
RC25406 (IRE1308-033) August 26, 2013
Other

IBM Research Report

The ExaChallenge Symposium

Rolf Riesen
IBM Research

Smarter Cities Technology Centre
Mulhuddart

Dublin 15, Ireland

Sudip Dosanjh
LBNL/NERSC

Larry Kaplan
Cray, Inc.

Research Division
Almaden - Austin - Beijing - Cambridge - Dublin - Haifa - India - T. J. Watson - Tokyo -
Zurich

The ExaChallenge Symposium

Rolf Riesen, IBM Research - Ireland Sudip Dosanjh, LBNL/NERSC
Larry Kaplan, Cray Inc.

October 16–18, 2012

Abstract

The ExaChallenge symposium was held on October 17 and 18, 2012 at the IBM Research labora-
tory in Dublin, Ireland. The symposium brought together a small group of highly qualified exascale
computing experts from institutions in the USA and Europe. A unique symposium format allowed
the inclusion of all participants in the discussions of the software and managerial challenges laying
ahead. These often lively discussions highlighted areas of concern, disagreement about the correct
solution, and open questions that need to be addressed before an exascale system can be put into
production use. This report summarizes these discussions and findings.

Contents

1 Executive summary 3

2 Introduction 5
2.1 Goals . 5
2.2 Session format . 7
2.3 Final program . 7

3 Sessions 10
3.1 Common community APIs . 10
3.2 HPC runtime opportunities and challenges . 13
3.3 The programmer’s burden . 15
3.4 Research challenges . 18
3.5 Exascale simulations . 20
3.6 Co-design . 22
3.7 Expanding the scope of traditional HPC systems . 24
3.8 Application perspective . 27
3.9 Fault tolerance . 28
3.10 Next steps . 31

4 Wrap-up 32

Glossary 34

References 37

Index 40

List of Figures

1 Photo of symposium participants . 5

List of Tables

1 ExaChallenge 2012 symposium participants . 6
2 Program for Tuesday, October 16, 2012 . 7
3 Program for Wednesday, October 17, 2012 . 8
4 Program for Thursday, October 18, 2012 . 9

2

1 Executive summary

The first ExaChallenge symposium brought together a small group of highly qualified exascale comput-
ing experts to discuss the software and managerial challenges laying ahead before an exascale-size sys-
tem can be successfully deployed and put into production use. Participants were drawn from academia,
vendors, and national research laboratories, in the USA and Europe.

Previous exascale workshops and meetings have identified key areas that need research and devel-
opment in order to advance the state-of-the-art to the exascale level. Although it is expected that the first
exascale systems will appear near the end of this decade, many questions remain to be answered. One of
the main goals of the ExaChallenge symposium was to take stock of the progress in our understanding
of how to advance three orders of magnitude from the current petascale systems, whether the current
research projects are addressing the right questions and are making enough progress, and identify gaps
that need to be filled before the exascale vision can be achieved.

In its first incarnation the symposium sought to elicit concerns leading figures in the field have and
which approaches they deem promising in the march toward exascale. The symposium was organized
as ten sequential sessions addressing topics in systems software from APIs to runtimes for exascale, and
topics at the application level on how to deal with the increased complexity. Throughout, the goal was
to assess the current state of the art and identify challenges still laying ahead.

The format of the symposium allowed all participants to take an active role in the discussion. All
experts present were able to comment and participate in the discussions. Although we had speakers,
the sessions were not intended as a podium for individual presentations. To that end, each session had
a leader and a wingmate. The role of the session lead was to give a short presentation on the topic to
be discussed, and then lead a discussion among all symposium participants. The wingmate’s role was
to assist the session lead in generating an active discussion. This was done by supplying additional
information or playing devil’s advocate.

The resulting discussions were often animated and often clearly showed how far opinions differed
on whether our current approaches to reach exascale are working or not. The participants expressed
approval of this type of symposium because it was highly participatory, generated ideas, and identified
areas of disagreement. Although the symposium had ten sessions, not all areas necessary to achieve
exascale computing could be covered within the time available and the subject areas represented by
the participants. Notable exceptions were hardware architecture and funding for these extreme-scale
scientific instruments.

On the question of API standardization, most participants felt it was too early since the approaches
on how to program and manage these systems are still in flux. This was despite the acknowledgment
that the standardization process takes time and it would be useful for standards to be available when the
first systems appear. Runtime systems and programmability (the programmer’s burden) were identified
again as critical. The role of future runtime systems and OSes for exascale is not yet well defined. They
are expected to manage global aspects such as power consumption and allowing computation on data in
situ, while giving (legacy) applications the local functionality a full featured OS, like Linux, provides.
Although some progress has been made in these areas, much is left to do. Co-design centers and the
HPC community at large may be particularly of help in this area, but it requires vendor involvement.

Also acknowledged was the need for more research, innovation, and education. This clashes some-
what with the hoped-for delivery of the first exascale systems by the end of the decade. The lack of time,
access to such extreme-scale systems, and experience with them means research and learning will have
to occur alongside deployment of early systems. At the same time, the next generation of computer and
computational scientists needs to be trained to work with these extreme-scale systems.

Research and education are also crucial in systems and application design for future systems. There
was no consensus on whether a single type of system could both address the commercial data center

3

market and still be suitable to solve demanding scientific problems. It may be that approaching the
physics problems to be solved from a different angle may go a long way in producing applications that
work better on these envisioned systems. However, this requires further research and better and more
targeted education of future code developers.

Application developers currently have to deal with several, incompatible ways of using accelerators.
Portability is limited, but in order to get the highest performance, applications have to make use of
these technologies. On the horizon are application changes that provide hints to the system on how
faults should be handled. Applications probably also need to help conserve power consumption. Data
movement and dealing with millions of threads are additional challenges that need to be tackled now
by evolving applications. Programming languages and models that hide some of the complexity of a
modern supercomputer, yet allow the expression of data locality, are needed but not really in sight yet.

Research in power, fault tolerance, parallelism, and data movement inside a deep memory hierarchy
needs to be done. Identifying and funding the research that can ignite a disruptive change is difficult,
yet may be necessary to make the significant advances that are needed.

Simulation and co-design are key contributors to success but face large hurdles. Simulating these
extreme-scale systems grows exponentially more complex. Different experiments need more accuracy
in some parts of the simulated system, but can live with less accuracy in other parts. Providing a modular
simulator that lets the experimenter shift the accuracy focus is made even more difficult by vendor IP
issues for components that need to be simulated in high resolution to get valid power consumption
information.

Although co-design centers have been established and have started to produce mini-apps that help
in machine procurement and act as conduits to try out new algorithmic and systems software ideas, a lot
more needs to be done. The co-design centers need to increase their interactions with application, tool,
and system software developers, and establish technology paths to vendors. They also have to make
sure they are addressing exascale, not just the next generation of machines.

Fault tolerance remains a hot topic with a lot of uncertainty about what to expect from future extrem-
scale systems, where to best apply fault tolerance in the software stack, and how much work applications
will have to do to reach a scalable solution. Even if the number of faults and their severity in future
systems will be fewer and less than what some people currently expect, it is still beneficial to reduce the
overhead of fault tolerance mechanisms. Even small savings improve utilization of these systems and
can save millions of Dollars.

4

Figure 1: Group picture of the 2012 symposium participants.

2 Introduction

The first ExaChallenge symposium was held at IBM’s research laboratory in Dublin, Ireland from Oc-
tober 16 to 18, 2012. It was organized by Rolf Riesen, IBM Research; Sudip Dosanjh, Sandia National
Laboratories (now LBNL/NERSC); and Larry Kaplan, Cray Inc. Figure 1 shows most of the partici-
pants of the 2012 symposium. Table 1 lists all participants and their institutions.

2.1 Goals

The topic of exascale systems and computing has been discussed in many forums and workshops over
the last few years. Outstanding examples include the International Exascale Software Project (IESP)
series of workshops [13] and the US DOE commissioned reports on technological challenges [6] and
software challenges [2].

The prediction is still that the first exascale systems used as scientific instruments will appear before
the end of the decade. Much progress has been made since the first reports appeared outlining the
challenges ahead. The goal of the ExaChallenge symposium was to take a snapshot of the current state
and assess whether our research agendas are still appropriate or need to be revised. A secondary goal
was to explore compromises that may need to be made to reach exascale.

For example, it is important that application designers and system developers interact with each
other. At exascale, some assumptions about fault tolerance, scalability, and runtime support will change
and impact the role an application has to play when interacting with system services. Another area where

5

Table 1: ExaChallenge 2012 symposium participants

Name Institution

Gabriel Antoniu INRIA
Ron Brightwell Sandia National Laboratories (SNL)
Sudip Dosanjh LBNL/NERSC
Turlough Downes Dublin City University (DCU)
Christian Engelmann Oak Ridge National Laboratory (ORNL)
Kurt Ferreira Sandia National Laboratories (SNL)
Vladimir Getov University of Westminster
Hermann Härtig TU Dresden
Simon Hammond Sandia National Laboratories (SNL)
Larry Kaplan Cray Inc.
Kostas Katrinis IBM Research - Ireland
Ludek Kucera Charles University
Alexey Lastovetsky University College Dublin (USC)
Pierre Lemarinier IBM Research - Ireland
Barney Maccabe Oak Ridge National Laboratory (ORNL)
Jeffrey Nichols Oak Ridge National Laboratory (ORNL)
Bogdan Nicolae IBM Research - Ireland
Dimitrios Nikolopoulos Queen’s University of Belfast
Brian Quinn Intel
Mustafa Rafique IBM Research - Ireland
Rolf Riesen IBM Research - Ireland
Arun Rodrigues Sandia National Laboratories (SNL)
Duncan Roweth Cray Inc.
Thomas Schulthess Swiss National Supercomputing Center (CSCS)
Thomas Sterling Indiana University - CREST
Aidan Thompson Sandia National Laboratories (SNL)
Henry Tufo University of Colorado at Boulder
Sudhakar Yalamanchili Georgia Institute of Technology

6

Table 2: Program for Tuesday, October 16, 2012

Start End Duration Event Location

18:00 19:00 1:00 Pre-dinner drinks Dunboyne Castle
19:00 21:00 2:00 Dinner Hotel

compromises may become necessary is in the area of performance and system scalability. Although
1018 operations per second is the goal, not all aspects of the system will improve with the same factor.
Technologies not originally intended for supercomputing, from the product lines aimed at commercial
data centers, may need to be utilized in order to make production of exascale systems viable.

There are many areas that need to be studied, analyzed, and possibly reevaluated in order to reach
exascale. This symposium was an initial stab at the mountain of work that lays ahead.

2.2 Session format

The main purpose of the symposium was to generate and exchange ideas. Since almost all participants
are experts in the field, a session format that facilitates exchange of information, rather than a one-way
flow, seemed most appropriate. Panels at computer science conferences allow the panelist to express
their opinions and provide information. Sometimes there is discussion among the panelists, but almost
never is the audience involved much.

For this symposium we intended to give all participants the opportunity to be active in the discus-
sions and contribute. Each session was dedicated to a specific discussion topic. A session lead had the
task of introducing the topic and then spur and motivate a discussion among all participants. A session
lead may have to take on the role of a teacher, devil’s advocate, or interviewer.

Session leads were told they could use the first ten to fifteen minutes of each hour-long session to
start. All session leads chose to give a brief presentation at the beginning of their session. That was
not required, however. Motivational speakers, if they wanted, could have begun a session without visual
aids.

Because this session format is somewhat uncommon, the organizing committee felt that a backup
would be valuable, should the discussion come to an early halt. For each session we selected a wing-
mate. That person’s task was to assist the session lead in promoting an active discussion among all
participants. In that role the wingmate may play devil’s advocate to the session lead, pose additional
questions to the session lead or the participants, or support the session lead by providing additional in-
formation or answers to questions and challenges. In short, the wingmate’s task was to assist the session
lead in assuring that the discussion does not run dry and make it interesting for all participants.

The idea was that session leads and their wingmates communicate before the symposium and coor-
dinate a strategy to keep their session going.

2.3 Final program

Tables 2, 3, and 4 list the final program of the symposium. Lisa Amini, distinguished IBM engineer
and director of the Dublin research lab, gave a brief welcome to the symposium participants. This was
followed by each participant briefly introducing themselves.

The sessions and breaks were kept on time, although often the discussions could have easily gone
on for longer. In a future meeting, longer sessions may be appropriate to allow for more in-depth
discussions.

7

Table 3: Program for Wednesday, October 17, 2012

Start End Duration Event Location

09:00 09:10 0:10 Welcome Exposition Space
Lisa Amini

09:10 09:30 0:20 Introductions Exposition Space
09:30 10:30 1:00 Session 1 Exposition Space

Common community APIs
Session lead: Larry Kaplan
Wingmate: Dimitrios S. Nikolopoulos

10:30 10:45 0:15 Break Yeats room
10:45 11:55 1:10 Session 2 Exposition Space

HPC runtime opportunities and challenges
Session lead: Thomas Sterling
Wingmate: Hermann Härtig

12:00 12:55 0:55 Lunch Cafeteria, Building 2
13:00 14:00 1:00 Session 3 Exposition Space

The programmer’s burden
Session lead: Ron Brightwell
Wingmate: Turlough Downes

14:00 15:00 1:00 Session 4 Exposition Space
Research challenges
Session lead: Barney Maccabe
Wingmate: Vladimir Getov

15:00 15:15 0:15 Break Yeats room
15:15 16:15 1:00 Session 5 Exposition Space

Exascale simulations
Session lead: Sudhakar Yalamanchili
Wingmate: Arun Rodrigues

16:15 17:15 1:00 Session 6 Exposition Space
Co-design
Session lead: Sudip Dosanjh
Wingmates: Aidan Thompson and Simon
Hammond

19:30 20:30 1:00 Pre-dinner drinks The Church Bar
20:30 22:00 1:30 Dinner and Restaurant

8

Table 4: Program for Thursday, October 18, 2012

Start End Duration Event Location

09:30 10:30 1:00 Session 7 Exposition Space
Expanding the scope of traditional HPC
systems
Session lead: Duncan Roweth
Wingmate: Rolf Riesen

10:30 10:45 0:15 Break Yeats room
10:45 11:55 1:10 Session 8 Exposition Space

Application perspective
Session lead: Thomas Schulthess
Wingmate: Henry Tufo

12:00 12:55 0:55 Lunch Cafeteria, Building 2
13:00 14:00 1:00 Session 9 Exposition Space

Fault tolerance
Session lead: Christian Engelmann
Wingmate: Larry Kaplan

14:00 15:00 1:00 Session 10 Exposition Space
Next steps
Session lead: Jeffrey Nichols
Wingmate: Thomas Sterling

15:00 15:15 0:15 Break Yeats room
15:15 16:15 1:00 Wrap-up Exposition Space

All

9

3 Sessions

There were ten sessions over the course of two days, each held according to the format described in
Section 2.2. The following sub-sections each have the same structure: A heading listing the session lead
and wingmate, the pre-symposium description of that session, a summary of the presentation given at
the beginning of the session, excerpts from the discussion following it, and a post-symposium summary
of the session.

The first time a participant’s name appears in this document, and when it appears in listings, the full
name is given. After that, only first names are used to identify speakers. The exceptions are Thomas
Sterling and Thomas Schulthess, unless it is clear from the context which Thomas is meant.

3.1 Common community APIs

Leads

Session lead Larry Kaplan, Cray Inc.
Wingmate: Dimitrios Nikolopoulos, Queen’s University of Belfast.

Description

A variety of vendor specific hardware and software is expected to be developed for
exascale and HPC. This variety may pose a challenge to both application and other software
designers and limit portability. In which areas could common APIs help to bridge the
portability gap while providing access to new features? What is a good way to create the
necessary APIs and standardize them with vendor and user participation? How soon should
this be done? What standardization challenges exist?

Presentation

Larry Kaplan starts his presentation by asking why it is important to have common APIs for extreme-
scale systems. He points out that there will be more than one exascale system and, therefore, a need for
portability. Larry stresses that APIs for portability are needed at the application level but also in lower
layers of the software stack. While existing programming environments and languages are defined, that
is not necessarily true for new languages, new runtime environments, or new OSes proposed for these
emerging systems.

It is very likely that OS and runtime interfaces will change in the future to adapt to the needs of
exascale systems. The hope is that scalable interfaces for tools, process and job management, fault
tolerance, power management, and I/O will evolve. In order for users to take advantage of these new
options and the research community to provide interoperable and alternative implementations, common
APIs have to be in place. This would facilitate vendors and the community to work together at the
leading edge.

Many of the challenges predicted for exascale systems; e.g. power management and fault resilience,
will require multiple levels in the software stack to work in cooperation. Larry lists as one example the
APIs needed for resilience. Well defined interfaces are needed at the MPI level to let applications know
when things go wrong and let them instruct the system how a given fault should be handled. This in
turn requires interaction between the MPI library and the runtime system, which in turn relies on system
services to react appropriately. Of course, the OS needs to provide APIs for detection and reporting of
faults, as well as other services needed to manage processes.

10

Not all the pieces of these complex software modules will be written by the same people, and
multiple implementations may exist. Since they need to interact with each other, some standardization
is required. The question is when these API standardization efforts should take place. Some argue that
if that process starts too soon, a sub-optimal solution may be chosen before the best solution is known.
However, standardization takes time, and even more time is needed after that to build products based
on these standards. For things such as MPI and Fortran, which are clearly defined and have started
looking at some of these issues, we have a little bit more time, while other efforts for less clearly defined
interfaces need to start now.

Discussion

Dimitrios Nikolopoulos asks how we can cope with new technology, how to plan ahead, and whether
we can influence emerging hardware early on. Larry suggests that depending on technology, lower level
solutions that are not visible at the user level may be appropriate.

Ron Brightwell feels that an API should not be a way to shift complexity away from the application
programmer. The responsibility for a scalable end product should be shared. As examples he lists system
programmers who do not necessarily have control over the runtime above, and network interfaces built
for MPI only, without regard to other parts of the system, such as the runtime, which also needs to
exchange information and cannot use MPI to do it.

Barney Maccabe asks how standardization of common APIs can be started. He mentions Portals [9]
as an example of one group’s effort to create an API for low-level message passing. For wide spread
adoption, buy-in from more vendors and laboratories is needed. How to get that? Ron adds that it
is difficult to get people to abandon old APIs and mentions POSIX as an example. Jeffrey Nichols
uses OpenACC [12] as an example of how hard this can be. OpenACC is meant to replace Nvidia’s
CUDA [27], which is not entrenched yet, but OpenACC is already struggling to find a foothold without
vendors pushing it more aggressively.

Alexey Lastovetsky says it is obvious that APIs are necessary and that we need efforts like the MPI
standardization, aimed at scheduling, monitoring, and power management. Larry asks whether that is
research and Alexey answers that such a process utilizes research. One facet of it is to ask people what
their needs are and learn from experience. Alexey feels that it is too early to standardize.

This prompts Sudhakar Yalamanchili to ask whether vendors are exposing enough information about
their low-level hardware. Thomas Sterling chimes in saying that runtime systems will influence higher
level APIs. This is one aspect the co-design centers are supposed to explore: How to get from the
application level down to the lower levels? Simon Hammond suggests to interact with, and talk to, these
centers. Their goal is to optimize hardware and software down to a very low level. It would seem that the
co-design centers should play an important role in any API standardization efforts, but, at the moment,
do not.

This confuses Aidan Thompson. He speculates that APIs are not discussed within the co-design
centers at the moment because “a lot of things are third on the priority list.” The centers have to consider
scalability, performance, power, resilience, and more, Aidan adds.

“A lot of things are third on the priority list.” (Aidan Thompson)

Duncan Roweth points out that we are at the leading edge with these systems. For the moment,
platform-specific solutions may be the way to go. First learn how to use these systems before APIs get
carved into stone. Ron concurs and says that we can standardize after we have learned how to make these
things work. This is akin on how MPI came along. There were many different message passing systems,
usually machine specific, before the community had learned what is needed and what is important. The

11

need for cross-platform portability then led to MPI. Duncan seems to agree when he says that vendors
need to have an interest; i.e., incentive, before standardization can happen.

Alexey feels that both approaches could be done at the same time: Start new paradigms and begin
porting legacy codes. Sudip Dosanjh warns that standardization may not be sufficient for performance
portability. This prompts Vladimir Getov to mention MPI and HPF: some efforts succeed, while others
do not. Although the participants at the symposium did not delve further into this, it may be worthwhile
to look at previous standardization efforts and what can be learned from them [18].

Barney sees a bigger challenge: Even if a well-defined, working API is created, it may still not
succeed if the hardware and software layers it is built upon are a disaster. Larry emphasizes that the
issue is to identify which pieces matter and to get people interested and involved. Thomas Sterling says
that priorities need to be set: APIs for programmability and performance portability are further down on
the list. Barney throws in that Linux is not a suitable API for power management. Thomas counters that
we need to build a proof of concept and then throw it away. Do that twice. He wants an API that isolates
the runtime so that the runtime can change. He stresses that the potential needs to be demonstrated,
before standardization is possible.

“Linux is not a suitable API for power management.” (Barney Maccabe)

Both Thomas and Barney agree that there are all kinds of standards, many of them not interoperable,
and trying out new designs is fine. The question is how to drive adoption. Thomas cautions that we
could be wrong and should wait to push for adoption before we have a qualified model. How good does
this model or design have to be? Does it need to be proved? Existing approaches and APIs should not
constrain us.

“Everything you disagree with is Ron’s fault!” (Thomas Sterling)

During the conclusion of this session, Dimitrios asks whether APIs are really a problem in the end.
Barney answers that it is a huge investment for applications to move from one platform to another.
Therefore, applications move cautiously. He mentions the acceptance rate of GPU accelerators as an
example, and states that the first exascale “application” (Linpack) will use MPI.

Ron says that vendors have APIs, even though they may be machine specific, and that they should
be exposed. This would allow others to make use of them and integrate them in higher level APIs.

Summary

Although Larry stresses the need to begin API standardization now, many people in the room feel it
is too early; that more experience with these systems is needed before successful APIs can be created.
Furthermore, several of the participants believe that a more organic approach is okay: Let the need grow
stronger and then use the experience gained at that time to guide a standardization effort.

12

3.2 HPC runtime opportunities and challenges

Leads

Session lead: Thomas Sterling, Indiana University.
Wingmate: Hermann Härtig, TU Dresden.

Description

This session will discuss the need for exposing and exploiting information about sys-
tem execution state on a continuing basis and applying it to task scheduling and resource
management as well as to discover new parallelism on the fly. The objective of runtime
system software for HPC is to make dramatic improvements in efficiency and scalability.
But it imposes additional overheads that can also be a source of performance degradation.
This session will consider the balance between these contending influences.

Presentation

Thomas begins his presentation by pointing out that many different classes of architectures; e.g. Tianhe-
1A, KEI, and the BG/Q, already exist and that many more, such as Intel’s Many Integrated Core ar-
chitecture (MIC) [38], are to come. We are in flux. These hardware architecture changes will force
software stack changes. Runtime systems, so far mostly eschewed by HPC for performance reasons,
will be game changers. Thomas foresees runtime systems that are ephemeral, dedicated and existing
only within an application. He is not talking about traditional runtime systems which are a persistent
part of the OS and dedicated to the hardware system. These new systems will not deliver 100% of the
available hardware performance, but will enable a move from a static to a dynamic operational regime.
This enables a system to adapt as it is running and behave more like a guided missile with continuous
course correction rather than a fired projectile with a fixed trajectory.

Performance in the future will depend on many factors, including efficiency, an application’s paral-
lelism, the availability and reliability of a system, and effects such as starvation, latency, overhead, and
waiting for contention resolution. Thomas asserts that only a dynamic system can possibly cope with all
of these factors. While this sounds complicated and burdensome, there are also many opportunities to
address efficiency, scalability, programmability, performance portability power/energy, and reliability.

In the future it may be necessary to focus on memory bandwidth rather than floating point perfor-
mance when evaluating resource utilization. It may also be necessary to move the work to the data,
instead of the current model where data has to flow to the processor. Addressing scalability is also im-
portant: There needs to be enough work to be done by a thread. How to discover parallelism, and what
granularity of parallelism is right?

Although Thomas believes that a dynamic runtime system can address these issues, he is aware
of the challenges that lie ahead. In particular, such sophisticated runtime systems will add overhead
and scheduling may bound the effective granularity and therefore limit concurrency and scalability.
Acknowledging the previous sessions, Thomas also lists OS interfaces as one of the challenges. It will
be necessary to lift some responsibilities from the OS up into the runtime and impose new demands
upon the OS.

Many of these challenges are being addressed by the X-Stack [28] program and in particular the cur-
rent XPRESS [19] program which encompasses a variety of initiatives to enable exascale performance
of future DOE computing systems. Thomas stresses that a new execution model is needed to achieve
exascale. An incremental approach will not do and a bigger jump is needed. We are in a crisis already
because more and more codes do not scale.

13

Thomas initiates the discussion by asking four questions:

1. Will a runtime system deliver what we need?

2. How does an HPC runtime system change, positively and negatively, the programming models?

3. How does such a runtime system interact with future OSes?

4. How should we proceed to achieve a viable runtime system software component for exascale?

Discussion

Hermann Härtig asks how an OS would need to be structured to comply with the vision Thomas has
just presented. Hermann asked whether some of the challenges; e.g., resource management had not
been already solved in real-time systems and OSes like MOSIX [3, 4]. Ron agrees with Hermann that
there are lessons to be learned from embedded and real-time systems. He says the difference is in the
goals; there is no system-wide view in an exascale system (MOSIX provides a single-system image of
a system).

Jeff says the US exascale effort is different from the rest of the world. There is a 20 MW constraint on
such systems, although vendors say they may need 40 MW. This may require that CPUs and memories
be turned off at times to lower power consumption. Jeff asks whether the runtimes described by Thomas
can help with that. Thomas replies that the information a runtime derives from an application could be
used to control power. Jeff thinks this would be a good co-design example: Set 20 MW as a constraint
and work with application and hardware people to meet it.

Dimitrios wonders whether letting the runtime system manage power consumption is enough, while
Vladimir states that power management is already being worked on by vendors. Solutions will come
from mobile computing and other low-power devices. Thomas says that we are off by an order of
magnitude. He says that we need to turn off power to the communication subsystem when we are not
moving data. This prompts Barney to say that a runtime can also get into the way. How can it help an
application to control power. Thomas says that the runtime would act as a conduit.

Barney reiterates his question: How does a runtime system help [with power]? Does the runtime
observe an application and control its energy consumption, or does the runtime provide an API that an
application can use to self-control? Ron interjects that mobile phones are a perfect example: The support
[to control power] must be provided and exposed by the hardware first, then the OS and applications can
adapt. Building on that, Alexey, referring to the OpenX software architecture diagram Thomas showed,
suggests that the runtime should expose communication at all levels. The application should be allowed
to manage the communication resource.

Taking a broader view, Sudhakar says that management of resources has historically been in time
and space. To reach a sub-20 MW exascale system, more than a local power API will be needed.
Examples are moving computation to the data and scheduling at various levels. The runtime needs to
become “omnipresent” with a multidimensional cost model and at different time scales. Larry jokes
that the runtime is kind of like the government: “We are here to help you,” and then more seriously asks
whether such an all-encompassing runtime leaves room for an OS. Thomas states that we have not had
a runtime in HPC yet and Ron says that protection and isolation are the tasks of an OS.

Larry says we should have an OS inside accelerators and Barney asks what for, Larry lists cross-
mapped memory as an example that is very difficult to debug. At that point Sudhakar asks whether the
accelerator model will persist. What if they were incorporated as first class models? They need to be on
the memory bus. He asks Larry what the role of the OS and the runtime would be in that case.

Because Thomas mentioned that each application would have its own ephemeral runtime, Christian
Engelmann asks whether MPI and OpenMP would need their own runtime systems. Thomas replies that

14

everything is in tight interplay: The runtime, the programming model, etc. The question is what the next
steps to take are.

For this to work, Jeff says that the co-design centers need to be vendor agnostic, otherwise we
cannot succeed. We need more centers and bigger platforms to work on. Sudip says that although the
IAA [20, 21] started co-design in 2008, we have not yet fully figured out how all these things can be
integrated. A big question is what the right level of abstraction is. It is possible that intellectual property
(IP) is a problem. The HPC community needs to speak to vendors with one voice. That will be a
challenge but is necessary for large companies like AMD, Nvidia, and Intel. Larry asks whether Cray
Inc. could act as a conduit, but Jeff thinks that the community needs to talk to the vendors directly.

Summary

Thomas Sterling’s vision for HPC runtime systems of the future presents a complex structure touching
all parts of a high-end system from programming models to system software to hardware. Such runtime
systems may help control power consumption and regulate other scalability aspects. Successfully de-
signing and building such a system is an enormous task that requires coordination and the adoption of
new paradigms. Co-design centers and the HPC community as a group may play an important role in
making this endeavor a success for all.

3.3 The programmer’s burden

Leads

Session lead Ron Brightwell, Sandia National Laboratories.
Wingmate: Turlough Downes, Dublin City University.

Description

What high-level changes are going to be required for applications to reach exascale?
How important will communication avoidance be? Will programmer awareness of power
indexpower!programmer awareness and reliability be required? To what level of detail?
Will Bulk Synchronous Programming (BSP) survive? Must it?

Presentation

Ron’s first two slides humorously proclaim that application developers are evil. He describes a scene
where he offers a new OS that improves scalability and performance. The application developers then
complain that they do not want to change their makefiles, use a cross compiler, make hardware-specific
optimizations and request that the new OS [or way of doing things] has to improve performance on all
machines and everything has to be portable. In act two, the application developers come back excitedly
asking Ron for his help with a new thing. They explain that it is a custom piece of hardware, requires a
cross compiler, that they have to change their makefiles, and the new code is not longer portable.

“Application developers are evil.” (Ron Brightwell)

Ron’s point is that, unless we are willing to ignore application developers, they should drive the
requirements for the OS and runtime. In light of that, he uses the rest of his presentation to ask specific
questions that need to be answered before an exascale system can successfully run the applications it
was built for.

15

Discussion

Ron’s first question is what high-level changes will be necessary for applications to reach exascale.
Larry interjects “No BSP!” because with that many parallel threads we need asynchrony. Sudhakar
counters that BSP [37] provides a structure to manage millions of threads. If not BSP, then what? Ron
restates that we cannot handle global synchronization at that scale and asks at what level synchronization
should be done then.

Alexey suggests to concentrate on communication for exascale. It seems people are not too worried
about inter-node communication. Jeff says we will have about 100,000 nodes, with about 1,000 to
10,000 threads each. He asks whether that is still the anticipation for the first exascale systems, and
states that the number of nodes in that case will stay about the same as we have in current high-end
systems.

Simon adds that the node model will be hierarchical: groups of threads working together, and super
groups that communicate off-node. Aidan suggests to grow the lowest level of such a hierarchy from
petascale to exascale, and change the problems to work on exascale; i.e., perform more complicated
calculations. Vladimir says that is two to three orders of magnitude and asks whether we need to
support legacy applications. He believes that exascale creates a niche within HPC and wonders how
many people can possibly work on that.

“No BSP!” (Larry Kaplan)

Ron’s next prepared question is how important communication avoidance will be. Aidan thinks it
is very important. To achieve it, lower layers in the parallel algorithms need to be adapted. Ron says
that, in addition to performance optimization, other people want lower message rates to save power and
that it could help with resilience. Arun Rodrigues says that it is currently not possible to reduce power
consumption of the network due to the BSP model and that systems need to be configured for maximum
needs.

Turlough Downes mentions that many physics applications are self synchronizing and communica-
tion avoidance may not be that easy. Arun suggests to move toward a data flow model and that it might
be possible to do underneath MPI, by transmitting partial buffers. Barney warns that dropping message
passing semantics and moving to a data flow model is a major change. Arun explains that it might be
possible to do some of it at lower layers and that we could also change the programming model.

If transmitting partial buffers, then how would we deal with non-blocking sends, Larry asks. Arun
answers that it can be done on the receive side, but Barney points out that the buffers are needed for
retransmission during error recovery and, therefore, we need to change the programming model.

Ron’s next prepared question is whether programmers need to become aware of power and reliability
in future systems. Simon thinks applications do not really care about power. Programmers may be
willing to declare “robust” variables to indicate which regions of memory may need better protection
from faults. That is because application people understand the concept of errors, but have no notion of
how they could save power.

Turlough wants to know more specifically what Ron meant with his question and what usage model
it applies to. Are we talking about applications using the entire system, or lots of smaller applications
running on a large system? He believes we cannot have a general-purpose exascale system. People
using it will need to know that they are on an exascale system. In the future, people will be used to
petascale systems and will write exascale-aware applications.

Ron mentions mobile applications as an example of power aware programs. They minimize access
to the GPS in order to save power. Sudip says that manufacturers force applications developers’ hands.
Aidan says that HPC application developers foremost want correct answers and good performance. Arun
suggests to provide an incentive for power-savvy jobs, for example by giving them a higher priority in

16

the job queue. Ron is pessimistic. He says the ASC compute facilities do not charge for performance
problems.

Going back to applications declaring “robust” variables, Thomas Sterling reminds us that faults are
not restricted to a variable’s content; its address is just as important and may get corrupted too. This
prompts Ron to wonder about the vulnerability of the OS and runtime. Hermann says checkpoints need
to become more efficient, but Simon thinks we need something better than checkpoint/restart.

Ron moves the discussion along by asking his prepared question of why we have the expectation
to develop on a laptop and then run at exascale. He skips the questions whether BSP will survive and
whether we really want to maintain the expectation of performance, since we already talked about BSP
and are beginning to run out of time for this session.

Ron doubts that developing on a laptop makes sense. Sudip counters that people have to deal with
parallelism on today’s personal computers (PC) that use multicore processors. Ron says that is not the
same. The exascale issues of scaling, power, and reliability are not present.

Barney chimes in that it is a mixed blessing. More students are now exposed to parallel programming
environments, but they also have the expectation of a full-featured OS and runtime system which are
not present in the same way on large-scale systems. It is easier to scale down than up. The reason is that
we have not defined a limitation model that would explain why something does not scale up. Sudip says
that people want to do science not computer science (CS).

Jeff states that parallel programming on individual systems is driven by business, such as gaming,
and education. He doubts that there are masses of programmers who work on laptops and then expect
their codes to scale to exascale machines.

Sudip mentions this is akin to climate application developers who had to move from vector machines
to massively parallel processors (MPP). According to Sudip, some of them are still bitter. Henry Tufo
explains that the reason is that there was more science in the vector codes, and that some of that has not
made the transitions to MPPs, even though the MPP codes are more scalable.

Ron has a long list of questions remaining in his presentation, but we are running out of time. The
last one briefly discussed is whether programmer productivity is really an issue. Turlough states that it
is “publish or die.” Therefore, codes have to be developed quickly. High productivity parallel languages
and development systems, for example X10 [11] are needed.

Summary

The needs of application developers are continuously changing. While they wish for common and
performance preserving APIs and standards, they also need to make use of the latest technological
advances. Currently this means using accelerators and be willing to dive deep into new technologies and
have different versions of an application for the various systems in existence. It also means dealing with
millions of threads in extreme-scale systems. Synchronization will be a major issue. Fault tolerance
and data movement will be very important as well and at least some of it will have to be done with
application guidance.

Because application developers are, from the point of systems developers’ perspective, end users,
the application developers should drive the requirements for lower level systems software such as the OS
and runtime. In this session, again, the topic of educating the next generation – in this case application
developers – is discussed.

17

3.4 Research challenges

Leads

Session lead: Barney Maccabe, Oak Ridge National Laboratory.
Wingmate: Vladimir Getov, University of Westminster.

Description

How can research help address challenges expected to arise with the advent of exas-
cale systems? Predicted issues, such as fault tolerance, power dissipation, usability, pro-
grammability, and scalability are hot topics in research laboratories. Are there issues not
being addressed? Is progress in these areas advancing fast enough?

Presentation

In his presentation, Barney proclaims we need a revolution to address the daunting exascale challenges
ahead of us. Not only that, but we are due for one since the last one – “Attack of the Killer Micros” [10]
– was in the late 1980s. Barney lists four areas that need a revolution: Power, parallelism, memory
hierarchy, and resilience. For power, Barney says it needs to be managed at all levels from the machine
room to the OS, to the runtime, to the application. The amount of available parallelism needs to be
increased by increasing application asynchrony. Deep memory hierarchies will require explicit man-
agement. Data movement across that hierarchy dominates cost and consideration of it needs to become
more important than counting (floating point) operations. For resilience, we need to be aware that in an
exascale machine, some part will always be in a failed or degraded state.

In June 1993, four years after Eugene Brooks’ warning about the imminent attack of the killer
micros, the first Top500 list [25] shows that the revolution was over.

“We all know the answer; some of us may even be right.” (Barney Maccabe)

Barney stirs up the discussion by showing a slide summarizing some predictions from the 1994
petaflops computing meeting in Pasadena [24, 35]. Some of those early prophecies were that a petascale
system would need ten million processors, would fail every few minutes, be enormous in its physical
size, and cost about 25 billion Dollars. Even though the perceived challenges were huge, a petaflops
was achieved in 2008, and according to Barney, without an intervening revolution. Contradicting his
earlier statement, maybe no revolution is needed to reach the next level of computing although today’s
predictions for exascale systems mirror those made in 1994.

An area where revolutions have been prescribed in order to improve power output and fuel efficiency,
is the internal combustion engine. It is still around and performing at levels never predicted in the 1970s.
Barney compares this to the x86 instruction set and the permanence of Fortran. If a revolution is needed
to reach exascale, it will be difficult to ignite and overcome inertia. Barney’s recipe is to get it started
at the bottom. People in power want to protect the status quo. To create a revolution, the value of an
alternative needs to be demonstrated and a “hungry community” needs to be incited with a few well
placed bets. An investment in tools can soften the impact of an impending change.

Finishing his presentation, Barney charges the participants to address three questions: How can
research help address the expected exascale challenges? Are the predicted issues addressed in current
research efforts? And, is progress in these areas advancing fast enough?

18

Discussion

Thomas Sterling forcefully protests Barney’s assertion that we had no revolution. Thomas lists the move
from strong scaling to weak scaling as one example and accuses Barney of corrupting our intellectual
thinking by glossing over such important changes. Barney responds that that was only a change in the
definition of success. Thomas counters that rather than ending in 1994, that was the year the revolution
started. We moved to MPI/C and Beowulf clusters began to appear.

“This corrupts our intellectual thinking.” (Thomas Sterling)

Barney insists that it had been over in 1994. It may not have permeated the whole world then, but
it was nevertheless over. He asks the following questions: If we are in a revolution, when will it end?
Why are we not standardizing architectures? Why are we not redefining success?

“Once those in power join the revolution, the revolution is over.” (Barney Maccabe)

So, what is the goal? To create a revolution? Barney asserts that we are not likely to start a rev-
olution. Other people with a need, will. But, they are not. Simon points out that there are people in
need, but GPU are not a solution. Barney says they are stuck; they need an innovation; a disruptive
technology. Jeff wonders why they cannot use accelerators. Simon responds that accelerators are not
good for sparse, multi-physics codes. Jeff counters that dozens of codes scale, which makes Barney
wonder whether these are codes that never made the transition off vector machines. This brings Barney
back to suggesting that the move from vector machines to MPPs happened because there was a “hun-
gry” community of people in need of something other than the available vector machines and that a bet
is in order; i.e., something like the killer micros bet that led a few adventurous laboratories try massive
parallelism, to work around the scaling issues at the time.

The lively discussion continues when Barney starts going down the three questions he presented to
the participants at the end of his talk. If research were to “place bets” to incubate a revolution, where
should we start? We cannot chase everything. Barney suggests a “structured” approach to the revolution.
Arun suggests to throw seeds in an organized fashion. Some will take; but most wont. Barney says that
we have a technology change [accelerators], but nothing disruptive.

Vladimir thinks that the problem may be a too US-centric view. China, Brazil, and Europe have
different applications and may have different needs. The current drive toward exascale is missing a lot
of people and applications. He points at the Exascale Chat [34] Host Simon held at the International
Supercomputing Conference (ISC) earlier this year. That panel was very international and had a very
different perspective.

Barney mentions how Nancy Lynch counted messages in distributed systems and was able to gain
new insights that way. He brainstorms energy consumption. The effect is indirect: data movement
requires energy. Maybe we should count memory operations, since that is what uses power.

Sudhakar says that HPC moves with the markets. HPC innovations will be market driven. Barney
says we are still in a hall of mirrors. We are just riding along instead of inventing HPC specific proces-
sors. There was some HPC innovation for interconnects, but not much. Sudhakar steers the discussion
to asymmetric processors and multicore processors with different cores and asks how they will change
architecture. Both will increase transistor count, but the question is where to place the bets. But Barney
warns that we cannot cry wolf too many times. It better be a real revolution, otherwise we should not
call it that.

Alexey lists a couple of instances that caused revolutions. We used to have highly specialized com-
puting centers that used a couple of programming languages and were operated by nerds. Then the PC
came along. Revolutions happen when systems become commodity. Another example is the telephone

19

companies laying a lot of optical fiber cables. This has enabled innovations such as the Grid’5000 [17, 8]
distributed experiment infrastructure. Revolutions happen when a new technology becomes widely
available and a lot of people start thinking about how to use it in new ways.

Turlough points out that specialized hardware is very difficult to get. We are much more likely to
have a revolution if it involves commodity hardware. Henry points out that this is what Nvidia has
just done: it triggered a trend in HPC with commodity hardware. Nvidia identified a usage model and
capitalized on that. Why can we not capitalize on this trend? Simon states that we cannot use a single
vendor, but Jeff interrupts that we have three: Intel’s MIC, Nvidia, and AMD. The problem is that these
devices are “still sitting outside”; i.e., these accelerators are not on the memory bus. Jeff also laments
that it may be too late for a revolution.

“It’s too late, we don’t have time to have a revolution anymore!” (Jeffrey Nichols)

Henry is more optimistic. In the past we used commodity components and modified them for our
needs. This may be the first time we can dictate what goes into the next processor. Arun says we have
done that before, but Barney states that others; e.g., the mobile phone makers, have more sway than
we do. Henry tells us to take on a more active role, which brings Barney back to the question which
investments we can make that will pass the test of time. The next technology refresh will wipe out
investments in current software and will make it hard to use what is out there.

Summary

Four areas in particular will need to undergo radical changes: Power, parallelism, memory hierarchy,
and resilience. All layers of the software and hardware stack will need to be involved. Applications will
have to help manage deep memory hierarchies and control data movement.

There is inertia in changing how application manage resources. Investments in a few key technolo-
gies that show clear performance and efficiency gains, may trigger the needed changes. A disruptive
change is needed to bridge the gap to exascale. The difficult question is what research needs to be
funded that can ignite such a change.

3.5 Exascale simulations

Leads

Session lead: Sudhakar Yalamanchili, Georgia Institute of Technology.
Wingmate: Arun Rodrigues, Sandia National Laboratories.

Description

Discuss the need and challenges of simulating exascale systems.

Presentation

Sudhakar begins his presentation by stating that the problem of simulating an exascale system is too
large for a monolithic solution. The problem is that full-system complexity is growing exponentially,
while simulation capacity is only growing linearly. Mature models and simulators exist, but they are
usually monolithic, custom, and not built for composition or re-use.

Four factors contribute to the immensity of the problem. Scale is the obvious one with the number
of nodes, cores, and threads being too numerous to simulate with great fidelity. Multiple audiences have
different requirements, from purchasers to application writers to systems engineers analyzing network

20

behavior and processor utilization. The size of exascale systems increases complexity. Multi-physics
applications, OS effects, and new languages are examples. Finally, there are constraints that have to be
dealt with: performance, cost, power, reliability, cooling, usability, risk, and size.

Further complicating things is that different people use terms like models, simulation, and emulation
differently. Drawing different options on a graph with evaluation quality on the x axis, and simulation
scope/parallelism on the y axis, Sudhakar shows that there is a spectrum of solutions to consider which
vary with their suitability to produce desired information. In general, the trade off between fidelity and
scale is the driving factor.

Because of all this, Sudhakar points out that a community effort is needed. A single monolithic
solution cannot solve the problem. The efforts of different groups need to be brought together to com-
pose new tools and work on multiple levels of abstraction. It is also necessary that different groups of
researchers, such as application developers, architects, and system software experts provide input and
help working toward a solution. This is where a common vocabulary becomes important. Otherwise the
different groups will not understand each other.

Another issue Sudhakar mentions is IP. Some simulations require detailed product information that
vendors are reluctant to make public. Is there a way to create modules, maybe by the vendors themselves,
that create valid output while protecting IP? An example of where such collaboration is needed, is the
energy, power, and resilience stack. In order to determine where energy is dissipated, the entire software
stack, including the hardware, has to be evaluated. Some of the information necessary to do that can
only come from vendors.

The challenge is to understand multiple interacting physical phenomena with the goal to create a
modeling environment that lets us understand architectural impact and evolve a co-design methodology
to optimize systems. Sudhakar has two example slides: one showing the interaction between reliability
and thermal fields and the other showing the interaction between cooling and performance.

At the end of his talk, Sudhakar summarizes the challenges and opportunities he has presented.
Two that stand out are model accuracy and validation, and the difficulty of engineering a simulator. His
concluding slide has specific questions, based on his presentation so far, for the symposium participants.
The ensuing discussion centers on three of these: Does co-design require special attention? What do
application developers and system software researchers need? How can we work with industry?

Discussion

Jeff starts the discussion with the question whether the co-design centers use simulators. Simon says
yes, but there are not enough, accurate tools. Open simulators without proprietary IP embedded have
less accurate timing. Sudhakar warns that this will have impact on the accuracy of power simulations
and wonders what the impact on the OS might be.

Barney is not sure we need to simulate the OS. He wants applications or runtime systems to get direct
access to the communication hardware. Sudhakar asks what kind of tools the simulation community
could supply to help OS research. Barney says to do things like cache injection [23, 22]. Sudhakar
points out that the way some simulators are built makes it difficult to provide fine-grained access to the
scratch pad and simultaneously abstract the rest of the runtime.

Kurt says that systems software does not use simulation very much. Local issues can be done on a
node. There is no need yet for simulation. However, Vladimir mentions that Blue Gene used simulation
extensively; e.g., Mambo [7]. Arun distinguishes between design tools and bring-up tools. Mambo is
powerful, but difficult to use and modify. Validation is different.

Dimitrios wonders whether sampling would allow us to run full applications and whether the result-
ing accuracy would give us more confidence.

21

Christian points out that there is no simulator for dynamic runtime environments at scale. Sudhakar
asks whether application skeletons, plus a runtime, plus hardware simulation could do that. Arun asks
Thomas Sterling about using simulators for runtime systems. Thomas responds by saying that Adolfy
Hoisie has high-level models and states that we need to know event counts, not time variance across
billions of threads. We can extrapolate with a small number of key parameters. Use of queuing models
is also an option. He jokingly adds that they are sufficiently insincere, so there is no real disappointment,
but they can be useful. Kostas remarks that feeding a queuing model requires a distribution function.
Thomas says that we do not need to find a closed form solution.

Sudhakar asks about interaction with industry. Would it be possible to have models that cannot
be released. The issue is proprietary information that vendors may not want to release. Having a
sealed module that could be inserted into an open simulation tool, might be an option. He lists memory
controllers as an example of devices that have a lot of “secret sauce” and are therefore difficult to
simulate. However, a model of a memory controller may not be that hard to create and may still be
useful. Arun asks what kind of models would industry accept or believe in, instead of saying that they
are not accurate enough?

Summary

Simulating exascale systems is difficult because the number of elements to be simulated grows ex-
ponentially, while simulation capability grows linearly. Different users of simulators have different
requirements that cannot be all satisfied by a monolithic simulator. Modularity is required to tune the
accuracy for specific parts of the simulation to the needs of a given experiment. Allowing vendor IP
to be incorporated into a generally available simulator is necessary to achieve accurate power readings.
However, there has to be a way to protect vendors’ interests, or the necessary proprietary information or
modules will not become available.

3.6 Co-design

Leads

Session lead: Sudip Dosanjh, LBNL/NERSC.
Wingmates: Aidan Thompson and Simon Hammond, Sandia National Laboratories.

Description

What has been learned so far? Is it working? What are the implication for system
software? How far down the software stack should/can co-design go?

Presentation

Simon begins the two part presentation with an overview of the co-design efforts at Sandia National
Laboratories. He says that the interaction of system software, specialized hardware, algorithms, and
dealing with different vendors makes programing and designing HPC systems a very complex endeavor.
However, that situation is not new: embedded systems have had similar problems and dealt with it using
a technique called co-design [33].

The USA DOE is funding four co-design centers with the goal to influence next-generation appli-
cations and architectures [29]. There are also efforts under way to build a simulation infrastructure, and
several X-Stack projects [30] will help shape the future software landscape. In addition, vendors are
involved through matching funds FastForward projects and procurements.

22

Initial efforts at Sandia National Laboratories concentrate on creating a set of so called mini-apps [5]
that help evaluate hardware architectures and are suitable for running inside a simulator. The number
of mini-apps is increasing so they cover a larger spectrum of application types. At the moment, code
vectorization is a big issue.

Aidan presents the second part, concentrating on molecular dynamics (MD). With the increased par-
allelism available in exascale systems, it is important, and not easy, to extract more parallelism from
molecular dynamics applications running on a wide variety of systems. A lot of recent MD demonstra-
tions of extreme-scale systems have achieved parallelism by scaling up the atom count with the node
count. This implies constructing MD simulations with billions of atoms, with millions of atoms per
node, interacting according to very simplified models. However, the usefulness of MD is limited by
accuracy, not atom-count. Simulating more atoms may not advance science. The best MD simulations
typically consist of thousands to several millions of atoms interacting according to detailed models. Hy-
brid parallel approaches are required to achieve much better strong scaling, to the point of having only
a few very expensive atoms per node.

“Simulating more atoms may not advance science.” (Aidan Thompson)

While co-design is not new, the hope is that the current focus on it will help influence hardware
development and further integration across the software stack to make getting to exascale easier. Aidan
stresses that getting there will be hard and that reaching exascale for legacy codes and algorithms will
be even harder. He then poses four questions to all participants:

1. What do you need from the co-design process?

2. Are you designing or are you co-designing?

3. What can you give us to help?

4. What is the most important place for us to start?

Discussion

Thomas Sterling initiates the discussion by stating that we need a better understanding of the mini-apps
in order to rewrite them. Mini-apps are not benchmarks and are meant to evolve over time to adapt
to new architectures and runtime environments. Thomas also requests that information about points of
contact at each of the co-design centers be made public. This is important for other efforts, such as
runtime system design, to learn from the centers and, in turn, to influence them.

Jeff is concerned about the metric for success of the co-design centers. He suggests that success
could be measured by the number of architectural changes based on requirements identified by the co-
design centers. But Jeff states that there is currently no information flow from the co-design centers to
HPC companies.

Alexey wants to know how co-design is supposed to work. He asks whether algorithms need to
change. Simon answers that computer science people make the changes and assess performance. Appli-
cation (algorithm) specialists then comment on these changes and may throw them out. The goal is to
find the best combination of program workload and architecture.

Sudip goes into more detail. He says that mini-apps are a mode of communication. They should
not be simply posted on a web site to be consumed. Feedback is encouraged and needed. Instead of
specifying a bandwidth or flops goals, the mini-apps provide the requirements [26]1. They exemplify
the problem to be solved. Feedback on how that can be done is part of the co-design process.

1The mini-apps are part of the draft of the technical requirements for the Trinity (LANL) and NERSC-8 platforms.

23

A big concern is the performance of vector operations. Algorithms and code needs to be optimized
for modern and future architectures. To date, Sudip says, a lot of NDAs have been signed, but it is a
slow process to affect product changes. In the end it may not be DOE that forces change but the market,
through a company like Nvidia trying to adjust to new market demands. Alexey interjects that Nvidia is
indeed interested in designing a streaming architecture for analytics and big data.

Sudip says that the DOE and the HPC community will not change the main course of companies like
Nvidia, but there is the possibility to have some impact. One example is the DOE FastForward program.
It provides an opportunity for vendors to add their own versions of mini-apps to the mix. In addition,
DOE has big data applications as well.

Thomas Sterling wonders how much of this effort and money is for exascale versus a ten petaflops
system. Simon says that for 2018, the expectation is that vendors will provide a programming model
that includes MPI. This prompts Thomas to ask whether that is official policy, to which Sudip replies it
is not. Larry asks what is stated in the RFI.

Vladimir says that petaflops systems will evolve into exascale systems. The border between them
is somewhat political and subjective. How do we define an exascale code? Sudip answers that the six
mini-apps have been vetted to be representative exascale applications. The definition of performance
in the RFI was the Linpack benchmark but also an improvement of 100 to 1,000 for production codes.
Although the 1,000 number will probably not be achievable in the first round.

Sudip comments that this is better than it has been in the past. This is the first time that DOE is
committed to applications. Simon adds that MPI needs to be provided and working well for legacy
applications. However, a future machine may also support other programming models in addition.
Thomas is shocked by this development. Vladimir suggests to co-design applications such that they will
work with a new programming model.

Summary

The co-design centers and related efforts promise a more application and result oriented approach to
future system design and acquisitions. However, concern exists that these efforts are not moving fast
enough, target systems and problems are less than exascale, and may not have the necessary impact with
vendors.

3.7 Expanding the scope of traditional HPC systems

Leads

Session lead: Duncan Roweth, Cray Inc.
Wingmate: Rolf Riesen, IBM Research.

Description

Traditional large-scale scientific applications are not enough to drive the market. New
areas, such as analytics, may be served by exascale systems or smaller systems using ex-
ascale technologies. In which market areas can exascale-capable machines play a role?
What compromises have to be made to enable this broader-use spectrum? What technolo-
gies, not specifically designed for supercomputing, can be leveraged to reach an exaflops
sooner, cheaper? Vice versa, how can HPC technologies and methods help the larger data
center/cloud space?

24

Presentation

Duncan begins the presentation by reminding us that there will be a small number of exascale systems
and a “reasonable” number of smaller HPC systems, but the overall market size is small. Which brings
us to the core question for this session: can the same technology be used in a wider market2 and is it
applicable? Traditional HPC tries very hard to minimize data movement because of its various costs;
e.g., time and power. However, data movement dominates many application areas. One example of
concern is that a NIC with a broad injection bandwidth range may be too expensive for the common
market.

The CPUs used in HPC systems are the same ones available for other uses. The bytes per flop to
memory bandwidth ratio and its implication is reasonably well understood in the HPC community, but
varies widely. Global system bandwidth impact is less well understood but is important because it has a
large impact on cost. It is also a parameter that varies widely from system to system.

The cost function for a high global bandwidth network contains some factors that can be chosen,
and others that are market or physics driven. Using optical interconnects is currently expensive. This
results in a reduction in the injection-to-global-bandwidth ratio, or a reduction in injection bandwidth.
In other words, we need to wait for another step change in the cost of optical networks before HPC can
become cost-effective for more general uses.

System characteristics, such as injection bandwidth per node, number of fully connected nodes (the
group size), the global bandwidth to injection ratio, and the storage hierarchy, determine what type
of application a system is suitable for. Duncan shows a scale with weighted average number of peers
starting at 1 on the left and going beyond 5,000 on the right. Finite difference, finite element, and most
ASC codes (ACES) are located on the left-hand side. Spectral weather and climate codes reside in the
middle of that line, and graph and sorting applications are to the far right. New analytics applications
also fall onto the right side with their all-to-all communication patterns and connectivity among peers.
Thomas Sterling’s asks how sensitive these numbers are and how they change when capacity changes.
Duncan says that as applications move from weak scaling to strong scaling, they use less memory per
node and that forces them to move to the right on the scale because they have to interact with more peers
now.

An example application is neuroscience simulation with the goal to enable targeted drug develop-
ment and bringing down cost. There are many different brain diseases with different biological causes
but very similar symptoms. This makes is expensive and difficult to select patients for clinical trials and
identify specific drug targets. The European human brain project [15] aims to address this problem by
using compute power to make pharmacological research profitable again.

Some of the work to simulate pieces of the brain is beginning now on existing systems. As the
complexity increases, memory requirements and operation count will go up. It is expected that a cellular
simulation of a human brain will require an exascale machine with 100 petabytes of memory.

As a second example, Duncan mentions difficult MapReduce problems. Although MapReduce
operations are a mainstay of today’s data centers and large clusters, some MapReduce workloads need
a more capable network during their reduce phase[36]. Other research has shown that high-end HPC
systems are very capable of running such high-demand MapReduce workloads [32].

Duncan then initiates the discussion with a statement and two questions.

1. Our requirements are broader than those met by traditional HPC systems. Often, sparse problems
do not fit well into a steep memory hierarchy.

2. What can the HPC community gain from work to expand the scope of the systems that we use?

2Or vice versa, can more wide-spread technology be used for supercomputing?

25

3. How broad a set of applications do we need to run well on an exascale system?

Discussion

Larry starts the discussion with a question about Duncan’s slide that shows applications along a line of
weighted average number of peers. He wonders whether applications on the far right, those communi-
cating with a lot of different peers, are important enough to push HPC there. Thomas Schulthess says
this view of applications is too static. We need to look at different ways of solving a given problem.
Regarding data, he states that it makes no sense to allow access to all data at the nanosecond time scale.

Duncan says it takes many years to “move” a code, but Thomas asserts it can be done on the order
of one year. He further clarifies that it is the lifetime of the model that matters, not the lifetime of any
application implementing that model. But Henry interjects that codes live forever. Thomas says that is
the fault of CS: We have fifty-year-old computational models that are too abstract.

Henry says that in physics there are theoreticians and experimentalists. In CS we do things differ-
ently. Thomas replies that we need to change that: writing code is not that expensive. Larry thinks it is
a cultural problem. Aidan contradicts him. It is not cultural; moving codes to the left of Duncan’s scale
is a hard problem. He adds that validation is also very hard.

Thomas says that in physics experimentalists get trained to build and evaluate machines (scientific
tools). By contrast, CS students are not trained like that; not even math is required! The codes they
produce are a mess and cannot be maintained. That is why these codes are not amiable to change. In
support, Henry comments that professors do not get paid to build codes. They need to publish papers.

This prompts Barney to state that we are educating our students in the wrong manner. Rolf thinks
Java is to blame because it allows programs to be written without understanding the underlying machine.
Alexey says it is too easy to write games and phone applications. We should take students form physics
and mathematics as [CS] Ph.D. students.

“You are educating your students wrong.” (Barney Maccabe)

Sudhakar brings up the raw cost of writing a million-line application. Thomas says that laboratory
equipment does not last thirty years and our applications should not either. The models underlying these
applications do. Hermann mentions that it is impossible to get a paper accepted at an OS conference
without clean experiments and a thorough evaluation. Alexey gives as an example that there is no course
that teaches memory hierarchy and how to manage it. Thomas says the fundamental problem is that CS
(based on CE) is in the area of discrete mathematics, while computational science deals with continuous
mathematics.

Vladimir tries to get the discussion back to the topic of this session. He asks what Duncan meant
when he said that global bandwidth is less well understood. He says that the “fatness” of nodes deter-
mines the number of them needed to solve a particular problem. Thomas says that global bandwidth
is a problem because the natural topology of a data set does not match the network topology of the
underlying machine. Duncan adds that mapping (and faults) are the problem. Thomas reaffirms that we
need a way to lay out data and processes in a machine so that the physics problem to be solved matches
that topology. Duncan says that Cray Inc. has done some work along those lines with Sandia National
Laboratories. We need a runtime that allows us to express and request this mapping.

Summary

There is no consensus on whether a single type of system could both address the commercial data center
market, yet still be suitable to solve demanding scientific problems. It is clear that some problems; e.g.,
number of communicating peers and globally available bandwidth are difficult and need to be addressed.

26

However, it may be that approaching the physics problems to be solved from a different angle may go a
long way in producing applications that work better on these envisioned systems. Education of computer
science and computational science students is seen as important toward that goal.

3.8 Application perspective

Leads

Session lead: Thomas Schulthess, Swiss National Supercomputing Center (CSCS).
Wingmate: Henry Tufo, University of Colorado at Boulder.

Description

Are hybrid systems here to stay? If so, how will they be programmed? Physical con-
straints of computer hardware are forcing a rethinking of our programming models. Which
models are finding acceptance among scientific programmers and how can they contribute
to the design of future exascale supercomputing systems?

Presentation

Thomas tells the audience that some materials applications at Oak Ridge National Laboratory have
shown performance at well above a petaflops. These codes and problems are expected to reach exascale.
But there are others that have not even reached a 100 teraflops in performance. The key is what Thomas
calls the arithmetic intensity of computation. It is the ratio of the number of floating point operations
performed over the amount of data transferred.

He groups applications into algorithmic motifs from low intensity sparse linear algebra, matrix-
vector, vector-vector codes to high arithmetic intensity dense matrix-matrix codes. Thomas says that
claiming supercomputers are general purpose machines and are also HPC where performance matters,
is a contradiction.

As an example of the problem, Thomas talks about COSMO [31] a weather prediction code that is
in production use in Switzerland. An older version of it concentrated 80% of its performance in a small
section of the code. The physics part is compute bound, while the dynamics are memory bound. He
shows a code example from the physics section that performs 136 flops using 3 memory accesses, and
another from the dynamics sections that only does 5 flops for every 3 memory accesses.

In order to improve the performance of this important application, it had to be changed to employ
bandwidth saving strategies such as computation on the fly and increasing its data locality. But an
adaption of the hardware was also necessary to provide more memory bandwidth; i.e., adding GPU
hardware. To take advantage of this hardware and to hide the complexity of the optimizations, the core
of COSMO was rewritten in C++ using templates to allow mapping it to CPUs or GPUs. While running
on the GPUs brought a large speedup, transferring the data back and forth to main memory between the
physics and dynamics phase negated all performance gains.

The solution was to use scratchpad memory inside the GPU and leave the data there. Thomas
Sterling asks whether this approach generalizes. Thomas Schulthess answers that twelve applications
have used this approach so far and then expands on the things we need today and certainly for exascale.
Increasing data locality is a key factor. We need a language and a mathematical model to express locality.
Scalability has to be addressed from the ground up.

We also need a programming model and environment for distributed memory machines with com-
plex nodes. Modern nodes can no longer be described using the von Neumann model. In the 90s using

27

distributed memory was difficult. MPI solved that problem. Now we need something like that for the ar-
chitectures we have today. Thomas’ last slide shows the progression in performance over the last twenty
five years using as examples the yearly Gordon Bell Prize winners and the programming models they
used. An extrapolation to exascale predicts that we will reach exaflops performance in 2018. Thomas
warns that if the HPC community does not do anything, the programming model will include CUDA.

“We will have one exaflops in a real application in 2018. You will end up with CUDA.
Please, do something!” (Thomas Schulthess)

Discussion

Thomas’ plea to provide something better than CUDA starts the discussion. Henry asks whether Thomas
really thinks that we will get rid of MPI by 2018. Thomas counters that Chapel is not it. He expands on
his ideas. For a funding model he suggests to give the money to the weather service, but make them hire
our [HPC] people to optimize the codes. A longer exchange between Thomas and Henry lets Thomas
predict that with the proper optimizations an exaflops could be used for climate modeling over a 10 km2

area over 100 years, and a 2 m2 resolution. Then Larry and Thomas discuss programming languages
with the agreement that the language or a library needs to map the data to memory.

Vladimir asks whether this climate code can run at exascale. Thomas answers probably not, and that
it may need more refactoring. The goal is to run a global simulation at 1 km2 resolution for 100 years.
A petaflops machine has enough message passing performance for that, but not enough memory. Once
ocean cooling and such are enabled in the simulation, an exascale machine is required.

Henry makes a distinction between weather and climate codes. Some of the [funding] things that
work now for weather codes are not done in climate codes. Weather is local and states are willing and
able to support it, but climate is global. Thomas says it was not always like that for weather and the
approaches that have been successful can be applied to climate.

Summary

Some applications are very suitable for scaling to an exaflops machine, while others face much larger
hurdles. Programming languages and models that hide some of the complexity of a modern supercom-
puter, yet allow the expression of data locality, are needed but not really in sight yet. Bringing less
scalable codes to exascale will require careful analysis and refactoring of these codes. All of this de-
pends on funding. While there is funding available for problems like weather where execution speed
and accuracy have an immediate impact, funding for longer term research, such as climate simulation,
is more difficult to arrange.

3.9 Fault tolerance

Leads

Session lead: Christian Engelmann, Oak Ridge National Laboratory.
Wingmate: Larry Kaplan, Cray Inc.

Description

Permanent and transient faults may occur continuously in an exascale system due to
decreased component reliability and increased component counts. What fault types and

28

frequencies should be expected? Can evolutionary fault tolerance approaches provide re-
silience at exascale, or are more revolutionary concepts needed? Which layer (OS, runtime,
and/or application) is responsible for assuring resilience?

Presentation

Christian starts with a list of exascale resilience workshops that have been held and informs us that
there will be a bird of a feather session at Supercomputing this year. It is clear that fault resilience of
large scale systems is an important topic and many people are studying it. He then focuses on the US
DOE’s need in this area. Because the DOE uses mission-critical applications that require a high level
of accuracy, have very long running times, and will utilize millions of threads, reliability is extremely
important. At the same time, there is a trend toward less reliable Commercial Off The Shelf (COTS)
components and a need for many more of them, since frequency scaling is giving way to core and node
scaling.

In subsequent slides, Christian elaborates on the problem. It is expected that the number of soft
errors in processor and memory devices will grow as their density increases. In a system with 1,000,000
devices manufactured at 11 nm, Christian calculates a Mean Time To Failure (MTTF) of 0.2 h, if no
additional protective measures are taken. Maybe even more worrisome is that these same calculations
also predict about two undetected errors each hour.

For an exascale system by 2020, 7 to 10 nm process technology will be used at near threshold
voltages in order to meet energy usage requirements. Some estimates put an exascale system using such
components at a five times higher risk for errors than the current Titan system at Oak Ridge National
Laboratory. At this point Ron interjects that Christian’s estimates are lower bounds, since they do not
take file systems and components such as NVRAM, into account. There is also a discussion whether
node Mean Time Between Failures (MTBF) will stay the same. Some vendors claim that it will improve,
but it seems more likely that it will stay the same or even decrease. However, there is little room for
improvement. Modern system no longer have disks or fans which in the past were the main culprits for
faults.

For solutions, application-level checkpoint/restart to a parallel file system is the current standard.
There are many advanced solutions to improve resilience, but apart from system-level and incremen-
tal/differential checkpoint/restart, none of them are used in production. Although local checkpointing
techniques can be used in the short term, and more advanced techniques can be deployed in the future,
a better understanding of the problem is necessary. This includes classification of errors, error rates,
fault root causes, and error propagation. We need that information for current and future systems. Larry
states that Cray Inc. is precluded from releasing failure data. Kurt Ferreira thinks there is data that is
not being looked at. This prompts Barney to state that data [availability] is a red herring. He wants us
to state requirements. Arun says we need to know what the root causes of failures are, whether they
are in the network, ECC, etc. There are also cost trade-offs to consider that span power, resilience,
performance, and deployment. Standard test suites and metrics are also needed to compare proposed
solutions.

Christian’s final slide holds these points for discussion:

• What fault types and frequencies should be expected?

• Can evolutionary fault tolerance approaches provide resilience, or are more revolutionary con-
cepts needed?

• Which layer (hardware, OS, runtime, and/or application) is responsible for assuring resilience?

• What are the performance, resilience, power, and deployment cost trade-offs at exascale?

29

• Do we need standards for HPC resilience terms, metrics, methods, and APIs?

• Does the local OS need to be resilient (in addition to the global OS)?

Discussion

The discussion starts while Christian is still presenting. Ron continues by asking what Cray Inc. has
done to improve reliability. Reliability was not part of the constraints when Red Storm was designed and
delivered. Ron thinks it is possible to learn from these lessons for a next system, rather than gathering
data from bad decisions. He mentions cheap motherboards as an example.

“Data is a red herring. What data do you need?” (Barney Maccabe)

Ron suggests to do the models first, in order to drive data. Thomas Schulthess turns the discussion
to applications. He says that stochastic sampling applications have lived on flaky nodes for years, and
that the OS and the communication layer can deal with flaky nodes, but MPI cannot. Barney contests
that Monte Carlo may produce bad results if the failures are not random. Thomas thinks he can deal
with that. He says it is necessary today because the machines are shared and we cannot be sure whether
the state is truly random or not. The pseudo random number generators are always the worst problem.
We cannot prove that they are “random enough.” Barney remains unconvinced that Thomas’ solution is
enough, even if MPI was fixed.

The discussion turns back to fault tolerance in general with Christian stating that we need to talk
about resilience more than performance. Larry agrees and adds power to the list of things to be consid-
ered. Christian makes the point by saying that wrong results of failed runs have no performance. Kurt
states that we need standards; the current terminology in use is mind numbing.

Christian agrees that standards and MPI-level fault recovery are good, but warns that if recovery
takes too long, it is useless. How should we measure quality of a fault resilience method? He wonders
whether the local OS even needs to be resilient because the global OS already has to tolerate node
failures. Barney wonders whether we even need bit-level correctness. Larry thinks it depends on the
failure rate.

Kurt states that failures are not random and takes that as an indication that a large number of faults
occur in the OS. Larry sees no reason to distinguish OS faults from node failures. Ron warns that things
cannot just fail left and right; recovery cost matters. Larry adds that energy to solution is important too.

Ron clarifies that the MPI standard says nothing about processes and that is why it is difficult to add
fault tolerance to MPI. Larry asks whether the MPI Forum will specify requirements for HPC. That may
not work on clusters without a supervising system. Ron guesses that a runtime standard would help.

Summary

It seems there is a wide spectrum of ideas about the level at which fault resilience will be most effectively
addressed, how to do it, and how much of it will actually be necessary. There seems to be consensus
that the community needs to agree on metrics and methods to evaluate the reliability and performance
under stress of whole systems. Depending on the actual impact of failures and the different ways of
dealing with them, a range of options may provide the optimal solution for different types of systems
and applications.

Even if the faults in future systems will not be as severe as some researchers currently anticipate,
efforts to make fault resilience more efficient are not wasted. Writing fewer and smaller checkpoint
files, for example, clearly lowers the administrative burden of a system and makes more compute cycles
and data bandwidth available for applications. Taking a 10% performance hit due to faults may be
acceptable, but being able to lower that to 5% or 1% still constitutes million Dollar savings.

30

3.10 Next steps

Leads

Session lead: Jeffrey Nichols, Oak Ridge National Laboratory.
Wingmate: Thomas Sterling, Indiana University.

Description

We are on the road to exascale and have a slightly better idea of what these systems will
look like than we did five years ago. Is ongoing research on track to make these systems
scalable, less power hungry, usable for the intended application domains, and more resilient
to faults? Where do we stand and are any course corrections necessary? How should we
address the remaining challenges?

Presentation

The final session of the symposium is lead by Jeff who wants to make sure we are not missing anything.
He asks whether we have a common vision and common goals, whether we are leveraging our invest-
ments and collaborations, and reminds us that educating the next generation is important. He also tells
us that the nature of research has changed. A millennium ago it was experimental: natural phenomena
were described and quantified using experiments. Only 500 years ago did we begin to formally describe
our theories and express them using mathematical notations. In the last 50 years, computers helped us
simulate complex phenomena, and today data itself has become a phenomena to be explored. It will take
exascale systems to manipulate, process, and analyze the deluge of data. Without those kinds of instru-
ments, we will not be able to understand the data puring in. Data-intensive science and its challenges
have been studied in [1].

Thomas Schulthess interjects that data is not a fourth paradigm of science [16], it underlies the three
other paradigms.

Future compute systems must support all four scientific discovery paradigms: experiment, theory,
simulation, and data. Some scientific instruments today, such as the spallation neutron source at Oak
Ridge National Laboratory have already generated a petabyte of data. Although a system like Titan has
700 TB of memory, processing all that data is difficult because it is distributed among 20,000 nodes. But
Jeff warns that it is not enough to just prepare for (big) data storage and transport. There also has to be
enough compute power available to process it. He then lists several examples of scientific applications
that generate huge amounts of data but also need the corresponding computational power to carry out
their simulations.

“Data is not a fourth paradigm; it underlies the other three.” (Thomas Schulthess)

Electrical power is also a problem. In November 2011, running at 2.3 petaflops, Jaguar, the precursor
to Titan, used 7.0 MW and that does not include cooling. That is equivalent to 7,000 homes in a small
city. Adding more traditional CPUs to reach 20 petaflops would have required 60 MW; enough for
60,000 homes. Instead, Titan employs GPU accelerators which allow for the ten-fold increase in peak
performance by using only 8.2 MW.

To initiate the discussion, Jeff shows a slide refining his questions at the beginning of his talk. He
asks: Is it feasible to achieve an exa-op/s by 20xx or 2020, using no more than 20 MW? Another GPU
jump like the one observed upgrading Jaguar to Titan is not in sight. That means we will not be able
to afford to power and cool an exascale system. Also, the system itself will be too expensive. His back

31

of the envelope calculation shows that 200 - 400 cabinets will be needed, at a cost of $1M each. That
means an exascale system will cost $400M, which is too much.

Jeff asks again whether we have common goals in hardware, software, co-design, applications, and
system acquisitions? Does our time line and funding profile match up? Are we leveraging funding in
the US by DOE, DOD, NSF, and industry, and internationally? He thinks we need another $200M of
R&D funding each year for industry and the laboratories. And, we also need another $200M funding
for applications.

Discussion

On the question whether we are leveraging our funding, Jeff uses IESP [13] as an example. He says a
company like Cray Inc. will not let a laboratory or a university develop the next OS kernel because it is
on the critical path. That means we have to leverage things that are going to happen anyway.

Education and the skill set of the next generation of students comes up several times during this
session. Jeff says that the skill set of the people in this room would be very difficult to replace. This year
Oak Ridge National Laboratory lost more people than they hired. This is the first time in over ten years.

Thomas Sterling reminds us that IBM was founded because of a big data problem [14]. It took nine
years to complete a census that occurs every ten years. Automation was needed to deal with the growth
of data. Thomas then went on saying that computers use data, but humans use knowledge. We need to
convert data into knowledge. Visualization is an intermediate form, but computers do not understand
visuals.

Thomas Sterling also informs us that the Chinese have three exascale programs, and they are merging
all three into a single Instruction Set Architecture (ISA). If others follow that example, and that choice
of ISA is wrong, we will be set back a decade or two.

This brings us back to the need for a solid HPC education program. Thomas Schulthess stresses
again that data underlies all of science. It is not enough to just analyze data. Barney agrees. He says
that the periodic table was not useful until we understood it. Jeff contends that there are multiple ways
of looking at data science. It is not about data management, it is about information.

Thomas Schulthess says data alone is useless. We need knowledge. In order to get knowledge, we
need mathematical models to extract knowledge from the data. Data alone is not it; we need to have a
theory for data. Jeff thinks we can start looking at the data before we have a theory for it. Barney says
we need to be able to make predictions.

Summary

It is clear that we have to deal with the data deluge and need to build affordable systems that can
manage all that data. However, that alone is not enough. We have to find ways to create knowledge
and understanding from the information contained in the data. In order to do that we need the education
system to produce researchers who can understand the systems needed for this task but also understand
the science needed to turn that data into knowledge.

4 Wrap-up

At the very end of the symposium we had a brief discussion about the symposium itself and whether it
should be extended into a series.

One lesson learned was to start planning and send out invitations much earlier. The lead time for an
international event like that was too short. Many people who would have made valuable additions were
not able to attend on such short notice.

32

The discussion format for the sessions was a success and was appreciated by the attendees. It
allowed for genuine discussions to ensue, and participants were much more likely to pay attention to the
speakers and discussions, rather than getting absorbed in their laptops.

Sudhakar suggested that, maybe, longer sessions would allow for more in-depth coverage of a given
topic. Both Hermann Härtig and Sudhakar Yalamanchili offered to host a second symposium. Several
participants expressed an interest in holding it in Europe again.

33

Glossary

ACES Alliance for Computing at Extreme Scale, a joint partnership between Sandia National Labora-
tories and Los Alamos National Laboratory for the computing needs of the NNSA. 25

API Application Programming interface. The functions, semantic agreements, and conventions pro-
grammers use to access a library or system. 3, 8, 10–12, 14, 17, 29

ASC Advanced Simulation and Computing, a campaign by the NNSA to shift emphasis from test-
based confidence to (computer) simulation-based confidence of nuclear weapons assessment and
certification requirements. 16, 25

BSP Bulk synchronous parallel [37]. 15–17

CE Computer engineering. 26

co-design A development process where scientific problem requirements influence architecture, design,
and technology of future systems. 3, 4, 11, 14, 15, 21–24, 31

COTS Commercial Off The Shelf. Production components that are readily available, as opposed to
custom-made parts found in some supercomputers. 28

CS Computer Science. 17, 26

CSCS Swiss National Supercomputing Center. 6, 26

CUDA A parallel computing platform and programming model invented by NVIDIA for its graphics
processing units (GPUs). 11, 27, 28

DOD Department of Defense. 31

DOE Department of Energy. 5, 13, 22–24, 28, 31

ECC Error Correcting Codes commonly used in memory devices to correct hardware faults. 29

exa Prefix for 1018; e.g., a exaflops. 24, 27, 28, 31

flops Floating-point operation per second. 18, 23, 24, 27, 28, 31

GPU Graphics Processing Unit, used as compute accelerators in HPC systems. 12, 19, 27, 31

HPC High Performance Computing. 3, 10, 13–16, 19, 22–25, 27, 29, 30, 32

IAA Institute for advanced architectures and algorithms, a partnership between SNL and ORNL to
address the architectural challenges in hardware and software of future systems. 14

IESP International Exascale Software Project, a consortium to address software challenges on the way
to exascale. 5, 32

INRIA Institut National de Recherche en Informatique et en Automatique, a French national research
institution. 6

34

IP Intellectual Property. 15, 21, 22

ISA Instruction Set Architecture. 32

ISC International Supercomputing Conference, held each Summer in Germany; every other Top500
list is announced here. 19

LANL Los Alamos National Laboratory, in New Mexico, USA. 23

LBNL Lawrence Berkeley National Laboratory (Berkeley Lab). 5, 6, 22

Linpack A benchmark performing numerical linear algebra; used to rank the computers on the Top500
list. 12, 24

MD Molecular Dynamics, a computer simulation of the physical movements of atoms and molecules.
22

MIC Intel’s Many Integrated Core architecture, pronounced Mike. 13, 19

MPI Message Passing Interface, a standard API to transmit data in complex manners within a system.
10–12, 14, 16, 18, 24, 27, 28, 30

MPP Massively Parallel Processor. 17, 19

MTBF Mean Time Between Failures. 29

MTTF Mean Time To (next) Failure. 29

MW Mega Watt = 106 Watts. 14, 31

NDA Non-Disclosure Agreement. 23

NERSC National Energy Research Scientific Computing center. 5, 6, 22, 23

NIC Network Interconnect Controller. 24

NNSA National Nuclear Security Administration, an agency of the US DOE. 33

NSF National Science Foundation. 31

NVRAM Non-Volatile Random Access Memory. 29

OpenACC A programming standard for parallel computing on heterogeneous CPU/GPU systems. 11

OpenMP Open Multi-Processing, an API that supports multi-platform shared memory multiprocessing
programming. 14

OS Operating System. 3, 10, 13–15, 17, 18, 20, 21, 26, 28–30, 32

PC Personal Computer. 17, 19

peta Prefix for 1015; e.g., a petabyte. 18, 24, 25, 27, 28, 31

POSIX Portable Operating System Interface, a family of standards for OS, library, and shell compati-
bility among (mostly) Unix systems. 11

35

RFI Request for Information, often precedes a Request for Proposal (RFP). 24

SNL Sandia National Laboratories. 6

strong scaling The ability to run a fixed problem size on ever larger parallel systems. 18, 23, 25

TB Tera byte = 1012 bytes. 31

tera Prefix for 1012; e.g., a teraflops. 27

weak scaling The ability to grow a problem size to make use of larger parallel systems. 18, 25

36

References

[1] J. Ahrens, B. Hendrickson, G. Long, S. Miller, R. Ross, and D. Williams. Data-intensive science in
the US DOE: Case studies and future challenges. Computing in Science Engineering, 13(6):14–24,
2011.

[2] Saman Amarasinghe and et al. Exascale software study: Software challenges in extreme scale
systems. http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/
ECSS%20report%20101909.pdf, September 2009.

[3] Amnon Barak and Oren La’adan. The MOSIX multicomputer operating system for high perfor-
mance cluster computing. Future Gener. Comput. Syst., 13(4-5):361–372, 1998.

[4] Amnon Barak and Amnon Shiloh. MOSIX cluster operating system. http://www.mosix.org/,
December 2012.

[5] Richard F. Barrett, Michael A. Heroux, Paul T. Lin, Courtenay T. Vaughan, and Alan B. Williams.
Poster: mini-applications: vehicles for co-design. In Proceedings of the 2011 companion on High
Performance Computing Networking, Storage and Analysis Companion, SC ’11 Companion, New
York, NY, USA, 2011. ACM.

[6] Keren Bergman, Shekhar Borkar, Dan Campbell, William Carlson, William Dally, Monty Den-
neau, Paul Franzon, William Harrod, Kerry Hill, Jon Hiller, Sherman Karp, Stephen Keckler,
Dean Klein, Peter Kogge, Robert Lucas, Mark Richards, Al Scarpelli, Steven Scott, Allan Snavely,
Thomas Sterling, R. Stanley Williams, and Katherine Yelick. Exascale computing study: Tech-
nology challenges in achieving exascale systems. http://www.science.energy.gov/ascr/
Research/CS/DARPAexascale-hardware(2008).pdf, September 2008.

[7] Patrick Bohrer, James Peterson, Mootaz Elnozahy, Ram Rajamony, Ahmed Gheith, Ron Rockhold,
Charles Lefurgy, Hazim Shafi, Tarun Nakra, Rick Simpson, Evan Speight, Kartik Sudeep, Eric
Van Hensbergen, and Lixin Zhang. Mambo: a full system simulator for the PowerPC architecture.
SIGMETRICS Perform. Eval. Rev., 31(4):8–12, March 2004.

[8] Raphaël Bolze, Franck Cappello, Eddy Caron, Michel Daydé, Frédéric Desprez, Emmanuel Jean-
not, Yvon Jégou, Stephane Lanteri, Julien Leduc, Noredine Melab, Guillaume Mornet, Raymond
Namyst, Pascale Primet, Benjamin Quetier, Olivier Richard, El-Ghazali Talbi, and Iréa Touche.
Grid’5000: A large scale and highly reconfigurable experimental grid testbed. Int. J. High Per-
form. Comput. Appl., 20(4):481–494, November 2006.

[9] Ron Brightwell, Arthur B. Maccabe, and Rolf Riesen. Design, implementation, and performance
of MPI on Portals 3.0. The International Journal of High Performance Computing Applications,
17(1):7–20, 2003.

[10] Eugene Brooks. The attack of the killer micros. Teraflop Computing Panel, Supercomputing,
1989.

[11] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kielstra, Kemal
Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: an object-oriented approach to non-
uniform cluster computing. SIGPLAN Not., 40(10):519–538, October 2005.

[12] Cray, CAPS, Nvidia, and PGI. OpenACC: Directives for accelerators. http://www.
openacc-standard.org/, December 2012.

37

http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/ECSS%20report%20101909.pdf
http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/ECSS%20report%20101909.pdf
http://www.mosix.org/
http://www.science.energy.gov/ascr/Research/CS/DARPA exascale - hardware (2008).pdf
http://www.science.energy.gov/ascr/Research/CS/DARPA exascale - hardware (2008).pdf
http://www.openacc-standard.org/
http://www.openacc-standard.org/

[13] Jack Dongarra, Pete Beckman, Terry Moore, Patrick Aerts, Giovanni Aloisio, Jean-Claude An-
dre, David Barkai, Jean-Yves Berthou, Taisuke Boku, Bertrand Braunschweig, Franck Cappello,
Barbara Chapman, Xuebin Chi, Alok Choudhary, Sudip Dosanjh, Thom Dunning, Sandro Fiore,
Al Geist, Bill Gropp, Robert Harrison, Mark Hereld, Michael Heroux, Adolfy Hoisie, Koh Hotta,
Zhong Jin, Yutaka Ishikawa, Fred Johnson, Sanjay Kale, Richard Kenway, David Keyes, Bill
Kramer, Jesus Labarta, Alain Lichnewsky, Thomas Lippert, Bob Lucas, Barney Maccabe, Satoshi
Matsuoka, Paul Messina, Peter Michielse, Bernd Mohr, Matthias S. Mueller, Wolfgang E. Nagel,
Hiroshi Nakashima, Michael E Papka, Dan Reed, Mitsuhisa Sato, Ed Seidel, John Shalf, David
Skinner, Marc Snir, Thomas Sterling, Rick Stevens, Fred Streitz, Bob Sugar, Shinji Sumimoto,
William Tang, John Taylor, Rajeev Thakur, Anne Trefethen, Mateo Valero, Aad Van Der Steen,
Jeffrey Vetter, Peg Williams, Robert Wisniewski, and Kathy Yelick. The international exascale
software project roadmap. Int. J. High Perform. Comput. Appl., 25(1):3–60, February 2011.

[14] George A. Fierheller. Do Not Fold, Spindle Or Mutilate: The ‘Hole’ Story of Punched Cards.
Stewart Publishing & Printing, 2006.

[15] HBP. The human brain project. http://www.humanbrainproject.eu, February 2013.

[16] Tony Hey, Stewart Tansley, and Kristin Tolle, editors. The Fourth Paradigm: Data-Intesive Scien-
tific Discovery. Microsoft Research, 2009.

[17] INRIA. Grid 5000. http://www.grid5000.fr, December 2012.

[18] Ken Kennedy, Charles Koelbel, and Hans Zima. The rise and fall of High Performance Fortran:
an historical object lesson. In Proceedings of the third ACM SIGPLAN conference on History of
programming languages, HOPL III, pages 7–1 – 7–22, New York, NY, USA, 2007. ACM.

[19] Sandia National Laboratories. eXascale PRogramming Environment and System Software
(XPRESS). http://xstack.sandia.gov/xpress/index.html, December 2012.

[20] Sandia National Laboratories. Institute for advanced architectures and algorithms (IAA). http:
//iaa.sandia.gov, December 2012.

[21] Oak Ridge National Laboratory. Institute for advanced architectures and algorithms (IAA). http:
//www.csm.ornl.gov/iaa/, December 2012.

[22] Edgar A. León, Rolf Riesen, Kurt B. Ferreira, and Arthur B. Maccabe. Cache injection for paral-
lel applications. In Proceedings of the 20th international symposium on High Performance Dis-
tributed Computing (HPDC), HPDC ’11, pages 15–26, New York, NY, USA, 2011. ACM.

[23] Edgar A. León, Rolf Riesen, Arthur B. Maccabe, and Patrick G. Bridges. Instruction-level simula-
tion of a cluster at scale. In SC’09: High Performance Networking and Computing: Proceedings
of the 2009 ACM/IEEE SC09 Conference: November 14–20, 2009, Portland, Oregon, USA. ACM
Press and IEEE Computer Society Press, November 2009.

[24] Paul Messina, Thomas Sterling, Jarrett S. Cohen, and Paul H. Smith. Leading HPC figures consider
petaflops computing. http://www.crpc.rice.edu/newsArchive/1463.html, December 2012.

[25] Hans Meuer, Erich Strohmaier, Jack Dongarra, and Horst Simon. The top500 list: Twenty years
of insight into HPC performance. http://www.top500.org, December 2012.

[26] NERSC. Draft NERSC-8 / Trinity benchmarks. http://www.nersc.gov/systems/
trinity-nersc-8-rfp/draft-nersc-8-trinity-benchmarks/, February 2013.

38

http://www.humanbrainproject.eu
http://www.grid5000.fr
http://xstack.sandia.gov/xpress/index.html
http://iaa.sandia.gov
http://iaa.sandia.gov
http://www.csm.ornl.gov/iaa/
http://www.csm.ornl.gov/iaa/
http://www.crpc.rice.edu/newsArchive/1463.html
http://www.top500.org
http://www.nersc.gov/systems/trinity-nersc-8-rfp/draft-nersc-8-trinity-benchmarks/
http://www.nersc.gov/systems/trinity-nersc-8-rfp/draft-nersc-8-trinity-benchmarks/

[27] Nvidia. CUDA parallel computing platform. http://www.nvidia.com/object/cuda_home_
new.html, December 2012.

[28] United States of America Department of Energy. X-stack software. http://www.xstack.org/,
December 2012.

[29] United States of America Department of Energy. Scientific discovery through advanced computing
(SciDAC): Co-design. http://science.energy.gov/ascr/research/scidac/co-design/,
February 2013.

[30] United States of America Department of Energy. X-stack software. http://www.xstack.org/,
February 2013.

[31] Federal Office of Meteorology and Climatology MeteoSwiss. The numerical weather predic-
tion model COSMO. http://www.meteosuisse.admin.ch/web/en/weather/models/cosmo.
html, February 2013.

[32] Steven J. Plimpton and Karen D. Devine. Mapreduce in MPI for large-scale graph algorithms.
Parallel Comput., 37(9):610–632, September 2011.

[33] John Shalf, Dan Quinlan, and Curtis Janssen. Rethinking hardware-software codesign for exascale
systems. Computer, 44(11):22–30, November 2011.

[34] Horst Simon. Exascale chat. http://www.isc-events.com/isc12_ap/eventdetails.php?
t=event&o=265&a=select&ra=speakerdetails, June 2012.

[35] Thomas Sterling, Paul Messina, and Paul H. Smith. Enabling technologies for petaflops comput-
ing. MIT Press, Cambridge, MA, USA, 1995.

[36] Tiankai Tu, Charles A. Rendleman, David W. Borhani, Ron O. Dror, Justin Gullingsrud, Morten Ø.
Jensen, John L. Klepeis, Paul Maragakis, Patrick Miller, Kate A. Stafford, and David E. Shaw. A
scalable parallel framework for analyzing terascale molecular dynamics simulation trajectories. In
Proceedings of the 2008 ACM/IEEE conference on Supercomputing, SC ’08. IEEE Press, 2008.

[37] Leslie G. Valiant. A bridging model for parallel computation. Commun. ACM, 33(8):103–111,
August 1990.

[38] Wikipedia. Intel MIC. http://en.wikipedia.org/wiki/Intel_MIC, December 2012.

39

http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://www.xstack.org/
http://science.energy.gov/ascr/research/scidac/co-design/
http://www.xstack.org/
http://www.meteosuisse.admin.ch/web/en/weather/models/cosmo.html
http://www.meteosuisse.admin.ch/web/en/weather/models/cosmo.html
http://www.isc-events.com/isc12_ap/eventdetails.php?t=event&o=265&a=select&ra=speakerdetails
http://www.isc-events.com/isc12_ap/eventdetails.php?t=event&o=265&a=select&ra=speakerdetails
http://en.wikipedia.org/wiki/Intel_MIC

Index
accelerators, 4, 12, 14, 17, 19, 20, 27, 31
accelerators and OS, see OS, accelerators
API standardization, 3, 10
applications, 27
areas not covered, 3
arithmetic intensity of computation, 27

big data, 24, 31, 32
BSP, see Bulk Synchronous Programming
Bulk Synchronous Programming, 15–17

co-design, 3, 4, 11, 14, 15, 21, 22, 22–24, 32
communication avoidance, 16
compromises, 5, 7, 24
COSMO, 27
CUDA, 11, 28

data center, 3, 7, 24–26
disruptive change, 4, 19, 20

education, 3, 4, 17, 26, 27, 32
embedded systems, 14, 22

FastForward, 22, 24
fault

handling, 4, 10
in the OS, see OS, fault tolerance
MPI, 30
number of, 4, 30
protection, 16
recovery, 30
reporting, 10
Ron’s, 12
root cause, 29
severity, 4, 30
tolerance, 4, 5, 10, 11, 16–18, 20, 21, 28, 29–

31
types, 17, 28, 29

format, see symposium, format
Fortran, 11, 18

GPU, see accelerators

hardware specific, see machine specific
HPF, 12

IESP, 5, 32

institution
AMD, 15, 20
Charles University, 6
Cray Inc., 1, 5, 6, 10, 15, 24, 26, 28–30, 32
Dublin City University (DCU), 6, 15
Georgia Institute of Technology, 6, 20
IBM Research - Ireland, 1, 5, 6, 24
Indiana University - CREST, 6, 13, 31
INRIA, 6
Intel, 6, 13, 15, 20
LBNL/NERSC, 1, 5, 6, 22
Nvidia, 11, 15, 20, 24
Oak Ridge National Laboratory (ORNL), 6,

18, 27–29, 31
Queen’s University of Belfast, 6
Sandia National Laboratories (SNL), 5, 6, 15,

20, 22, 23, 26
Swiss National Supercomputing Center (CSCS),

6, 27
TU Dresden, 6, 13
University College Dublin (USC), 6
University of Colorado at Boulder, 6, 27
University of Westminster, 6, 18

IP issues, 4, 15, 21, 22

Linpack, 12, 24
longer sessions, see symposium, session length

machine specific, 10–12, 15
Many Integrated Core (MIC), 13, 20
MapReduce, 25
memory hierarchy, 4, 18, 20, 25, 26
message passing, 11, 16, 28
MIC, see Many Integrated Core (MIC)
mini-apps, 4, 23, 24
MPI, 10–12, 14, 16, 19, 24, 28

fault tolerance, see fault, MPI
library, 10
standardization, 11

next steps, 31

OpenACC, 11
OpenMP, 14
OS, 10, 13–15, 17, 18, 21, 29, 30, 32

accelerators, 14

40

API, 10, 13
development, 32
fault tolerance, 29, 30
full-featured, 17
global, fault tolerance, 30
local, fault tolerance, 30
power control, 14
requirements, 15, 17
runtime, 13, 14
simulation, 21
vulnerability, 17

participants
active role, 3, 33
list of, 6
name appearance, 10
origin, 3
photo, 5

participants by name
Amini, Lisa, 7
Antoniu, Gabriel, 6
Brightwell, Ron, 6, 11, 12, 14–17, 29, 30
Dosanjh, Sudip, 5, 6, 12, 15–17, 22–24
Downes, Turlough, 6, 15–17, 20
Engelmann, Christian, 6, 14, 22, 28–30
Ferreira, Kurt, 6, 21, 29, 30
Getov, Vladimir, 6, 12, 14, 16, 18, 19, 21, 24,

26, 28
Härtig, Hermann, 6, 13, 14, 17, 26, 33
Hammond, Simon, 6, 11, 16, 17, 19–24
Kaplan, Larry, 5, 6, 10–12, 14–16, 24, 26, 28–

30
Katrinis, Kostas, 6, 22
Kucera, Ludek, 6
Lastovetsky, Alexey, 6, 11, 12, 14, 16, 19, 23,

24, 26
Lemarinier, Pierre, 6
Maccabe, Barney, 6, 11, 12, 14, 16–21, 26, 29,

30, 32
Nichols, Jeffrey, 6, 11, 14–17, 19–21, 23, 31,

32
Nicolae, Bogdan, 6
Nikolopoulos, Dimitrios, 6, 10–12, 14, 21
Quinn, Brian, 6
Rafique, Mustafa, 6
Riesen, Rolf, 5, 6, 24, 26
Rodrigues, Arun, 6, 16, 19–22, 29
Roweth, Duncan, 6, 11, 12, 24–26

Schulthess, Thomas, 6, 10, 26–28, 30–32
Sterling, Thomas, 6, 10–15, 17, 19, 22–25, 27,

31, 32
Thompson, Aidan, 6, 11, 16, 22, 23, 26
Tufo, Henry, 6, 17, 20, 26–28
Yalamanchili, Sudhakar, 6, 11, 14, 16, 19–22,

26, 33
performance, 4, 7, 11, 13, 15–17, 20, 21, 24, 27–31
platform specific, see machine specific
portability, 4, 10, 12

performance, 12, 13, 17
Portals, 11
POSIX, 11
power

awareness, 16
conservation, 4, 16, 31
consumption, 4, 14–16, 29
management, 4, 10–14, 16–18, 20, 21, 29–31
management API, 12, 14
simulation, 21, 22

programmability, 3, 12, 13, 15, 18
programmer’s burden, see programmability
proprietary information, 21, 22

real-time systems, see embedded systems
recursion, see recursion
research, 3–5, 11, 18, 18–21, 25, 28, 31
resilience, see fault, tolerance
runtime system, 3, 5, 10–12, 13, 13–15, 17, 18,

21–23, 26, 29, 30
runtime system and OS, see OS, runtime

scalability, 5, 7, 11, 13, 15, 27
scaling, 17, 19, 23, 28, 29

strong, 19, 23, 25
weak, 19, 25

scope, 24
session

lead, 3, 7, 10
wingmate, 3, 7, 10

session format, see symposium, format
session lead role, 3, 7
session length, see symposium, session length
simulation, 4, 20, 21, 22, 31

accuracy, 4, 21, 22
simulation and OS, see OS, simulation
spallation neutron source, 31
standardization process, 3

41

symposium
format, 3, 7
goals, 5
organization, 3
participants, see participants
session length, 7, 33

system specific, see machine specific

vendor specific, see machine specific

wingmate
role, 3, 7

42

	1 Executive summary
	2 Introduction
	2.1 Goals
	2.2 Session format
	2.3 Final program

	3 Sessions
	3.1 Common community APIs
	3.2 HPC runtime opportunities and challenges
	3.3 The programmer's burden
	3.4 Research challenges
	3.5 Exascale simulations
	3.6 Co-design
	3.7 Expanding the scope of traditional HPC systems
	3.8 Application perspective
	3.9 Fault tolerance
	3.10 Next steps

	4 Wrap-up
	Glossary
	References
	Index

