
RC25401 (WAT1308-061) August 28, 2013
Computer Science

IBM Research Report

Elastic Scaling for Data Stream Processing

Bugra Gedik
Bilkent University

06800 Ankara
Turkey

Scott Schneider, Martin Hirzel, Kun-Lung Wu
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 208

Yorktown Heights, NY 10598
USA

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

1

Elastic Scaling for Data Stream Processing
Buğra Gedik, Scott Schneider, Martin Hirzel, Kun-Lung Wu

✦

Abstract—This paper addresses the profitability problem associated

with auto-parallelization of general-purpose distributed data stream

processing applications. Auto-parallelization involves locating regions

in the application’s data flow graph that can be replicated at run-

time to apply data partitioning, in order to achieve scale. In order to

make auto-parallelization effective in practice, the profitability question

needs to be answered: How many parallel channels provide the best

throughput? The answer to this question changes depending on the

workload dynamics and resource availability at run-time. In this paper,

we propose an elastic auto-parallelization solution that can dynami-

cally adjust the number of channels used to achieve high throughput

without unnecessarily wasting resources. Most importantly, our solution

can handle partitioned stateful operators via run-time state migration,

which is fully transparent to the application developers. We provide an

implementation and evaluation of the system on an industrial-strength

data stream processing platform to validate our solution.

Index Terms—data stream processing; parallelization; elasticity

1 INTRODUCTION

As the world becomes more interconnected and instrumented,

there is a deluge of data coming from various software and

hardware sensors in the form of continuous streams. Examples

can be found in several domains, such as financial markets,

telecommunications, surveillance, manufacturing, and health-

care. In all of these domains there is an increasing need to

gather, process, and analyze these data streams to extract

insights as well as to detect emerging patterns and outliers.

Most importantly, this analysis often needs to be performed in

near real-time.

Stream computing is a computational paradigm that enables

carrying out analytical tasks in an efficient and scalable man-

ner. By taking the incoming data streams through a network

of operators placed on a set of distributed hosts, stream

computing provides an on-the-fly model of processing. Since

the data is not directly stored on disk, stream computing

avoids the performance problems faced by the more traditional

store-and-process model of data management. The emergence

of commercial stream processing systems, such as Stream-

Base [26] and InfoSphere Streams [15], open source systems

such as Yahoo! S4 [32] and Twitter Storm [28], as well as

existing academic systems such as STREAM [5], Borealis [1],

and System S [17], is evidence for the future growth and past

success of the stream computing paradigm.

• B. Gedik is with the Computer Engineering Deparment, İhsan Doğramacı
Bilkent University, 06800, Ankara, Turkey. E-mail: bgedik@cs.bilkent.edu.tr.
• S. Schneider, M. Hirzel, and K-L. Wu are with the IBM Thomas. J. Watson
Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598. E-
mail: {scott.a.s,hirzel,klwu}@us.ibm.com

The frequent need for handling large volumes of live data

in short periods of time is a major characteristic of stream

processing applications [25]. Thus, supporting high throughput

processing is a critical requirement for streaming systems.

It requires taking advantage of multiple host machines to

achieve scalability [4]. This requirement will become even

more prominent with the ever increasing amounts of live

data available for processing. The increased affordability of

distributed and parallel computing, thanks to advances in cloud

computing and multi-core chip design, has made this problem

tractable. This requires language and system level techniques

that can effectively locate and efficiently exploit parallelization

opportunities in stream processing applications. This latter

aspect is the focus of this paper.

Streaming applications are structured as directed graphs

where vertices are operators and edges are data streams. To

scale such applications, the stream processing system is free to

decide how the application graph will be mapped to the set of

available hosts. Auto-parallelization [23] is an effective tech-

nique that can be used to scale stream processing applications

in a transparent manner. It involves detecting parallel regions

in the application graph that can be replicated on multiple

hosts, such that each instance of the replicated region (which

we refer to as a channel) handles a subset of the data flow

in order to increase the throughput. This form of parallelism

is known as data parallelism. Transparent data parallelization

involves detecting parallel regions without direct involvement

of the application developer and applying runtime mechanisms

to ensure safety: the parallelized application produces the same

results as the sequential one.

While safety ensures correctness, it does not ensure im-

proved performance. Transparent auto-parallelization that im-

proves performance must have some profitability mechanism.

In a streaming data-parallel region, profitability involves de-

termining the right degree of parallelism, that is the number of

parallel channels to be used, without explicit involvement of

the application developer. Elastic auto-parallelization takes this

one step further by making the profitability decisions adaptive

to the runtime dynamics such as changes in the workload and

the availability of resources. In this paper, we propose novel

techniques that provide effective elastic auto-parallelization for

stream processing applications.

There are two important requirements in achieving elastic

auto-parallelization.

(R1) Elasticity in the presence of stateful operators requires

state migration. This brings about two major challenges.

First, in order to maintain the transparent nature of auto-

2

parallelization, state migration needs to be performed in the

presence of, but without interfering with, application logic.

Second, we need to minimize the amount of migrated state.

By minimizing migrated state, we minimize the time and space

overhead which can disturb the flow of data. This will, in turn,

enable more frequent adaptation.

(R2) Elasticity in the presence of runtime dynamics requires

control algorithms. This brings about two major challenges.

First, general purpose stream processing applications contain

a large number of user-defined operators. We cannot easily

model the reactions of such operators to runtime dynamics.

runtime metrics to guide a control system, rather than relying

on traditional cost based optimization. Second, we need to

make sure that the control algorithm is able to provide

SASO properties [12], that is, it exhibits stability (i.e., does

not oscillate the number of channels used), achieves good

accuracy (i.e., finds the number of channels that maximizes

the throughput), has short settling time (i.e., reaches a stable

number of channels quickly), and finally, avoids overshoot

(i.e., does not use more channels than necessary).

We address the challenge of transparent migration by de-

veloping a key-value store based state API that is designed to

support the implementation of partitioned stateful operators.

Partitioned stateful operators store independent state for each

sub-stream identified by a partitioning attribute [23]. Such

operators are very common in stream processing applications

(network traces partitioned by IP numbers, financial streams

partitioned by stock tickers, etc.). We develop compile-time

rewrite techniques to convert high-level user code into an

equivalent version that uses the state API, so as to shield

application developers from the details of state migration.

We address the challenge of low cost migration by devel-

oping an incremental migration protocol and an associated

splitting strategy based on consistent hashing [18], which

together minimize the amount of migrated state.

We address the challenge of runtime control by relying on

two local metrics computed at the splitter: the congestion index

(a measure of blocking time at the splitter) and the throughput.

The splitter is a run-time component that is co-located with the

operator that is generating the stream to be split for parallel

processing. We develop a local control algorithm that works

at the splitter and uses these metrics to adjust the number of

channels to be used for processing the flow.

We address the challenge of providing SASO properties

by incorporating several techniques in our control algorithm.

These include, peeking up and down in terms of the number of

channels used based on changes in observed metrics to address

accuracy and overshoot; remembering the past performances

achieved at different operating points to address stability; and

rapid scaling to address settling time.

This paper makes the following major contributions:

• To the best of our knowledge, it provides the first elastic

auto-parallelization scheme that can handle stateful operators,

works across multiple hosts, and is designed for general

purpose stream processing applications.

• It proposes a state management API, compile-time rewrite

techniques, and a run-time migration protocol to perform

transparent state migration with minimal state movement.

• It proposes a control algorithm that uses local information

and local control to achieve SASO properties, in order to find

the best operating point to solve the profitability problem in a

workload and resource adaptive manner.

• It provides an implementation and an evaluation on an

industrial-strength stream processing system.

The techniques and algorithms we introduce for achieving

elasticity, such as the control algorithm, the state management

techniques, and the migration protocol, all have general ap-

plicability and can be implement in any stream processing

system. We exemplify the state management APIs using the

System S middleware and its programming language SPL [13]

to ease the exposition.

In summary, this paper shows how to solve the profitability

problem for distributed stateful stream processing, in a trans-

parent and elastic manner. The rest of the paper is organized

as follows. We discuss related work in Section 2. In Section 3,

we provide background on the System S middleware and

SPL [13], as well as the safety aspects of auto-parallelization

based on previous work [23]. We provide an overview of our

elastic auto-parallelization solution in Section 4. We describe

the control algorithm and how it achieves the SASO properties

in Section 5. We describe the key-value based state APIs and

the compile-time rewrite techniques in Section 6. We describe

the migration protocol in Section 7. We present experimental

results in Section 8. We conclude the paper in Section 9.

2 RELATED WORK

Compared to prior work, our elastic parallelization scheme

is the first that meets all three of the following criteria:

adjusts the level of parallelism at runtime; adapts to workload

changes; and works in the presence of stateful operators. Our

earlier work 3.2, summarized in Section 3.2, has addressed the

last part. It provides language and runtime support for auto-

parallelization in the presence of stateful operators, which we

classify as the safety problem. In this work, we address the

profitability problem, providing runtime degree-of-parallelism

adaptation in the presence of workload changes. Runtime

adaptation brings a number of new challenges, including

control algorithms for adapting to workload dynamics, state

management to support transparent migration, and protocols

for efficient re-distributions of state during migration.

Next, we review the related work in several areas where

adaptive and parallel data processing is prevalent.

Adaptive Query Processing (AQP): AQP techniques [10]

address the rigidity of the traditional optimize-then-execute

model of relational database optimizations. The traditional

model is unable to adapt to the dynamically changing data,

runtime, and workload characteristics of the new breed of

data management applications. To solve this, AQP techniques

typically apply the adaptivity loop, which involves the steps of

measure, analyze, plan, and activate. In this work, we follow

this general approach as well. However, most of the work on

AQP has dealt with the topic of adaptive operator reordering,

such as selections [6] and joins [29]. Different than previous

work on AQP, we address the problem of adaptive partitioned

parallelism for general-purpose stream processing systems,

3

where the operators are not limited to relational operators.

Our work does not involve operator re-ordering and instead

focuses on elastic setting of number of parallel channels to

use based on workload availability.

The most relevant work from the AQP area is the Flux

operator [24], which applies partitioned parallel processing in

the context of stateful continuous queries. However, the focus

is on dynamic load balancing and the level of parallelism is

not dynamically adjusted. The load balancing problem is of

particular interest for non-dedicated hosts, where resources can

be used by external processes. Comparison of several different

approaches for query parallelization under this assumption can

be found in the literature [21]. Our work focuses on elastic

scaling in a dedicated host setup.

Data Stream Processing Systems (DSPSs): Elastic oper-

ators [22] address dynamic data parallelism in the context

of DSPSs. However, the approach is limited to individual

operators, does not handle stateful operators, and works at

the thread level, limiting it to a single host. Yet, similar to

our work, run-time control mechanisms are applied to adjust

the number of parallel operators in order to adapt to run-time

dynamics.

Parallelization of stateful operators in DSPSs is addressed

in [31]. A distributed shared state mechanism coupled with

a split/process/merge model is proposed to facilitate paral-

lelization. A theoretical model is provided to determine the

right level of parallelism as well. Compared to our work, this

approach does not provide transparent or elastic paralleliza-

tion. It does not handle partitioned stateful parallelism and

is targeted at the most general case of arbitrary state, which

requires explicit use of synchronization and shared state.

Most relevant to our work, earlier research has addressed

the safety issues in performing auto-parallelization on general-

purpose DSPSs [23]. In particular, locating parallel regions

that contain partitioned stateful operators and exploiting them

for achieving data parallelism has been addressed in the

literature. However, the profitability issue is not covered by

this line of work, which is the main focus of this paper.

Open source DSPSs like Twitter Storm [28] and Yahoo!

S4 [32] can take advantage of partitioned stateful parallelism.

However, Storm leaves the profitability decision to the de-

velopers and system administrators (the parallelism level is

adjustable at runtime without shutting down the application).

S4 creates as many parallel operator instances as there are

unique values for the partitioning attribute, which is shown to

be sub-optimal [4].

Map/Reduce Systems: Elastic auto-parallelization has been

applied to Map/Reduce [9] systems as well (see [3] and [19]).

It is important to note that stream processing applications often

have ordering requirements that are absent in many commuta-

tive and associative workloads of Map/Reduce systems. Due

to sequential segments that form bottlenecks, most streaming

applications do not scale linearly with the number of hosts.

As a result, it is important to apply run-time profitability

analysis to determine the right level of parallelism for stream

processing applications.

StreamMine uses active replication at no cost [19] to pro-

vide fault tolerance as well as a limited form of elasticity

for streaming Map/Reduce applications — a variation of

Map/Reduce where multiple partitioned stateful stages are

connected to each other. It shifts processing resources to

the active replicas during load spikes and falls back to state

synchronization between the active and backup replicas when

the latter’s processing queues are full. The details as to how

state synchronization is performed for stateful operators is not

discussed in [19].

The Flood [3] system provides elasticity for Map/Reduce-

like streaming systems where the source data streams are

received from multiple clients. The approach is based on

allocating additional VMs to handle increases in the number

of clients or the volume of source data. However, this work

does not recognize the need for state migration to achieve

elasticity for stateful operators, let alone explain how such a

state migration would work.

Many other systems that generalize the Map/Reduce

paradigm to arbitrary DAGs, such as Nephele [2], Hyracks [7],

and Dryad [16] exist as well. While such systems can stream

intermediate results between certain stages, they are not de-

signed to handle continuous data sources. Sequential and

order-sensitive application segments, which often limit the

scalability of streaming applications and make profitability

analysis critical, do not exist in these systems. Furthermore,

none of these systems perform elastic adaptation of the degree

of parallelism involving state migration.

Other Systems: Flextream [14] is a dynamic auto-

parallelization scheme for the StreamIt [11] system — a

stream processing framework targeted at signal processing

applications with strong emphasis on static scheduling. Flex-

tream introduces dynamic compilation techniques to adjust

the level of parallelism used in order to adapt to changes

in resource availability. However, multi-host elasticity and

stateful operators are not addressed.

The feed-back directed pipeline parallelism approach of [27]

performs dynamic adaptation for pipelines of parallelizable

stages. It describes an online controller that decides the degree

of parallelism for each stage. However, the approach is limited

to shared memory and does not handle selective stages.

The SEDA architecture [30] employs control mechanisms

for automatic tuning of parallelism in event-driven stage

pipelines. SEDA is targeted at building highly concurrent

Internet services and cannot be applied directly to distributed

stream processing systems (issues such as stateful operators,

ordering, and cross-host parallelism are not addressed). Yet

it is similar to our solution in its application of control

mechanisms to perform run-time parallelization tuning.

Finally, process migration is a well studied topic in the area

of distributed systems [20]. In this work, we do not migrate

processes, but instead perform partial state migration to re-

distributed work to a new host or over remaining hosts.

3 BACKGROUND

In this section we briefly discuss the SPL language and the

System S middleware, and then give background on the safety

aspects of auto-parallelization.

4

3.1 SPL and System S

SPL [13] is a programming language used to develop stream

processing applications. SPL applications are composed of

operator instances connected to each other via stream con-

nections. An operator instance is a vertex in the application’s

data flow graph. An operator instance is a realization of an

operator definition. For example, the operator instance shown

on the left of the top graph in Figure 1 is an instance of

the TCPSource operator. In general, operators can have many

different instantiations, each using different stream types,

parameters, or other configurations such as windows. Operator

instances can have zero or more input and output ports. Each

output port generates a uniquely named stream, which is a

sequence of tuples. Connecting an output port to the input

of an operator establishes a stream connection. A stream

connection is an edge in the application’s data flow graph.

Operators are implemented either directly in SPL (via

Custom operators) or in general purpose programming lan-

guages. In both cases, the operator implementations rely on

an event driven interface — they react to tuples arriving

on operator input ports. Tuple processing generally involves

updating some operator-local state and producing result tuples

that are sent out on the output ports.

System S [17] is a distributed stream processing engine

that can execute SPL applications using a set of distributed

hosts. It performs various runtime tasks, such as data transport,

scheduling, fault-tolerance, and security.

3.2 Auto-parallelization

Auto-parallelization is the process of automatically discov-

ering data-parallel regions in an application’s flow graph

which can be exploited at runtime. In addition to discovering

these parallel regions, the compiler must also establish certain

properties required to activate appropriate runtime mechanisms

that will ensure safety of the auto-parallelization. For instance,

if a parallel region is determined to be stateless, the runtime

data splitting mechanism to be applied can be round-robin,

whereas if the region is partitioned stateful, the data splitting

has to be performed using a hash-based scheme.

We illustrate an example auto-parallelization process using

the SPL code sample given in Listing 1. Here, we see a sample

operational monitoring application called OpMon. An instance

of the TCPSource operator is used to receive a stream that

contains information about network usage of different appli-

cations. This is followed by an Aggregate operator instance,

which computes minute-by-minute data usage information for

each application, using the appId as the partitioning key. The

aggregated results are taken through a Filter operator to

retain applications whose network usage is beyond a threshold.

Finally, the end results are sent to a TCPSink operator instance.

Figure 1 shows a visualization of the data flow graph for the

OpMon application (at the top), as well as an auto-parallelized

version of it (at the bottom). In this example, the parallel

region consists of the Aggregate and the Filter operators.

It is a partitioned stateful parallel region, as the Aggregate

operator maintains state on a per-partition basis. The splitter

resides on the output port of the operator preceding the

parallel region, and is responsible for routing tuples to parallel

composite OpMon {

param

expression<float32> $threshold :

(float32) getSubmissionTimeValue("threshold");

type

UsageDetailInfo = tuple<int32 srcIndex, timestamp time,

int32 trafficSrc, int32 trafficDst, int32 appId,

int32 appVersion, float32 flowAmount>;

UsageSummaryInfo = tuple<int32 appId, float32 flowAmount,

timestamp time>;

graph

stream<UsageDetailInfo> DataUsage = TCPSource() {

param

role: server; port: 40000; format: csv;

}

stream<UsageSummaryInfo> UsageSummary = Aggregate(DataUsage) {

window

DataUsage: tumbling, delta(time, 60.0), partitioned;

param

partitionBy: appId;

output

UsageSummary: flowAmount = Sum(flowAmount);

}

stream<UsageSummaryInfo> OverusingApps = Filter() {

param

filter: flowAmount > $threshold;

}

() as Sink = TCPSink(OverusingApps) {

param

role: client; address: "10.0.0.2"; port: 40001;

}

}

Listing 1: OpMon, a simple operational monitoring app. in SPL.

channels. Once a tuple is routed to a particular channel, then

all future tuples that share their appId attribute value with it

must be routed to the same channel. This is achieved at the

splitter by applying a hash function on the appId attribute.

In this example, there is an additional operator that follows

the parallel region (the TCPSink). Furthermore, there is no

indication that this operator can tolerate out of order results.

As such, this particular parallel region needs to maintain the

order of tuples at its output. This is achieved at the merger,

which resides on the input port of the operator succeeding the

parallel region. The merger performs a re-ordering operation

using sequence numbers which were assigned at the splitter

and carried through the parallel region.

Finally, this parallel region contains a Filter operator that

can drop some of the tuples. This results in a selectivity

value of at most 1. This may cause the merger to block

for long periods of time, if the tuples for a given channel

happen to get dropped with a higher frequency than others.

This is because during times of no tuple arrival, the merger

cannot differentiate between tuples that take a long time to

arrive and tuples that will never arrive (dropped). To solve

this problem, this particular parallel region uses pulses, which

are special markers periodically sent by the splitter and used

by the merger to avoid lengthy stalls.

Complete details of the safety aspects of auto-parallelization

can be found in [23]. In summary, the following properties of

parallel regions play a central role in the runtime mechanisms

used to ensure safety:

• Statefulness determines whether a region can be par-

allelized, as only stateless and partitioned stateful operators

are amenable to data parallelism. It also determines the data

partitioning scheme used at the splitter.

• Ordering requirements of the downstream operators

determine whether a parallel region requires an ordering step

during the merge or not.

5

TCPSource

DataUsage

Aggregate

UsageSummary

Filter

OverUsingApps

TCPSink

TCPSource

DataUsage

Aggregate

UsageSummary

Filter

OverUsingApps

TCPSink

 Splitter: Hash-based using appId attribute

 Merger: Ordering based on squence nums

 Uses pulses due to �1 selectivity

Aggregate

UsageSummary

Filter

OverUsingApps

Aggregate

UsageSummary

Filter

OverUsingApps

A parallel channel

Partitioned stateful parallel region

Fig. 1: Auto-parallelization of the OpMon application.

• Selectivity of a parallel region determines whether pulses

are required to avoid lengthy stalls or not.

In the rest of the paper, we look at how the profitability

aspect of auto-parallelization can be addressed through run-

time adaptation.

4 SOLUTION OVERVIEW

In this section we give an overview of our solution, which is

based on run-time elasticity.

The key idea of our approach is to leave the profitability

decision to run-time, where we can infer information regarding

workload and resource availability. When an application starts

its execution, the number of parallel channels is set to 1.

A control algorithm placed at the splitter periodically re-

evaluates the number of channels to be used based on local

run-time metrics it maintains. The control algorithm can decide

to increase or decrease the number of channels used or take

no action at any decision point. When the number of channels

to use changes, then a state migration protocol may need to

be executed if the parallel region is stateful.

It is important to note that we are not addressing the

placement problem in this work. In particular, when a new

parallel channel is requested by our algorithm, we assume that

it will be placed on available hosts/cores in the system.

For parallel regions that are partitioned stateful, changing

the number of parallel channel necessitates partial relocation

of state. For instance, if the number of parallel channels

increases, then the assignment of some of the partitions needs

to move from the existing parallel channels to the new parallel

channels. Whenever such change of assignment happens at the

splitter, the state associated with the moved partitions has to

be relocated as well. In particular, the newly added parallel

channels need to borrow state of the partitions assigned to

them from the existing parallel channels. Similarly, when

existing channels are removed, the state associated with the

partitions they were handling has to be redistributed to the

existing parallel channels.

As a system invariant, at any time each partition is owned

by a single parallel channel. We perform the assignment of

partitions to parallel channels using consistent hashing in order

to minimize the amount of state moved during migration.

In order for run-time migration to be performed trans-

parently, the stream processing middleware has to reason

about the state maintained by operators. In a general purpose

streaming system where user-defined operators are commonly

used, this requires special machinery. To address this problem,

our solution includes a state management API in the form of a

local key-value store. The SPL compiler rewrites code present

in Custom operators such that the state is converted to use

this API, enabling the runtime to reason about such state and

perform transparent migration.

5 CONTROL ALGORITHM

The control algorithm is run periodically to update the number

of parallel channels. It relies on the following two locally

computed metrics:

Congestion is an indication of whether the splitter observes

an undue delay when sending tuples on a connection. It is a

useful metric in two respects: (i) Presence of congestion is an

indication that we need more channels to handle the current

load, and similarly lack of congestion is an indication that

we may be using more channels than necessary. (ii) Temporal

changes in the congestion value can indicate changes in the

workload availability. We compute the congestion as a boolean

value by applying a threshold on the congestion index, which

is a measure of the percentage of time the tuple transport at

the splitter is blocked due to backpressure.

To compute the congestion index, we use non-blocking I/O

for transferring tuples. If the send call notifies us that the call

would block, then we block until room is available and mea-

sure the amount of blocking involved. Overall, the congestion

index measures the percentage of time spent blocking. We

average this value over all channels. The congestion index is

a value in the range [0, 1]. We further discuss the congestion

index threshold in Section 5.3.

Throughput is the number of tuples processed per second

over the last adaptation period. Throughput is useful in two

respects: (i) When we move to a new operating point in

terms of the number of channels, it tells us if the situation

has improved or not – after all, the goal is to optimize

the throughput. (ii) Temporal changes in the throughput can

indicate changes in the workload.

The control algorithm operates based on the following two

fundamental principles:

(P1) Expand: If there is congestion, go up (increase the

number of channels) unless you have been there before

and have not observed improved throughput.

(P2) Contract: If there is no congestion, go down (decrease the

number of channels) unless you have been there before

and have observed congestion.

Here, (P1) provides the accuracy property in SASO: we get

good accuracy, since the number of channels is increased until

congestion is removed. (P2) provides the overshoot property

in SASO: we avoid using more channels than necessary, since

the number of channels is decreased unless congestion appears

below. The ‘unless’ clauses in (P1) and (P2) provide the stabil-

ity property in SASO: we do not oscillate between operating

points, since what happened in the past is remembered and is

not repeated. However, these two principles are not sufficient

when the workload fluctuates. When the workload availability

changes, we need to forget part of what happened in the past.

6

Thus, we introduce the following adjustments in order to adapt

to workload changes:

(P3) Congestion Adapt: If a change is observed in the conges-

tion that is indicative of workload increase (decrease),

forget about past observations regarding upper (lower)

channels.

(P4) Throughput Adapt: If a change is observed in the through-

put that is indicative of workload increase (decrease),

forget about past observations regarding upper (lower)

channels.

Here, (P3) and (P4) together enable the control algorithm to

adapt to workload changes. We note that the control algorithm

has the following critical feature: It will settle down on a

number of channels such that there is no congestion, yet any

smaller number of channels will result in congestion. When in

this stable state, if there is an increase in the workload, then

we will start observing congestion and go up (due to (P1)).

When there is a decrease in the workload, we will observe

throughout decrease and forget about the fact that one channel

below was resulting in congestion (due to (P4)) and go down

(due to (P2)).

There are two additional minor issues with this version of

the control algorithm. The first one is about the nature of

congestion. The algorithm is designed to interpret presence of

congestion as an indication of the need for more channels to

handle the load. In the case that the congestion is not due to

the cost of the parallel region but instead due to the cost of the

flow that is downstream of the parallel region, increasing the

number of channels will not result in any improvement, but

instead will cause overshoot. We call this kind of congestion

remote congestion and avoid the potential pitfall using the

following additional principle:

(P5) Remote Congestion: If the congestion continues after

increasing the number of channels, yet the throughput

has not significantly increased, go down.

Here, (P5) avoids the case where the number of channels

is continuously increased due to the continued presence of

congestion, yet the throughput does not improve. Without (P5),

this can happen in the presence of remote congestion. It is

important to note that most streaming applications eventually

hit a scalability limit when their original bottlenecks are

removed via parallelization. This is because the bottleneck

moves to a non-parallelizable portion of the application, which

in most cases is the source or the sink or some stateful

operator. In all cases where an operator downstream of a

parallel region becomes the bottleneck, remote congestion will

occur.

The second problem is that, in cases where the available

resources (execution contexts such as hosts and cores) and the

cost of the parallel region are both high, the optimal number

of channels can be high as well. Thus, it can take a long

time for the control algorithm to reach this number. This is

due to the one-channel-at-a-time nature of the algorithm and

can negatively impact the settling time property in SASO. We

address this problem by introducing an option to our algorithm

called rapid scaling. It is summarized a follows:

(P6) Rapid Scaling: Rather than operating one-channel-at-a-

congestion[N
L-1]

?

throughput[N
L+1]

unknown or higher

?

congestion[N
L
]

?

L−−

(P2)

L++

(P1)

yes

yes yes

no

no no

run with N
L

channels
(P6)

forget obsolete

information
(P3,P4)

remote

congestion
?

L−−

(P5)

yes no

Fig. 2: High-level description of the control algorithm.

time, operate one-level-at-a-time and define a super-linear

mapping between the number of levels and channels.

Here, (P6) preserves the main operation mode of the al-

gorithm by still making changes on the operating point one-

step-at-time. But rather than using number of channels as the

operating point, it uses a level, which is mapped to the number

of channels via a function. In particular, we use the following

function:

NL =
⌊

0.5 + 20.5∗(L+1)
⌋

.

For increasing level values starting at 0, this results in the

following series of number of channels: {1, 2, 3, 4, 6, 8, 11,
16, 23, 32, . . .}. It is possible to use other functions that follow

a more steep or less steep curve depending on the maximum

number of channels and the settling time requirements.

Figure 2 gives a high-level description of the control algo-

rithm, illustrating the principles P1 through P6.

procedure init()
P ← 1; L← 0;
∀i∈[0..L∗) (T

⊢
i ← nan; T⊣

i ←∞)
∀i∈[0..L∗) (Ci ← true ; Pi ← −1)
s← 0.1 + (1.0− α) ∗ 0.9

Algorithm 1: Initialization of the state variables.

5.1 Algorithm Implementation

The control algorithm keeps three state variables. The first one

is the current adaptation period, denoted by P . The second one

represents the current level, denoted by L. The third one is an

array that keeps the following information for each level: the

last adaptation period during which the algorithm was at this

level, denoted by Pi; whether congestion was observed the

last time the algorithm was at this level, denoted by Ci; the

throughput observed the last time the algorithm was at this

level, denoted by T ⊣
i ; and the throughput observed during

the first of the periods the last time the algorithm stayed

consecutive periods at this level, denoted by T ⊢

i . We use L∗

to denote the maximum number of levels.

The control algorithm has a global parameter called change

sensitivity, denoted by α, which determines what significant

change means. It takes a value in the range [0, 1]. A value

of 1 means the algorithm is very sensitive to small changes

in the throughput. For instance, a minor improvement in the

throughput will be sufficient to go up if the sensitivity is high.

All changes in throughput are normalized against the ideal

throughput for a single channel in a linearly scaling system.

7

Require: T : current throughput, C: current congestion
procedure getNumberOfChannels(T,C)

/* (P3) and (P4): congestion and throughput adapt */
lc ← checkLoadChangeViaCongestion (C)
lt ← checkLoadChangeViaThroughput (T)
if lc = LessLoad or lt = LessLoad
∀i∈[0..L) Ci ← false; T⊣

i ← 0
if lc = MoreLoad or lt = MoreLoad
∀i∈(L..L∗) Ci ← true; T⊣

i ←∞

/* update info on current level */
PL ← P ; P ← P + 1
T⊣
L ← T ; CL ← C

if T⊢
L = nan then T⊢

L ← T

/* update the current level */
r ← (PL−1=PL−1) and CL−1 and CL and T⊣

L ≤ T⊣
L−1

if r /* (P5): remote congestion */
T⊢
L−1 ← nan; L← L− 1

else if C /* (P1): expand */
if L<L∗− 1 and T⊣

L+1 ≥ T
T⊢
L+1 ← nan ; L← L+ 1

else /* (P2): contract */
if L > 0 and ¬CL−1

T⊢
L−1 ← nan; L← L− 1

return NL /* (P6): rapid scaling */

Algorithm 2: Update of the number of channels.

The init() routine in Algorithm 1 provides the initialization

logic for the state variables.

The core of the algorithm is given in the

getNumberOfChannels() routine provided by Algorithm 2,

which takes as parameters the current throughput (denoted by

T) and the current congestion status (denoted by C).

As the first step, principles (P3) and (P4) are applied to

see if there is a change in the load. If there is a load increase

(decrease), the information kept about the levels above (below)

are reset.

The second step updates the information kept about the

current level, last throughput, last congestion status, and the

first throughout (unless the algorithm was at this level the last

time).

The third step adjusts the current level. First, principle

(P5) is applied to see if there is remote congestion (were

at this level the last time (PL−1 = PL − 1), observed

continued congestion (CL−1 and CL), and the throughput did

not improve (T ⊣

L ≤ T ⊣

L−1)). If so, we go back to the previous

level. Otherwise, principle (P1) is applied: We check if there

is congestion and if so go up one level unless the algorithm

has been there before but the throughput was worse. Finally,

principle (P2) is applied, that is if there is no congestion, we

go one level down unless the algorithm has been there before

and observed congestion.

Once the current level is adjusted, principle (P6) is applied

to return the channel count corresponding to the current level.

5.2 Detecting Workload Changes

The logic used to detect changes in the workload is given in

Algorithm 3. The checkLoadChangeViaCongestion () routine

uses the congestion status to detect load changes. If the current

level and the last level are the same, yet the congestion status

has changed, this is taken as an indication of load change

(load increase if there is congestion currently, load decrease

Require: C: current congestion
procedure checkLoadChangeViaCongestion (C)

if PL = P − 1 and CL 6= C
return C ? MoreLoad : LessLoad

if PL+1 = P − 1 and CL+1 and ¬C
return LessLoad

if PL−1 = P − 1 and ¬CL−1 and C
return MoreLoad

return Unknown

Require: T : current throughput
procedure checkLoadChangeViaThroughput (T)

if PL = P − 1
if T < T⊢

L

if (T⊢
L − T) > s ∗ (NL −NL−1) ∗ (T

⊢
L/NL)

return LessLoad
else

if (T − T⊢
L) > s ∗ (NL+1 −NL) ∗ (T

⊢
L/NL)

return MoreLoad
if PL+1 = P − 1 and T > T⊣

L+1

return MoreLoad
if PL−1 = P − 1 and T < T⊣

L−1

return LessLoad
Algorithm 3: Detecting workload changes.

otherwise). If the current level is lower than the last one, yet

the congestion has disappeared, this is taken as load decrease.

And finally, if the current level is higher than the last one, yet

the congestion has appeared, this is taken as load increase.

The checkLoadChangeViaThroughput () routine uses the

throughput to detect load changes. If the current level and the

last level are the same, yet there is a significant change in the

throughput, this is taken as an indication of load change (load

increase if the current throughput value is higher, load decrease

otherwise). Change sensitivity is used to detect significant

change relative to the ideal change in a linearly scaling system.

If the current level is lower than the last one, yet the throughput

has increased, this is taken as load increase. And finally, if the

current level is higher than the last one, yet the throughput

has decreased, this is taken as load decrease.

5.3 Discussion of Parameters

The control algorithm has three configurable parameters. Out

of these, the congestion index threshold is the only one that

requires careful tuning. We study its setting empirically in the

experimental evaluation section and show that any threshold

in the range [0.01, 0.3] provides a robust setting.

Rapid scaling is a feature that can be turned on to reduce the

settling time. It adjusts the tradeoff between quick adaptation

and the ability to fine-tune the number of parallel channels.

The change sensitivity adjusts the sensitivity of the system

to workload changes. In systems where the cost of migration

is low, a small value for the change sensitivity parameter is

appropriate. For systems where migration is a costly operation,

it is best to wait for significant change in the observed

throughput before taking an adaptation step. For instance, if

the throughput handled by a channel has dropped by 10%,

reacting to this by going one level down may be too aggressive

for a system with high overhead migrations.

Our algorithm satisfies all SASO properties even if the

user does not tune rapid scaling or change selectivity. But

by offering these parameters, we enable power users to adjust

the relative tradeoffs between the SASO properties, if desired.

8

6 STATE MANAGEMENT

Operators that participate in parallel regions are either stateless

or partitioned stateful, as outlined in Section 3.2. Partitioned

stateful operators maintain independent state on a per-partition

basis based on a partitioning attribute. Such operators require

special machinery to support transparent elastic parallelization.

In particular, the runtime system needs to migrate (across

hosts) state associated with a subset of the partitions. This

requires the runtime to understand the state managed by

partitioned stateful operators.

To address this problem, we developed a state management

API and an associated state management service1. Further-

more, we provide language-level mechanisms to enable newly

developed operators to take advantage of managed state.

6.1 Managed State API

The state management API provides a key-value store interface

to operator developers. The API contains a set of operations

commonly found in key-value stores, such as put (insert

a new item), get (retrieve an existing item), has (check

for existence), remove (delete an item), and basic iteration

constructs. Additional operations are provided to dynamically

create and remove stores at run-time, such as createStore

and removeStore. The store API fully supports the SPL type

system, allowing all available types to be used as both keys and

values. The runtime service that backs up this API has multiple

implementations, specialized depending on the scoping and

persistence policies.

Scoping policy determines the visibility of the managed

state across different application components. For instance,

state with global scope enables operators from different ap-

plications to share state, whereas state with job-level scope

enables operators from the same application to share state. For

the purpose of this work, we rely on operator-level scope, as no

sharing is required. This results in fast access to managed state,

as the state can be stored in local memory of each operator

instance (recall that at any time each partition is owned by a

single channel).

The persistence policy determines whether and how the

state is saved. For instance, a policy of transient state means

that the state is never backed up to disk and is lost upon

failures or restarts. Alternatively, a policy of periodically

checkpointed state provides transparent, asynchronous, and

incremental saving of state to disk. This minimizes the amount

of state lost upon failures or restarts. The persistence policy

is orthogonal to migration.

6.2 Transparent Usage of the API

To employ the managed state API in a manner that is trans-

parent to the application developers, several language-level

techniques can be used. We look at three unique cases:

Case 1 – New SPL operators: User-defined operators are

written using Custom operators in SPL. For newly developed

Custom operators, we provide two language constructs aimed

1. At this time, these APIs and services, as well as all other techniques
discussed in this paper, are part of our research prototype and are not part of
the SPL language/runtime available commercially.

at making the development of partitioned stateful operators

easier for application developers. First, we introduce the

partitioned state clause to specify the list of state vari-

ables to be maintained on a per-partition basis (otherwise

done explicitly through map data structures). Second, we intro-

duce the partitionBy parameter to specify the partitioning

attribute to be used for the partitioned state. This removes

the need to explicitly deal with the map data structures in

user code, while at the same time simplifying the compiler’s

job in identifying partitioned stateful Custom operators. The

compiler will use the state API when generating code for these

operators, so as to enable elastic parallelism.

Listing 2 gives example SPL code that uses the new SPL

language constructs. In this example, we have a sensor stream

carrying tuples with two attributes: a sensor id and a sensor

value. The example shows a Custom operator that performs

basic thresholding. The operator forwards a tuple if and only

if its value is more than a threshold higher than that of the last

tuple forwarded with the same id. For this purpose it stores the

last value submitted inside the variable storedValue. Since

the variable is declared within the partitioned state section,

at run-time one instance of it for each unique id value is

created. The partitionBy parameter is used to specify that

the partitioning is done using the id attribute.

We note that the code is simpler compared to Listing 3

corresponding to Case 2 (described below), as it avoids explicit

management of map data structures.

Case 2 – Existing SPL operators: In legacy code (Case

1 not applicable), partitioned stateful Custom operators are

created by explicitly using the map data structure. However,

such operators neither specify a partitioning attribute nor use

the managed state API we outlined earlier. To address this

problem, compile-time static analysis can be used to identify

whether a Custom operator is partitioned stateful, and if so

locate the partitioning attribute. In order for an operator to

be partitioned stateful, all mutable state needs to be using a

map data structure and all accesses to this structure need to be

based on a common index expression that depends on one or

more stream attributes (aka the partitioning attributes).

Once a Custom operator is identified as partitioned stateful,

the map data structure and the accesses to it can be rewritten

to use the managed state API, without any involvement by the

application developer. Our current prototype does not fully

implement this case.

Listing 3 gives SPL code illustrating a Custom operator that

can be determined to be partitioned stateful after applying

static analysis. The code implements the same application

from Listing 2. The operator keeps a mutable state variable

(storedValues), which is a map and is always accessed via

the id attribute of the incoming stream. Thus, this operator is

partitioned stateful, with a partitioning attribute of id.

It is worth noting that Case 1 is superior to Case 2 not

only from the perspective of system implementation (easier

compiler analysis) but also from the perspective of application

development (cleaner and shorter code).

Case 3 – Native operators: For operators that are developed

in general purpose programming languages, such as C++ and

9

stream<rstring id, float32 value> Src = MySource() {}

stream<rstring id, float32 value> Res = Custom(Src) {

logic

state:

float32 threshold = 10.0;

partitioned state:

mutable float32 storedValue = minFloat32();

onTuple Src: {

float32 diff = abs(value-storedValue);

if (diff > threshold) {

storedValue = value;

submit(Src, Res);

}

}

param

partitionBy: id;

}

Listing 2: Assisted state management in a Custom operator.

stream<rstring id, float32 value> Src = SensorSource() {}

stream<rstring id, float32 value> Res = Custom(Src) {

logic

state: {

float32 threshold = 10.0;

mutable map<rstring, float32> storedValues = {};

}

onTuple Src: {

if (id in storedValues) {

float32 diff = abs(value-storedValues[id]);

if (diff > threshold) {

storedValues[id] = value;

submit(Src, Res);

}

} else {

storedValues[id] = value;

submit(Src, Res);

}

}

}

Listing 3: Manual state management in a Custom operator.

Java, the managed state API is provided as native interfaces.

Operator developers are responsible for using these APIs

in their native code to manage partitioned state, providing

a partitionBy parameter, and specifying meta information

about their operator (via the operator model [13]) to indicate

that it is partitioned stateful. Note that the application devel-

opers do not need to know about these details.

7 STATE MIGRATION

The migration protocol is executed for a parallel region in

response to the decisions made at the splitter by the control

algorithm. When the control algorithm updates the number of

channels, it also updates the data partitioning function it uses

to distribute the partitions among the parallel channels and

initiates the migration protocol. The migration is only needed

for the case of partitioned stateful parallel regions.

The migration protocol is initiated by sending a migration

pulse from the splitter to all parallel channels. When an

operator in a parallel channel receives a migration pulse, it

first forwards the pulse downstream and then starts executing

the per-operator migration protocol. This makes it possible

to execute migration of state between replicas of multiple

operators in parallel, in case the parallel region contains more

than one partitioned stateful operator.

We first describe the migration protocol for an operator

and then discuss the implications of using different data

partitioning functions on system performance.

7.1 Migration Protocol

The migrate routine given in Algorithm 4 provides the

pseudo-code for the migration protocol executed by an op-

erator. There are four parameters to the routine. The first is

the index of the operator’s parallel channel, denoted by i. The

second is the new operating point in terms of the number of

channels, denoted by N . The third is the state kept locally

at this operator, which consists of a list of managed stores,

denoted by Si where ski ∈ Si denotes one of the stores.

The last is the data partitioning function generator, which

generates a data partitioning function given the number of

parallel channels, denoted by H.

The protocol has two phases, namely the lend phase and the

borrow phase. In the lend phase, the items that do not belong

to the current operator – after the data partitioning function

has been updated based on the new number of channels –

are collected into a package. Package ∆k
i→j represents the set

of data items in ski that needs to migrate from the operator

replica running on the ith channel to the replica running on

the jth channel. These items are removed from the in-memory

store ski . The resulting packages are stored on a backing store

and then a vertical barrier is performed across replicas of the

operator. This ensures that all replicas complete the lend phase

before the borrow phase starts.

In the borrow phase, packages in the backing store that

are destined to the current operator replica are retrieved and

the in-memory stores are updated. For instance, items in

package ∆k
j→i are added to the store ski . A vertical barrier

is performed to ensure all replicas have completed the borrow

phase. Once complete, a horizontal barrier is performed, in

order to ensure that the splitter does not start sending tuples

before the migration is complete. This barrier is performed

across the master operator replicas (at index 0) and the splitter.

vertical barrier

horizontal barrier

vertical barrier

Fig. 3: Vertical and horizontal barriers during migration.

Consider a parallel region with 2 operators and 3 parallel

channels, as shown in Figure 3. During a vertical barrier each

operator synchronizes with its 2 replicas, whereas during a

horizontal barrier the 2 operators on channel 0 synchronize

with the splitter.

Our implementation of the migration protocol works across

multiple machies and does not rely on shared memory. It

makes use of a back-end database for state movement and syn-

chronization. Alternative implementations are possible (e.g.,

sockets or MPI). Using a database has advantages, such as

periodic checkpointing of managed state for fault-tolerance,

which is beyond this paper’s scope.

7.2 Data Partitioning

Data partitioning is performed at the splitter for partitioned

stateful parallel regions. The partitioning function needs to

10

Require: i: index of this operator’s parallel channel
Require: N : number of parallel channels to migrate to
Require: Si : state kept locally at this operator instance
Require: H: data partitioning function generator
procedure migrate(i,N, Si,H)

HN ←H(N)
/* Lend phase */
for each store ski ∈ Si do
∀j 6=i,j∈[0..N) ∆

k
i→j ← {τ | HN (τ) = j ∧ τ ∈ ski }

∀j s
k
i ← ski \∆

k
i→j

Save ∆k
i→j to backing store

verticalBarrier ()
/* Borrow phase */
for each store ski ∈ Si do
∀j 6=i,j∈[0..N) retrieve ∆k

j→i from backing store

∀j s
k
i ← ski ∪∆k

j→i

verticalBarrier ()
if i = 0

horizontalBarrier ()
Algorithm 4: Migration algorithm for an operator.

be updated when the number of parallel channels changes.

The choice of the partitioning function impacts the cost of the

migration, as it changes the amount of migrated state.

Consider a scenario where a simple data partitioning func-

tion is used, which applies a hash function on the partitioning

attributes and mods the result based on the number of channels.

This data partitioning function can result in massive state

migrations. Worse, it results in moving some partitions across

channels that are present both before and after the migration.

In general, we need a data partitioning function that provides

good balance and monotonicity. Balance ensures that the

partitions are uniformly distributed across channels, achieving

good load balance. Monotonicity ensures that partitions are

not moved across channels that are present before and after the

migration. Consistent hashing [18] is a technique that provides

these properties.

Consistent hashing maps each data item to a point on a 128-

bit ring in uniformly random fashion. Similarly, each channel

is also mapped to the same ring, but rather than to a single

point, each channel is mapped to multiple points on the ring

(using multiple hash functions). A data item is assigned to

the channel that is closest to it on the ring. As a result of

this scheme, when a new channel is inserted, it borrows data

items from multiple of the existing channels. Similarly, when a

channel is removed, its data items are distributed over multiple

of the existing channels. Consistent hashing ensures that on

average M/N partitions are moved when the N th channel is

inserted or removed from a system with M partitions.

Consistent hashing can be implemented in O(1) time (by

dividing the ring into segments [18]), yet it is slightly more

costly to compute compared to a simple hashing scheme.

However, it minimizes the amount of state to be moved during

migration. Our migration algorithm given in Algorithm 4 can

work with any data partitioning function.

8 EXPERIMENTAL RESULTS

This section evaluates the effectiveness of our solution based

on experimental results. Two kinds of results are presented.

First, micro-benchmarks are used to evaluate the scalability,

adaptation, congestion index threshold sensitivity, and migra-

tion time properties. Second, real-world application kernels

are used to compare the throughput achieved by our elastic

auto-parallelization scheme with the optimal throughput.

8.1 Experimental Setup

We implemented our elastic auto-parallelization scheme in

C++, as part of the SPL runtime within System S [17]. The

backing store used for migration is a DB2 database.

Our experiments were performed on 4 machines, each

with 2 3GHz Intel Xeon processors containing 4 cores. Each

machine has 8 cores and 64 GB of memory. In all of the

experiments, the adaptation period is set to 5 seconds and the

change sensitivity is set to 0.5. The congestion index threshold

is set to 0.2 (see Section 8.2.3). The error bars in the figures

presented in this section are plotted based on 3 repeated runs.

8.2 Micro-benchmarks

For the micro-benchmarks, we use a synthetic application

that has a single parallel region with a single operator. This

operator can be configured as stateless or partitioned stateful.

For the latter case the number of unique partitioning attribute

values present in the workload is set to 1000 unless stated

otherwise. The operator performs multiple integer multipli-

cations per tuple. We scale the number of multiplications to

adjust the amount of work performed per tuple, in order to

explore both ends of the spectrum. When there is little work

per tuple, scalability is more difficult to achieve because the

parallelization overhead becomes significant compared to the

actual work. When there is more work per tuple, it is easier to

achieve scalability as the additional runtime work performed

on a per tuple basis becomes insignificant relative to the cost

of the application logic.

20 22 24 26 28 210 212 214 216 218 220

Per tuple processing cost (# of multiplications)

0.50.5

1

2

4

8

16

32

S
p
e
e
d
u
p
 c

o
m

p
a
re

d
 t

o
 t

h
e
 s

e
q
u
e
n
ti

a
l
ca

se

Stateless

channels=32

channels=16

channels=8

channels=4

channels=2

channels=1

channels=elastic

Fig. 4: Scalability with increas-
ing tuple cost.

20 22 24 26 28 210 212 214 216 218 220

Per tuple processing cost (# of multiplications)

0.50.5

1

2

4

8

16

32
N

u
m

b
e
r

o
f

ch
a
n
n
e
ls

 u
se

d
 f

o
r

th
e
 e

la
st

ic
 s

o
lu

ti
o
n Stateless

Fig. 5: Number of channels
with increasing cost.

8.2.1 Scalability: Accuracy and Overshoot

Figure 4 plots the speedup compared to the sequential case as a

function of the per tuple processing cost, for different numbers

of parallel channels as well as for elastic parallelism. For this

experiment, the parallel region is configured to be stateless.

We make a few observations from the figure. First, for high

per tuple processing costs, linear scalability is achieved for

up to 16 channels. For 32 channels, the speedup achieved

is less than the ideal (around 21×). This is because the 4
machines are fully utilized at this time (8 cores per host).

Second, we observe that for high per tuple processing costs,

elastic auto-parallelization is able to achieve speedup that is

close to the best achieved by the fixed number of channels.

Finally, we observe that for low per tuple processing costs,

11

there is overhead compared to the sequential case, both for

fixed number of channels and for elastic auto-parallelization.

The overhead of elastic auto-parallelization is less than that

of 32 channels but more than that of 16 channels or less.

Naturally, such overheads are more pronounced for lower per

tuple processing costs.

Figure 5 plots the number of channels the control algorithm

settles down to as a function of the per tuple processing

cost. As expected, the number of channels stays flat until the

per tuple processing cost is high enough to make additional

parallelism beneficial. After that point, it increases as the per

tuple cost increases, and flattens again when the maximum

number of channels is reached.

20 22 24 26 28 210 212 214 216 218 220

Per tuple processing cost (# of multiplications)

0.50.5

1

2

4

8

16

32

S
p
e
e
d
u
p
 c

o
m

p
a
re

d
 t

o
 t

h
e
 s

e
q
u
e
n
ti

a
l
ca

se

Stateful

channels=32

channels=16

channels=8

channels=4

channels=2

channels=1

channels=elastic

Fig. 6: Scalability with increas-
ing tuple cost.

20 22 24 26 28 210 212 214 216 218 220

Per tuple processing cost (# of multiplications)

0.50.5

1

2

4

8

16

32

N
u
m

b
e
r

o
f

ch
a
n
n
e
ls

 u
se

d
 f

o
r

th
e
 e

la
st

ic
 s

o
lu

ti
o
n Stateful

Fig. 7: Number of channels
with increasing cost.

Figure 6 again plots the speedup compared to the sequential

case as a function of the per tuple processing cost, for different

numbers of parallel channels as well as for elastic parallelism.

This time, the parallel region is configured to be stateful.

Overall, we observe similar trends as in Figure 4. However,

there are a number of differences. First, the speedup achieved

with more than one channel as well as elastic parallelization

are both higher than 1× for all per tuple processing costs. This

is because a stateful parallel region is more costly to process

even for the sequential case, since for each tuple several

operations are performed to locate and update its state from

the map data structure. Second, we observe that the speedup

obtained by the elastic approach is slightly worse than the

speedup achieved by the most effective fixed approach for a

given configuration. This is due to the additional overheads

of stateful elastic parallelism, such as the cost of consistent

hashing at the splitter and the overhead of managed state APIs.

Figure 7 plots the number of channels the control algorithm

settles down to as a function of the per tuple processing

cost. The results are similar to those in Figure 5, except

that the number of channels starts from a higher value for

the smallest per tuple processing cost, as partitioned stateful

parallel regions have additional per tuple processing costs.

8.2.2 Adaptation: Settling and Stability

Figure 8 plots the available load (using the left y-axis) and

the number of channels used by the elastic auto-parallel

scheme (using the right y-axis) as a function of time. For this

experiment the available load follows a sine wave with a mean

value of 5000 tuples/second, amplitude of 2500 tuples/second,

and a period of 500 seconds. From Figure 8, we observe

how the control algorithm reacts to change in the load. The

number of channels used follows the load availability, avoid-

ing overshoot by decreasing the number of channels when

Available load

0 100 200 300 400 500 600 700 800
Time

0

1000

2000

3000

4000

5000

6000

7000

8000

Lo
a
d

Number of channels
0

5

10

15

N
u
m

b
e
r

o
f

ch
a
n
n
e
ls

Fig. 8: Number of channels
with varying load.

Available load

Handled load

0 100 200 300 400 500 600 700 800
Time

0

1000

2000

3000

4000

5000

6000

7000

8000

Lo
a
d

Fig. 9: Handled load vs. avail-
able load.

Available load

0 100 200 300 400 500 600 700 800
Time

0

2000

4000

6000

8000

10000

Lo
a
d

Number of channels
0

5

10

15

20

25

N
u
m

b
e
r

o
f

ch
a
n
n
e
ls

Fig. 10: Number of channels
with varying load.

Available load

Handled load

0 100 200 300 400 500 600 700 800
Time

0

2000

4000

6000

8000

10000

Lo
a
d

Fig. 11: Handled load vs. avail-
able load.

load availability decreases and achieving good accuracy by

increasing the number of channels when the load availability

increases. Figure 9 plots the available load and the handled

load as a function of time, for the same experiment. This figure

helps in understanding the effectiveness of the solution with

respect to throughput. When the lines corresponding to the

available load and handled load overlap, it indicates that the

system is able to handle all of the load available. Yet, we

need to check Figure 8 to ensure that there is no overshoot,

as all of the available load can be handled with more than the

ideal number of channels (which cannot be told from Figure 9

alone). Figure 9 shows that most of the time we are able to

handle all of the available load. During startup (which uses

rapid scaling) as well as during times of adaptation, there are

small periods of time during which some of the load is not

handled. Nevertheless, the system quickly locates an effective

operating point.

Figures 10 and 11 plot similar results, but this time for a

workload that follows a step function. The available workload

starts with 5000 tuples/sec, after 250 seconds goes up to 10000
tuples/sec, after 100 seconds goes down to 2000 tuples/sec,

and after 150 seconds goes back up to 5000 tuples/sec and

repeats itself. Different than the sine workload, which has

smooth changes in the workload, the step workload has sharp

changes. Still, the control algorithm is able to adjust the

number of channels based on workload availability and handle

all of the load most of the time. Overall, the control algorithm

is resilient to the workload characteristics.

8.2.3 The Congestion Index Threshold

The congestion index threshold impacts the adaptation be-

havior of the system. If the threshold is too high, then the

system will not increase the number of channels even when

additional workload can be handled with more channels. As

a result, the accuracy will suffer. In general, smaller values

for the threshold are safer. When the threshold is lower than

ideal, then the system will overreact by increasing the number

of channels when it is not really needed. This error, however,

will be corrected after observing that increasing the number of

12

Available load

0 100 200 300 400 500 600 700 800
Time

0

1000

2000

3000

4000

5000

6000

7000

8000

Lo
a
d

Number of channels
0

5

10

15

20

25

30

35

N
u
m

b
e
r

o
f

ch
a
n
n
e
ls

Available load

Handled load

0 100 200 300 400 500 600 700 800
Time

0

1000

2000

3000

4000

5000

6000

7000

8000

Lo
a
d

Fig. 12: Adaptation with a congestion index threshold of 0.

Available load

0 100 200 300 400 500 600 700 800
Time

0

1000

2000

3000

4000

5000

6000

7000

8000

Lo
a
d

Number of channels
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
u
m

b
e
r

o
f

ch
a
n
n
e
ls

Available load

Handled load

0 100 200 300 400 500 600 700 800
Time

0

1000

2000

3000

4000

5000

6000

7000

8000

Lo
a
d

Fig. 13: Adaptation with a congestion index threshold of 0.9.

channels is not helping the throughput. If the threshold is too

low such that noise in a non-bottlenecked system is labeled as

congestion, then the system will overshoot since it won’t ever

reduce the number of channels used. In our experiments, we

found the range [0.01, 0.3] to be appropriate for the threshold.

Figure 12 shows the behavior of the system when the

threshold is set to 0 (too low). In this case, we observe that

even though the load is handled properly, the control algorithm

overshoots the target. It never reduces the number of channels.

Figure 13 shows the behavior of the system when the

threshold is set to 0.9 (too high). In this case, we see that

the number of channels does not reach the required level and

the accuracy suffers, as the available workload is often not

handled by the system. The spikes in the handled load are

due to the fine-grained throughput measurements that reach

high values when space opens in the transport buffers every

now and then.

8.2.4 Migration Cost

Figure 14 plots the time it takes to perform the migration as

a function of the number of channels, for different numbers

of unique keys per partitioning attribute. This time includes

synchronization, saving state that will transfer out, and loading

state that will transfer in, for all operators involved. We

observe that the migration time is linear in the number of keys.

Furthermore, the migration cost decreases with the increasing

number of channels. Thanks to the consistent hash, most data

can remain on the host it was on at a different operating point,

and only a small fraction of the data has to move. However,

eventually the migration time flattens. This is because as the

number of migrated data items decreases, the overhead of the

migration protocol dominates the migration cost.

Migration cost is a concern only in highly unstable work-

loads. If the workload is relatively stable, initial costs for state

migration will be amortized after the system settles down.

8.3 Application Benchmarks

In this section we look at the performance achieved by the

elastic auto-parallelization scheme under several application

kernels, some of which has been used in previous work [23].

We compare the results obtained from elastic scaling against

the performance of a fixed number of channels, by experi-

menting with different numbers of channels for the latter. Note

that for applications with more than one parallel region, every

region settles independently on its own.

The application kernels (shown in Figure 15) are summa-

rized below:

Finance: This application computes the volume weighted

average price of trades on a per stock ticker basis and compares

the results to the quote values in order to detect bargains. As

the final result, it computes a bargain index for the quotes

that are considered profitable. The application uses real-world

stock market data as input. There are three parallel regions

in this application, two of which are stateless and one is

partitioned stateful.

Twitter: This application applies basic text analytics on Twitter

messages (aka tweets) in order to identify key words used and

basic message statistics. The application uses real-world tweet

data as input. It contains a single stateless parallel region.

PageRank: This application uses a feedback loop to iteratively

rank pages in a web graph [8]. This kind of application is

typically associated with MapReduce [9], but is also easy to

express in a streaming language. The input to the application

consists of a synthetic graph of 2 million vertices and 4 billion

uniformly distributed edges (sparsity of 0.001). It contains a

single stateful parallel region.

Network Monitoring: This application monitors Linux log files,

looking for successful logins that were preceded by many

failed logins from the same host. Such logins are flagged

as breakins. There are four parallel regions, one of which

is stateful. The input is synthetic data based on real data

collected from a public-facing server which experienced a

breakin attempt about every 2 seconds for a 12 hour period.

The real data has been modified with several fake breakins,

and the 12 hour period is cycled through 2000 times.

In the rest of this section we look at the results for these

four application kernels. In all of the experiments we plot the

speedup in throughput as a function of the number of channels

used. We plot the speedup for the case of fixed number of

channels as well as for the ideal case of linear scalability. We

also plot the speedup achieved for the elastic auto-parallelism,

which adjusts the number of channels used automatically. The

speedup reported for the elastic scenario is measured after the

control algorithm has settled down on a number of channels

for the parallel regions. Each experiment is run at least three

times. In all of the applications the speedup achieved shows a

linear trend only up to a certain number of parallel channels,

after which point additional speedup is not possible. This

is because the parallel regions stop being the bottleneck of

their application once sufficient parallelism is introduced. The

sequential parts of the applications, especially the I/O bound

sources and sinks, become the bottleneck. One of the major

strengths of the elastic approach is to automatically find the

point after which additional parallelism does not help.

Finance: Figure 16 plots the speedup for the Finance applica-

tion. We observe that the best speedup achieved by the fixed

number of channels is 3.1×, and the elastic scalability achieves

slightly higher throughput at around 3.6×. This particular

13

0 5 10 15 20 25 30
Number of channels

0

5

10

15

20

M
ig

ra
ti

o
n
 t

im
e
 (

se
cs

)

keys=12800

keys=6400

keys=3200

keys=1600

keys=800

keys=400

keys=200

keys=100

Fig. 14: Migration cost.

Chop Add

Parse

Lines
DupSplit

Filter
Parse

Failures
No

Shuffle
Aggr Filter Functor

Filter Parse

Logins

Join

Vwap

Project

Combine Bargains NLP MulAdd

Init While Sink

(a) Finance (b) Twitter NLP (c) PageRank

(d) Log analyzer

Trades

Quotes ≤1

AggrLegend:

Selectivity ≤1 2×

22.2×

26.8×

7×

10.3×

1×

≤1

≤1

≤1

≤1

≤1 Average

elastic width

Stateful

≤1

5.2×

2.6×

1×

1.6×

Fig. 15: Stream graphs for the application kernels.

1 2 4 8 16
of channels

0.50.5

1

2

4

8

16

S
p
e
e
d
u
p
c
o
m
p
a
re
d
to
th
e
s
e
q
u
e
n
ti
a
l
c
a
s
e

0.98

2.01

3.12 3.05
2.56

Finance

elast ic

ideal

ideal

elast ic

fixed

Fig. 16: Performance for the
Finance application.

1 2 4 8 16 32
of channels

0.50.5

1

2

4

8

16

32

0.98

1.93

3.75

7.58

11.93
10.40

elast ic

ideal

S
p
e
e
d
u
p
c
o
m
p
a
re
d
to
th
e
s
e
q
u
e
n
ti
a
l
c
a
s
e

Twit ter analysis

ideal

elast ic

fixed

Fig. 17: Performance for the
Twitter application.

1 2 4 8 16 32
of channels

0.50.5

1

2

4

8

16

32

S
p
e
e
d
u
p
c
o
m
p
a
re
d
to
th
e
s
e
q
u
e
n
ti
a
l
c
a
s
e

1.06

2.11

3.72

5.38
6.47

5.53

PageRank

ideal

elast ic

fixed

Fig. 18: Performance for the
PageRank application.

1 2 4 8
of channels

0.5

1

2

4

8

16

S
p
e
e
d
u
p
c
o
m
p
a
re

d
to

th
e
s
e
q
u
e
n
ti
a
l
c
a
s
e

1.00

1.84

2.73

3.51 3.76
3.42

3.713.57

Network monitoring

idealideal

elast ic

fixed

Fig. 19: Performance for the
Network Monitoring app.

application has three parallel regions, yet the fixed approach

uses the same number of channels for all of them. The elastic

approach has the flexibility to adjust the number of channels

for each region independently. In this case, one of the parallel

regions is not profitable.

Twitter: Figure 17 plots the speedup for the Twitter application.

We observe that the speedup achieved by the elastic approach

is almost as good as the fixed approach (around 12× vs.

around 10×). The elastic approach uses approximately 22
channels, whereas the fixed approach uses 16 channels when

it achieves the highest speedup. This is due to the fact that

we are using rapid scaling and not all numbers of channels

are available as an operating point for the elastic approach. A

better result is achievable if we turn off rapid scaling, at the

cost of longer settling time.

PageRank: Figure 18 plots the speedup for the PageRank

application. In this experiment we used 8 machines instead

of 4, in order to have more memory2. We observe that the

speedup achieved by the elastic auto-parallelism is around 5×,

whereas the fixed approach achieves a speedup value of around

6.5×. The best speedup is achieved with 16 channels for the

fixed approach vs. around 27 channels for the elastic approach.

Network Monitoring: Figure 19 plots the speedup for the

Network Monitoring application. This experiment uses 5 ma-

chines, giving each parallel region a node to itself, and placing

the other operators on a separate node. The elastic approach

achieves 2.8× speedup, compared to the best speedup of

3.8× given a static configuration. There are four independent

parallel regions in this application, as shown in Figure 15(d).

Without auto-parallelization, the ParseLines operator is the

bottleneck of the application. The elastic algorithm dynam-

ically discovers this bottleneck and settles on 4 − 8 channels

2. The matrix representing the web graph is distributed over the
hosts and is cached in main memory.

for that region. As more resources are given to ParseLines,

the ParseFailures operator becomes the bottleneck of the

application. Its elastic algorithm responds by allocating it

2−4 channels, until the bottleneck of the application becomes

operators that cannot be parallelized (DupSplit and NoShuffle).

Note that there are independent control algorithms controlling

each parallel region; there is no master algorithm that decides

which number of channels to use for all regions. Instead, the

elastic algorithm controlling ParseLines uses more channels,

its throughput increases, which increases the pressure on

ParseFailures. The elastic algorithm controlling ParseFailures

responds to the increased workload by using more channels,

thus enabling ParseLines to use even more channels. This

feedback loop continues until the bottleneck is not controlled

by an elastic algorithm. The Logins path receives very few

tuples, and the elastic algorithm correctly uses only one

channel for that parallel region.

8.4 Evaluation Summary

In summary, the evaluation presented in this section shows

that our elastic auto-parallelization scheme is able to:

• perform parallelization with small overhead, especially

for the partitioned stateful cases when additional processing

performed on a per tuple basis is non-trivial;

• adapt to changes in the workload, both when the workload

change is smooth and when it is sharp;

• locate the channel count that gives close to optimal

performance without causing overshoot, in real-world settings.

9 CONCLUSION

We presented an auto-parallelization scheme that can provide

elasticity to stream processing applications. It is able to adjust

the number of parallel channels to use at run-time, depending

on workload availability. Most importantly, by relying on

migration of partitioned state, it is able to handle partitioned

stateful operators that are commonly found in stream process-

ing applications. We presented a control algorithm that is able

14

to achieve good throughput, has short settling time, and avoids

oscillation and overshoot. We described a state management

API and a migration protocol, which together enable elastic

parallelization that is transparent to the application developers.

Furthermore, elasticity does not interfere with safety and given

the same inputs the same outputs are produced in the same

order, irrespective of whether there are migrations or not.

Experimental results illustrate the effectiveness of our solution

in finding an ideal operating point for parallel regions and

adjusting this point in the presence of workload dynamics.

REFERENCES

[1] D. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel, M. Cherniack, J.-
H. Hwang, W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul,
Y. Xing, and S. Zdonik. The design of the Borealis stream processing
engine. In Innovative Data Systems Research Conference (CIDR), 2005.

[2] A. Alexandrov, D. Battre, S. Ewen, M. Heimel, F. Hueske, O. Kao,
V. Markl, E. Nijkamp, and D. Warneke. Massively parallel data analysis
with pacts on nephele. In Very Large Data Bases Conference (VLDB),
2010.

[3] D. Alves, P. Bizarro, and P. Marques. Flood: Elastic streaming MapRe-
duce. In International Conference on Distributed Event-Based Systems

(ACM DEBS), 2010. (Demo paper).
[4] H. Andrade, B. Gedik, K.-L. Wu, and P. S. Yu. Processing high data rate

streams in System S. Journal of Parallel and Distributed Computing

(JPDC), 71(2):145–156, 2011.
[5] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, R. Motwani,

I. Nishizawa, U. Srivastava, D. Thomas, R. Varma, and J. Widom.
STREAM: The Stanford stream data manager. IEEE Data Engineering

Bulletin, 26(1), 2003.
[6] R. Avnurand and J. M. Hellerstein. Eddies: Continuously adaptive query

processing. In International Conference on Management of Data (ACM

SIGMOD), 2000.
[7] V. R. Borkar, M. J. Carey, R. Grover, N. Onose, and R. Vernica. Hyracks:

A flexible and extensible foundation for data-intensive computing. In
International Conference on Data Engineering (IEEE ICDE), 2011.

[8] S. Brin and L. Page. The anatomy of a large-scale hypertextual web
search engine. Computer Networks and ISDN Systems, 30:107–117,
1998.

[9] J. Dean and S. Ghemawat. MapReduce: A flexible data processing tool.
Communications of the ACM, 53(1):72–77, 2010.

[10] A. Deshpande, Z. G. Ives, and V. Raman. Adaptive query processing.
Foundations and Trends in Databases, 1(1), 2007.

[11] M. I. Gordon, W. Thies, and S. Amarasinghe. Exploiting coarse-grained
task, data, and pipeline parallelism in stream programs. In International

Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2006.

[12] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury. Feedback

Control of Computing Systems. Wiley, 2004.
[13] M. Hirzel, H. Andrade, B. Gedik, V. Kumar, G. Losa, M. Mendell,

H. Nasgaard, R. Soulé, and K.-L. Wu. SPL language spec. Technical
Report RC24897, IBM, 2009.

[14] A. H. Hormati, Y. Choi, M. Kudlur, R. Rabbah, T. Mudge, and
S. Mahlke. Flextream: Adaptive compilation of streaming applications
for heterogeneous architectures. In International Conference on Parallel

Architectures and Compilation Techniques (PACT), 2009.
[15] IBM InfoSphere Streams. http://www-01.ibm.com/software/data/

infosphere/streams/. Retrieved November, 2012.
[16] M. Isard, M. B. Y. Yu, A. Birrell, and D. Fetterly. Dryad: Distributed

data-parallel program from sequential building blocks. In European
Conference on Computer Systems (EuroSys), 2007.

[17] N. Jain, L. Amini, H. Andrade, R. King, Y. Park, P. Selo, and C. Venka-
tramani. Design, implementation, and evaluation of the linear road
benchmark on the Stream Processing Core. In International Conference

on Management of Data (ACM SIGMOD), 2006.
[18] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and

D. Lewin. Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide web. In International

Symposium on Theory of Computing (ACM STOC), 1997.
[19] A. Martin, C. Fetzer, and A. Brito. Active replication at (almost) no cost.

In International Symposium on Reliable Distributed Systems (SRDS),
2011.

[20] D. S. Milojicic, F. Douglis, Y. Paindaveine, R. Wheeler, and S. Zhou.
Process migration. ACM Computing Surveys, 32(3), 2000.

[21] N. W. Paton, J. B. Chavez, M. Chen, V. Raman, G. Swart, I. Narang,
D. M. Yellin, and A. A. A. Fernandes. Autonomic query parallelization
using non-dedicated computers: An evaluation of adaptivity options. In
Very Large Data Bases Journal (VLDBJ), 2009.

[22] S. Schneider, H. Andrade, B. Gedik, A. Biem, and K.-L. Wu. Elastic
scaling of data parallel operators in stream processing. In International

Parallel and Distributed Processing Symposium (IEEE IPDPS), 2009.
[23] S. Schneider, M. Hirzel, B. Gedik, and K.-L. Wu. Automatic ex-

ploitation of data parallelism in stateful streaming applications. In
International Conference on Parallel Architectures and Compilation

Techniques (PACT), 2012.
[24] M. A. Shah, J. M. Hellerstein, S. Chandrasekaran, and M. J. Franklin.

Flux: An adaptive partitioning operator for continuous query systems.
In International Conference on Data Engineering (IEEE ICDE), 2003.

[25] M. Stonebraker, U. Çetintemel, and S. B. Zdonik. The 8 requirements
of real-time stream processing. SIGMOD Record, 34(4), 2005.

[26] StreamBase. http://www.streambase.com. Retrieved May, 2012.
[27] M. A. Suleman, M. K. Qureshi, Khubaib, and Y. N. Patt. Feedback-

directed pipeline parallelism. In International Conference on Parallel

Architectures and Compilation Techniques (PACT), 2010.
[28] Storm project. http://storm-project.net/. Retrieved May, 2012.
[29] S. Viglas, J. F. Naughton, and J. Burger. Maximizing the output rate

of multi-way join queries over streaming information sources. In Very
Large Data Bases Conference (VLDB), 2003.

[30] M. Welsh, D. Culler, and E. Brewer. SEDA: An architecture for well-
conditioned, scalable internet services. In Symposium on Operating

Systems Principles (OSDI), 2001.
[31] S. Wu, V. Kumar, K.-L. Wu, and B. C. Ooi. Parallelizing stateful

operators in a dsps: How, should you and how much? In International

Conference on Distributed Event-Based Systems (ACM DEBS), 2012.
[32] S4 distributed stream computing platform. http://www.s4.io/. Retrieved

May, 2012.

Buğra Gedik is currently with the Computer En-
gineering Department, İhsan Doğramacı Bilkent
University, Turkey. Prior to that, he worked as a
Research Staff Memeber at the IBM T. J. Watson
Research Center. He obtained a Ph.D. degree
in Computer Science from Georgia Tech. His
research interests include stream computing,
distributed systems, and data bases.

Scott Schneider is currently a Research Staff
Member at the IBM T. J. Watson Research Cen-
ter. He obtained a Ph.D. degree in Computer
Science from Virginia Tech and an M.Sc. degree
in Computer Science from William & Mary. His
research focuses on improving the programma-
bility and performance of distributed streaming
systems, with a focus on exploiting parallelism.

Martin Hirzel is currently a Research Staff
Member and a Manager at the IBM T. J. Wat-
son Research Center. He manages the Scalable
XML Integration Infrastructure group at IBM. He
obtained a Ph.D. degree in Computer Science
from the University of Colorado at Boulder. His
research focuses on stream computing, pro-
gramming languages, and compilers.

Kun-Lung Wu is currently the manager of the
Data-intensive Systems and Analytics Group at
the IBM T. J. Watson Research Center. He is an
IEEE Fellow. He obtained Ph.D. and M.Sc. de-
grees in Computer Science from the University
of Illinois at Urbana-Champaign. His research
interests include stream computing, big data an-
alytics, and data bases.

http://www-01.ibm.com/software/data/infosphere/streams/
http://www-01.ibm.com/software/data/infosphere/streams/
http://www.streambase.com
http://storm-project.net/
http://www.s4.io/

	Introduction
	Related Work
	Background
	SPL and System S
	Auto-parallelization

	Solution Overview
	Control Algorithm
	Algorithm Implementation
	Detecting Workload Changes
	Discussion of Parameters

	State Management
	Managed State API
	Transparent Usage of the API

	State Migration
	Migration Protocol
	Data Partitioning

	Experimental Results
	Experimental Setup
	Micro-benchmarks
	Scalability: Accuracy and Overshoot
	Adaptation: Settling and Stability
	The Congestion Index Threshold
	Migration Cost

	Application Benchmarks
	Evaluation Summary

	Conclusion
	References
	Biographies
	Bugra Gedik
	Scott Schneider
	Martin Hirzel
	Kun-Lung Wu

