equivalent to stability
of its “corners”; i.e. to stability of a switched system that at
each time step applies one of the m matrices A1, . . . , Am, but
never a matrix strictly inside their convex hull. This statement
is no longer true for the switched nonlinear system in (1)-
(2); see Example 1. It turns out, however, that one can still
prove switched stability of the entire convex hull by finding
a common convex Lyapunov function for the corner systems
f1, . . . , fm. This is demonstrated in our Theorem 4.1 and
Example 2, where we point out that the convexity of the
Lyapunov function is a crucial requirement.

In view of that, one would like to have an efficient algo-
rithm that automatically searches over all candidate convex
polynomial Lyapunov functions of a given degree. This
task, however, is unfortunately an intractable one even when
one restricts attention to quartic (degree four) Lyapunov
functions and switched linear systems. See our discussion
below. In order to cope with this issue, we introduce the
class of sos-convex Lyapunov functions (see Definition 2),
which constitute a subset of convex polynomial Lyapunov
functions whose convexity is certified through an algebraic
identity. One can search over sos-convex Lyapunov functions
by solving a single semidefinite program whose size is
polynomial in the description size of the dynamical system.
The methodology can directly handle the linear switched
system in (3) or its nonlinear counterpart in (1)-(2), if the
mappings f1, . . . , fm are polynomial functions or rational
functions.2

We will review some results from the thesis of the first
author which show that for certain dimensions and degrees,
the set of convex and sos-convex Lyapunov functions coin-
cide. In fact in relatively low dimensions and degrees, it is
quite challenging to find convex polynomials that are not sos-
convex [6]. This is evidence of the strength of this semidef-
inite relaxation and is encouraging from an application
viewpoint. Nevertheless, since sos-convex polynomials are in
general a strict subset of the convex ones, a more refined (and
perhaps more computationally relevant) converse Lyapunov
question for switched linear systems is to see whether their
stability guarantees existence of an sos-convex Lyapunov
function. This question is also addressed in this paper.

Finally, we shall remark that there are other classes of con-
vex Lyapunov functions whose construction is amenable to
semidefinite or linear programming. The main examples in-
clude polytopic Lyapunov functions, and piecewise quadratic
Lyapunov functions that are a geometric combinations of
several quadratics [12], [17], [20], [24], [25], [34], [35].
These Lyapunov functions are mostly studied for the case
of linear switched systems, where they are known to be
necessary and sufficient for stability. The extension of their
applicability to polynomial or rational switched systems is

2Extensions to broader classes of dynamical systems, e.g. trigonometric
ones, is possible; see e.g. [29].

also possible via the sum of squares relaxation. Our focus
in this paper though is solely on studying the properties of
sos-convex polynomial Lyapunov functions.

A. Related work

The literature on stability of switched systems is too
extensive for us to review. We simply refer the interested
reader to [18], [22], [39] and references therein. Closer to
the specific focus of this paper is the work of Mason et
al. [28], where the authors prove existence of polynomial
Lyapunov functions for switched linear systems in continu-
ous time. Our proof of the analogous statement in discrete
time closely follows theirs. In [4], Ahmadi and Parrilo show
that the Lyapunov function of Mason et al. further implies
existence of a Lyapunov function that can be found with
sum of squares techniques. Similar statements are proven
there for polynomial differential equations. In [33], Parrilo
and Jadbabaie prove that stable switched linear systems
in discrete time always admit a (not necessarily convex)
polynomial Lyapunov function which further can be found
with sum of squares techniques. Also closely related to our
work, Blanchini and Franco show in [10] that in contrast with
the case of uncontrolled switching (our setting), controlled
linear switched systems, both in discrete and continuous
time, can be stabilized by means of a suitable switching
without necessarily admitting a convex Lyapunov function.

In [15], [14], Chesi and Hung motivate several interesting
applications of working with convex Lyapunov functions or
Lyapunov functions with convex sublevel sets. These include
establishing more regular behavior of the trajectories, ease
of optimization over sublevel sets of the Lyapunov function,
stability of recurrent neural networks, etc. The authors in
fact propose sum of squares based conditions for imposing
convexity of polynomials. However, it is shown in [5, Sect.
4] that these conditions lead to semidefinite programs of
significantly larger size than those of sos-convexity, while
at the same time being at least as conservative. Moreover,
the works in [15], [14] offer no analysis of the performance
(existence) of convex Lyapunov functions.

Finally, the reader interested in knowing more about sos-
convex polynomials, their role in convex algebraic geometry
and optimization, and their applications outside of control is
referred to the works by Ahmadi and Parrilo [6], [7], Helton
and Nie [21], and Magnani et al. [27], or to Section 3.3.3 of
the edited volume [11].

B. Organization and contributions of the paper

The paper is organized as follows. In Section II, we
present the mathematical and algorithmic machinery nec-
essary for working with sos-convex Lyapunov functions
through semidefinite programming. In Section III, we study
switched linear systems. We show that given any homoge-
neous Lyapunov function, the Minkowski norm defined by
the convex hull of its sublevel set is also a valid (convex)
Lyapunov function. We then show that any stable switched
linear system admits a convex polynomial Lyapunov func-
tion. We further strengthen this result by proving existence



of an sos-convex Lyapunov function. An explicit family of
examples is also provided to show that the minimum degree
of a convex polynomial Lyapunov function can be arbitrarily
larger than a non-convex one.

In Section IV, we study nonlinear switched systems. We
show that stability of these systems cannot be concluded
by means of a common Lyapunov function for the corner
systems. However, we prove that this conclusion can be
made if the Lyapunov function is convex. We give an
example where an sos-convex Lyapunov function of degree
14 provides an inner estimate of the region of attraction of
a nonlinear switched system.

II. SOS-CONVEX POLYNOMIALS

A multivariate polynomial p(x) := p(x1, . . . , xn) is non-
negative or positive semidefinite (psd) if p(x) ≥ 0 for all
x ∈ Rn. We say a polynomial p is a sum of squares
(sos) if it can be written as p =

∑
i q

2
i , where each qi is

a polynomial. It is well-known that if p has even degree
four or larger, then testing nonnegativity is NP-hard, while
testing existence of a sum of squares decomposition, which
provides a sufficient condition and an algebraic certificate for
nonnegativity, can be done by solving a polynomially sized
semidefinite program [31], [32].

A polynomial p := p(x) is convex if its Hessian H(x)
(i.e., the n×n polynomial matrix of the second derivatives)
forms a positive semidefinite matrix for all x ∈ Rn. This
is equivalent to the scalar valued polynomial yTH(x)y in
2n variables (x1, . . . , xn, y1, . . . , yn) being nonnegative. It
has recently been shown in [3] that testing if polynomial of
degree four is convex is NP-hard in the strong sense. This
motivates the algebraic notion of sos-convexity, which can
be checked with semidefinite programming and provides a
sufficient condition for convexity.

Definition 2: A polynomial p := p(x) is sos-convex if its
Hessian H(x) can be factored as

H(x) =MT (x)M(x),

where M(x) is a (not necessarily square) polynomial matrix;
i.e., a matrix with polynomial entries.

Polynomial matrices which admit a decomposition as
above are called sos matrices. The term sos-convex was
coined in a seminal paper of Helton and Nie [21], where
they prove (among other things) that a basic semialgebraic
set defined by sos-convex inequalities always has a lifted
semidefinite representation. The following theorem is an
algebraic analogue of a classical theorem in convex analysis
and provides equivalent characterizations of sos-convexity.

Theorem 2.1 (Ahmadi and Parrilo [7]): Let p := p(x) be
a polynomial of degree d in n variables with its gradient and
Hessian denoted respectively by ∇p := ∇p(x) and H :=
H(x). Let gλ, g∇, and g∇2 be defined as

gλ(x, y) = (1− λ)p(x) + λp(y)− p((1− λ)x+ λy),
g∇(x, y) = p(y)− p(x)−∇p(x)T (y − x),
g∇2(x, y) = yTH(x)y.

(5)

Then the following are equivalent:
(a) g 1

2
(x, y) is sos3.

(b) g∇(x, y) is sos.
(c) g∇2(x, y) is sos; (equivalently H(x) is an sos-matrix).
The theorem above is reassuring, in the sense that it tells us

that the definition of sos-convexity is independent of which
characterization of convexity we apply the sos relaxation to.
Since existence of an sos decomposition can be checked via
semidefinite programming (SDP), any of the three equivalent
conditions above, and hence sos-convexity of a polynomial,
can also be checked by SDP. Even though the polynomials
g 1

2
, g∇, g∇2 above are all in 2n variables and have degree d,

the structure of the polynomial g∇2 allows for much smaller
SDPs (see [5] for details). Hence, we will use the Hessian
condition throughout this paper.

Semidefinite programming allows for not just checking if
a given polynomial is sos-convex, but also searching and
optimizing over a family of sos-convex polynomials subject
to affine constraints. This allows for an automated search for
convex polynomial Lyapunov functions. Of course, a Lya-
punov function V also needs to satisfy other requirements,
namely positivity, V > 0, and monotonic decrease along
trajectories, Vk+1 < Vk. Following the standard approach,
we will also replace these inequalities with the requirement
that Vk − Vk+1 has a sum of squares decomposition.

Throughout this paper what we mean by an sos-convex
Lyapunov function is a polynomial function which satisfies
all these requirements4. Interestingly, when the Lyapunov
function can be assumed to be homogeneous—as is the
case when the dynamics is homogeneous [36]—then the
following lemma establishes that the convexity requirement
of the polynomial automatically meets its nonnegativity
requirement.

A homogeneous polynomial (or a form) is simply a poly-
nomial where all monomials have the same degree.

Lemma 2.2: Convex forms are nonnegative and sos-
convex forms are sos.

Proof: See [21, Lemma 8] or [7, Lemma 3.2].
For stability analysis of the switched linear system in

(3), the requirements of a (common) sos-convex Lyapunov
function V are the following:

V (x) sos-convex
V (x)− V (Aix) sos for i = 1, . . . ,m.

(6)

Given a set of matrices {A1, . . . , Am}, the search for the
coefficients of a (fixed degree) polynomial V satisfying the
above condition amounts to solving an SDP whose size is

3The constant 1
2

in g 1
2
(x, y) of condition (a) is arbitrary and chosen for

convenience. One can show that g 1
2

being sos implies that gλ is sos for
any fixed λ ∈ [0, 1]. Conversely, if gλ is sos for some λ ∈ (0, 1), then g 1

2
is sos.

4Even though an sos decomposition in general merely guarantees polyno-
mial nonnegativity, sos decompositions obtained numerically from interior
point methods generically provide proofs of polynomial positivity; see the
discussion in [1, p.41]. In this paper, whenever we prove a result about
existence of a Lyapunov function satisfying certain sos conditions, we
carefully make sure that the resulting inequalities are strict (if they need
be).



polynomial in the description size of the matrices. If this
SDP is (strictly) feasible, the switched system in (3) is stable
under arbitrary switching. The same implication remains true
if the sos-convexity requirement of V is replaced with the
requirement that V is simply sos; see [33, Thm. 2.2]. (This
is no longer true for switched nonlinear systems.)

In the next section, we will study the existence of Lya-
punov functions satisfying the semidefinite conditions in (6).
As a related remark, we end this section by mentioning that
examples of convex polynomials that are not sos-convex are
known. In fact, a complete characterization of the dimensions
and the degrees for which convexity and sos-convexity are
the same notion is available [7], [2, Chap. 3]. In general,
finding examples of convex but not sos-convex polynomials
is a challenging task [6]. From an application viewpoint,
this is good news. It implies that our sos-convex Lyapunov
functions are a powerful replacement for convex polynomial
Lyapunov functions.

III. SOS-CONVEX LYAPUNOV FUNCTIONS
AND SWITCHED LINEAR SYSTEMS

As remarked in the introduction, it is known that asymp-
totic stability of a switched linear system under arbitrary
switching implies existence of a common convex Lyapunov
function (in fact a norm) and also a common polynomial
Lyapunov function. In this section, we show that one can in
fact conclude existence of a convex polynomial Lyapunov
function, and even more, an sos-convex Lyapunov function.
Before we prove these results, we state a proposition which
shows that in the particular case of switched linear sys-
tems, any common Lyapunov function (e.g. a nonconvex
polynomial) can be turned into a convex one (although not
necessarily an efficiently computable one). The proof is
omitted.

Proposition 1: Consider the switched linear system in (3).
If S is an invariant set for this dynamics, then so is conv(S).
Moreover, if V is a common homogeneous Lyapunov func-
tion with unit sublevel set S, then the Minkowski norm5

defined by conv(S) is a convex common Lyapunov function
for (3).

A. Existence of convex polynomial Lyapunov functions

In our proofs, we will need the following classical result,
which was first proved in [37] to the best of our knowledge.

Theorem 3.1 (see [22], [37]): For any set of matrices
M ⊂ Rn×n, for any ε > 0 there exists a vector norm | · |ε
in Rn such that for any matrix in M,

|x|ε ≤ 1 ⇒ |Ax|ε ≤ ρ+ ε.
Theorem 3.2: For any asymptotically stable linear

switched system, there exists a convex polynomial
Lyapunov function.

Our proof is inspired by the main result of [28], which
proves the existence of a convex polynomial Lyapunov

5The Minkowski (or gauge) norm q defined by a symmetric convex set
S is given by q(x) = inf{t > 0| x ∈ tS}.

function for continuous time switching systems, but we are
not aware of an equivalent statement in discrete time.

Proof: Let us denote the JSR of M by ρ. By assump-
tion we have ρ < 1. By Theorem 3.1, there exists a norm,
which we hereafter simply denote | · | such that

|x| ≤ 1⇒ |Ax| ≤ ρ+ (1− ρ)/2.

We denote B the unit ball of this norm, such that MB ⊂
((ρ+(1− ρ)/2)B. (We use the notation MB = {Ax : A ∈
M and x ∈ B}.)

The agenda of our proof is to insert a level set of a convex
polynomial between the boundary of B and the boundary of
(ρ+(1−ρ)/2)B. This set will be an invariant set, and hence,
the corresponding polynomial will be a common convex
polynomial Lyapunov Function. We will first construct a
polytope with this property, and then approximate it with
a convex polynomial.

First step. Let us consider the set of points

C = {x : |x| = (ρ+ 3(1− ρ)/4)}.

For any x ∈ C, we associate a dual vector v(x) orthogonal
to a support hyperplane of C containing x :

H(x) = {y : v(x)T y = v(x)Tx}

(that is, ∀y ∈ C, v(x)T y ≤ v(x)Tx). Since x ∈ intB, the
set

S(x) = {y : v(x)T y > v(x)Tx and |y| = 1}

is a relatively open nonempty subset of the boundary ∂B of
the unit ball. Moreover,

x/|x| ∈ S(x).

Now, the family of sets S(x) is an open covering of ∂B,
and we can extract x1, . . . , xN such that the union of the
sets S(xi) covers ∂B.

Second step. We denote vi , v(xi) and we define a
polytope

P = {y : vTi y ≤ vTi xi ∀i = 1 . . . N}.

Observe that 0 ⊂ C ⊂ P.
We now claim that MP ⊂ intP.

First, P ⊂ intB, because for any vector y such that |y| = 1,
there exists a vector xi such that y ∈ S(xi) (indeed {S(xi)}
covers ∂B). Thus, vTi y > vTi xi, and y /∈ P, which implies
that P ⊂ intB.
Summarizing, we have

(ρ+ (1− ρ)/2)B ⊂ int(ρ+ 3(1− ρ)/4)B ⊂ P ⊂ intB.

Thus, taking any matrix in M and multiplying in the above
inclusions, we obtain the claim.

Third step. For any natural number d, we define the
polynomial function

pd(y) =

N∑
1

(vTi y/v
T
i xi)

2d. (7)



This polynomial is convex, as a sum of even powers of
linear functions. Now, the level sets ∂Sd, where Sd = {y :
pd(y) ≤ 1} tend pointwise to the boundary of P as d→∞.
Moreover,

∀x ∈ (ρ+ (1− ρ)/2)B,

max
i

(vTi y/v
T
i xi) ≤ ρ+ (1− ρ)/2

ρ+ 3(1− ρ)/4
< 1.

From that, we deduce that there is a natural d such that

(ρ+ (1− ρ)/2)B ⊂ Sd ⊂ intP ⊂ B,

so that we can rewrite the second step of this proof replacing
P with Sd, in order to prove that MSd ⊂ intSd, that is,
∀A ∈M, ∀x ∈ Rn, p(Ax) < p(x).

B. Existence of sos-convex polynomial Lyapunov functions

The main result of this subsection is the following theo-
rem.

Theorem 3.3: For any asymptotically stable linear
switched system, there exists an sos-convex Lyapunov
function; i.e. a polynomial Lyapunov function satisfying the
semidefinite requirements in (6).

We will give the main idea of the proof but the details are
omitted and will appear in a journal version of this work.
The main component of the proof is the following powerful
Positivstellensatz result due to Scheiderer.

Theorem 3.4 (Scheiderer, [38]): Given any two positive
definite homogeneous polynomials h and g, there exists an
integer N such that hgN is a sum of squares.

The strategy of the proof is to start with the convex
polynomial Lyapunov function pd (for a large enough fixed
d) constructed in the previous subsection and turn it into an
sos-convex Lyapunov function q. It turns out that we can
take

q(x) = pkd(x),

for some big enough integer k. Here, pd is the polynomial
given in (7). It is easy to see that linear forms are sos-convex,
and that sums and even powers of sos-convex forms are sos-
convex. Therefore, the polynomial q constructed this way is
sos-convex. To show that the polynomials

q(x)− q(Aix) = pkd(x)− pkd(Aix)

are all sos, one uses the algebraic identity

ak − bk = (a− b)
k−1∑
l=0

ak−1−lbl

and appropriately applies Theorem 3.4.
Finally, we remark that because of the way q is con-

structed, all of our sos conditions imply strict positivity. So
this polynomial will be a strictly feasible solution to a large
enough semidefinite program.

C. Non-existence of a uniform bound on the degree of convex
polynomial Lyapunov functions

Theorem 3.2 tells us in fact that one can approximate
with an arbitrary accuracy the JSR of a set of matrices by
restricting the family of polynomial Lyapunov functions to
convex polynomials. Note that it is known that there are
stable sets of matrices with polynomial Lyapunov functions
of arbitrary degree, but one could wonder whether the
existence of a polynomial Lyapunov function of a certain
degree actually implies a bound on the degree of a convex
Lyapunov function. We show that this is not true in the next
example.

Example 3.1: Consider the set of matrices A = {A1, A2},
with

A1 =

[
1 0
1 0

]
, A2 =

[
0 1
0 −1

]
.

This is a benchmark set of matrices that has been studied
in [8], [33], [4] because it gives the worst case approximation
ratio of a common quadratic Lyapunov function. Indeed, it
is easy to show that ρ(A) = 1, but a common quadratic
Lyapunov function can only produce an upper bound of

√
2.

Theorem 3.5: Consider the sets of matrices Mγ =
{γA1, γA2}. For all γ < 1 there is a degree four polynomial
Lyapunov function, but for any integer d, there is a value of
γ < 1 such that there is no convex polynomial Lyapunov
function of degree less than d.

Proof: The first claim is proven in [33]. For the latter
claim, it is sufficient to prove that the set {A1, A2} has no
convex invariant set defined as the level set of a polynomial.
Indeed, if there were a uniform bound D on the degree of
a convex polynomial Lyapunov function, by compactness it
would imply the existence of an invariant set which is the
level set of a convex polynomial function of degree D.
We prove our claim by contradiction. In fact, we will prove
the slightly stronger fact that for these matrices, the only
convex invariant set is the square S = {(x, y) : |x|, |y| ≤ 1}
(or, of course, a scaling of it).

So, let us suppose that there exists a convex bivariate
polynomial p(x) whose level set is the boundary of an
invariant set. More precisely, we suppose that

∀x ∈ R2, ∀A ∈ A, p(Ax) ≤ p(x). (8)

We denote x∗ the abscissa of the intersection of this level
set with the main bisector:

p(x∗, x∗) = 1.

It is easy to check that the following matrices can be obtained
as products of matrices in A :{(

0 1
0 −1

)
,

(
0 1
0 1

)
,

(
0 −1
0 1

)
,

}
⊂ A∗, (9)

and this implies that

p(x) = 1

for x ∈ {(x∗,−x∗), (−x∗,−x∗), (−x∗, x∗)}



as well, because these points can all be mapped onto each
other with matrices from (9).

Suppose that there is an x > x∗, −x∗ < y < x∗ such
that p(x, y) = 1. Then we reach a contradiction because
(9) implies that (x, y) can be mapped on (x, x), which
contradicts (8) because x > x∗.
This implies that ∀y : −x∗ < y < x∗, p(x∗, y) ≥ 1.
However, the convexity of p, implies that p(x∗, y) ≤ 1 for
all y such that −x∗ < y < x∗.
Thus, we have proved that p(x∗, y) = 1 for all −x∗ < y <
x∗. The same is true for p(−x∗, y) by symmetry.

In the same vein, if there is a y > x∗, −x∗ < x <
x∗ such that p(x, y) = 1, this point can be mapped on
(−y,−y), which again leads to a contradiction, because
p(−x∗,−x∗) = 1.
Hence, p(x, x∗) = 1, p(x,−x∗) = 1 for all −x∗ < x < x∗,
which concludes the proof.

IV. SOS-CONVEX LYAPUNOV FUNCTIONS
AND SWITCHED NONLINEAR SYSTEMS

In this section, we demonstrate a noteworthy application
of the computational machinery of sos-convex Lyapunov
functions, namely the stability analysis of switched nonlinear
systems. These are the systems satisfying these equations:

xk+1 = f̃(xk), (10)
f̃(xk) ∈ conv{f1(xk), . . . , fm(xk)}.

We start by showing on an example the significance of
convex Lyapunov functions.

Example 1: Let us consider the two-dimensional nonlin-
ear switching system (10) with m = 2 and

f1(x) = (x1x2, 0)
T , (11)

f2(x) = (0, x1x2)
T .

The function

V (x) = x21x
2
2 + (x21 + x22) (12)

is a common Lyapunov function for both f1 and f2. How-
ever, the system (10) is unstable.

To see this, let us first remark that

V (fi(x)) = x21x
2
2 < V (x) = x21x

2
2 + (x21 + x22)

for i = 1, 2, whenever x 6= 0.
On the other hand, (10) is unstable since in particular the
dynamics

f(x) =
(x1x2

2
,
x1x2
2

)
∈ conv{f1(xk), f2(xk)}

is obviously unstable.
Thus, unlike for linear switching systems, one cannot

resort to plain Lyapunov functions of the ‘corners’ to prove
the stability of a nonlinear switching system (or even to
prove their robust stability). However, we show now that
convex Lyapunov functions are indeed a sufficient condition
for switched stability.

Theorem 4.1: Consider the nonlinear switched system in
(10). If the m functions fi have a common convex Lyapunov
function, then the system (10) is asymptotically stable under
arbitrary switching.

Proof: Let V (x) be the common convex Lyapunov
function, and suppose that at step k, the function f =

∑
λifi

is applied to the system. We have the inequality

V (xk+1)− V (xk) = V (
∑

λifi(xk))− V (xk)

≤
∑

(λiV (fi(xk)))− V (xk)

≤
∑

λi(V (fi(xk))− V (xk))

< 0,

and V (x) is a Lyapunov function for the switched system as
well. Note the crucial use of convexity of V (x) in the first
inequality.

Remark 4.1: We remark that the theorem above provides
an easy way of proving that a linear switched system defined
by a finite number of matrices (i.e., at each time step, one of
these matrices is applied to the system) is stable if and only
if the switched system defined by the convex hull of the set
of matrices is stable. Indeed, it is well known that the former
system is stable if and only if there exists a common convex
Lyapunov function for it (see Theorem 3.1), which directly
implies that the convex hull is also stable.

A. Examples: region of attraction under nonlinear arbitrary
switching

Our technique also allows for computation of inner ap-
proximations to regions of attraction when the switched
nonlinear system is not globally stable. We show this on
two examples.

Example 2: Let us look back at the system (11) of Exam-
ple 1. It turns out that the function

W (x) = x21 + x22,

which is convex, is a common Lyapunov function for f1, f2
on the set

S = {x : x1, x2 ≤ 1}.

Indeed, for i = 1, 2, and x ∈ S,

W (fi(x)) = x21x
2
2

< x21 + x22

= W (x).

Moreover, S is an invariant set. Hence, for the system (11),
the set S is part of the region of attraction of the origin under
arbitrary switching.

Example 3: Consider the nonlinear switched system (10)
with m = 2 and

f1(x) =

(
0.687x1 + 0.558x2 − .0001x1x2

−0.292x1 + 0.773x2

)
, (13)

f2(x) =

(
0.369x1 + 0.532x2 − .0001x21
−1.27x1 + 0.12x2 − .0001x1x2

)
.

The goal is to use sos-convex Lyapunov functions and
semidefinite programming to compute an estimate of the



Fig. 1. Top: Sublevel set of a degree 14 sos-convex Lyapunov function. This
set is provably part of the region of attraction of the origin of the switched
nonlinear system (13). Bottom: Sublevel set of a non-convex polynomial
Lyapunov function of degree 12. We cannot make any claims about this set
being in the region of attraction under arbitrary switching.

region of attraction of this system under arbitrary switching.
The linearization of this switched system is given by the pair
of matrices

A1 =

(
0.687 0.558
−0.292 0.773

)
, A2 =

(
0.369 0.532
−1.27 0.12

)
. (14)

This is an interesting pair of matrices, because it is stable
under arbitrary switching, though there exists no common
polynomial Lyapunov function of degree 10 or lower. The
linear system does admit a common non-convex polynomial
Lyapunov function of degree 12, but if convexity of the
Lyapunov function is required, then the lowest possible
degree is 14. A sublevel set of both of these Lyapunov
functions is presented in Figure 1. These polynomials (not
shown) have been found by solving a semidefinite program.
The polynomial of degree 14 is an sos-convex polynomial
Lyapunov function. Since all convex bivariate forms (of any
degree) are sos-convex [7], and all nonnegative bivariate
forms are sos, in this example we are not loosing anything
by working with the sos relaxation.

The goal is now to use the Lyapunov function for the
linearization to find a guaranteed region of attraction for the
switched nonlinear system. We would like to find the largest
level set of these Lyapunov functions that is invariant under
the dynamics in (13). This is precisely when the advantage of
having a convex Lyapunov function becomes clear. Indeed,

if we were to work with the non-convex Lyapunov function
of degree 12, then we would need to work with the convex
hull of its sublevel set which is not algebraic. Finding the
largest invariant level set of the Minkowski norm defined by
this set is intractable. On the other hand, if we work with
the convex Lyapunov function of degree 14, this task at hand
simply becomes a new sos program. This program finds the
largest sublevel set of the degree 14 polynomial in which the
inequality V (fi(x)) < V (x), i = 1, 2 holds. The resulting
sublevel set is in fact the one plotted in Figure 1. This set is
provably part of the region of attraction.

To final remarks are in place: (i) this example demon-
strated the benefits of sos-convex Lyapunov functions even
when applied to switched linear systems, and (ii) polynomi-
als of degree 2, 4, 6, 8, 10, 12 would completely fail to prove
any nontrivial portion of the region of attraction for this
example.

V. CONCLUSIONS

In this work, we have introduced the concept of sos-
convex Lyapunov functions for stability analysis of switched
linear and nonlinear systems. The methodology is amenable
to semidefinite programming. For switched linear systems,
we proved a converse Lyapunov theorem on guaranteed
existence of sos-convex Lyapunov functions. We further
showed that the degree of a convex polynomial Lyapunov
function can be arbitrarily higher than the degree of a non-
convex one. For switched nonlinear systems, we showed that
sos-convex Lyapunov functions allow for computation of
regions of attraction under arbitrary switching, while non-
convex Lyapunov functions in general do not.

VI. ACKNOWLEDGMENTS

Amir Ali Ahmadi is supported by a Goldstine Fellowship
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