
RC25408 (WAT1210-090)  October 31, 2012
Mathematics

IBM Research Report

A Framework for the Analysis of Probabilistic
Demand Response Schemes

Pavithra Harsha, Mayank Sharma, Ramesh Natarajan, Soumyadip Ghosh
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 208

Yorktown Heights, NY 10598
USA

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It  has been issued as a Research
Report for early dissemination of its contents.  In view of the transfer of copyright to the outside publisher, its distribution  outside of IBM prior to publication should be limited to peer communications and specific
requests.  After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties).  Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598  USA  (email:  reports@us.ibm.com).  Some reports are available on the internet at  http://domino.watson.ibm.com/library/CyberDig.nsf/home .



1

A Framework for the Analysis of Probabilistic
Demand Response Schemes

Pavithra Harsha, Mayank Sharma, Ramesh Natarajan, Soumyadip Ghosh

Abstract—We describe the class of probabilistic demand
response (PDR) schemes, which are particularly suited for
dynamic load management in the residential sector. Our
main contribution is a new methodology for implementing
and analyzing these schemes based on an operational
objective function that balances the total cost of meeting
demand, which includes the costs of supply generation,
and spinning reserves, with the total revenue from the
met demand and the gain from storage/deferment. We
derive structural results for the design of PDR schemes
in terms of sufficient conditions that yield a well-posed
joint optimization problem for the two decision variables:
the planned supply generation level and the real-time PDR
signal magnitude. These results are used to evaluate the
suitability of various proposed PDR schemes in single-
period and multiple-period contexts. Finally, using simula-
tions, we illustrate the application and effectiveness of the
proposed methodology for a collection of thermostatically-
controlled residential loads.

Index Terms—Smart Grid, Demand Response, Load
Curtailment, Spinning Reserve, Newsvendor Model

I. INTRODUCTION

A. Background

IN the traditional power grid, the supply side con-
sists of multiple sources of generation with varying

response time-scales, and the demand side is character-
ized by passive electric loads. The program operator
is responsible for matching supply and demand, and
for ensuring the reliable operation of the power grid.
These objectives are achieved primarily by controlling
the supply side: first, based on the forecasted demand, a
day-ahead plan is derived for the generators with slow
response times; then, any real-time mismatch is balanced
using the reserve generators with fast response times.
Demand side controls are rarely used, although load
shedding may be used as a last resort.

In the emerging smart grid, Demand Response (DR)
schemes, which involve active load management, are
widely recognized to have equivalent power-balancing
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outcomes, in principle, to the supply-side controls [1].
Furthermore, as [2] note, DR schemes are highly flexible,
and their response times are comparable to that of the
reserve generators on the supply side. Therefore, the use
of relatively-inexpensive DR schemes to offset some of
the reserve generation capacity can be of considerable
economic value for the grid operation. Additionally, DR
schemes can also be used by the program operator
to achieve other operational objectives, such as peak
load shaving, or to provide ancillary services for power
balancing and regulation.

A schematic for a prototypical DR scheme is shown in
Fig. 1 (although for the specific class of PDR schemes
described further in Section I-B below). Here, for the
time interval of interest, a signal z is sent to each
consumer, and the k’th consumer responds by modifying
their base load Lk in the absence of this signal, to the
responsive load value Lk(z), which are then aggregated
to provide the demand response D(z). The signal z
is always deterministic, whereas the base load Lk and
responsive load Lk(z) are invariably stochastic. Various
DR schemes can be identified based on the realized form
of Lk(z), and the methodology used by the program
operator to determine the signal z.
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Fig. 1. Schematic of a probabilistic demand response (PDR) scheme.

The two main classes of DR schemes that have
been extensively studied in the literature are dynamic
pricing and direct control. In dynamic pricing schemes



(e.g., [3], [4], [5] and the references therein), the signal
z reflects the real-time cost of electricity generation,
and can be interpreted as the mechanism by which the
program operator passes on this cost to the consumer.
The corresponding responsive load generally takes a
form Lk(z) = Lk − ζz + ε, where ζ reflects the price
sensitivity for electricity consumption, and ε is a noise
term that captures the idiosyncratic demand effects [6].
In direct control schemes, the signal z can be used to
directly modify the on-off states [7], [8], or to reset
the operating set-points [9], [10], [11], of the individual
consumer loads according to certain preset, deterministic
rules. The corresponding responsive load often takes
the form Lk(z) = zLk, which reflects a proportional
modification of the base load.

The benefit of these two classes of DR schemes for
the industrial or commercial sectors is readily apparent,
since only a few large loads are typically involved in
the planning, and their corresponding responsive load
characteristics can be easily ascertained. However, in
the smart grid of the future, the program operator will
have to contend with significantly greater short-term
variability and uncertainty on the supply side, due to
the increasing adoption and integration of intermittent
sources of renewable energy in the grid operations. This
increased supply-side variability will invariably require
DR schemes to be extended and implemented for the
residential sector as well. Indeed, this is a primary
impetus for the recent interest in providing the smart
grid infrastructure for residential DR schemes.

Nevertheless, the extension of dynamic pricing or
direct control DR schemes to the residential sector raises
many issues, which include, (1) Nature of Load: Unlike
the large industrial loads, the individual residential loads
are numerous, often operate only at a discrete set of
power usage levels, and comprise of legacy equipment
that are expensive to retrofit with DR controls. The use
of direct control schemes in this situation is compu-
tationally burdensome, since the program operator has
to decide which of the numerous devices to turn on
and off, or which set points to modify, in order to
achieve the specified operational objectives. (2) Estima-
tion of Model Parameters: The use of dynamic pricing
schemes requires the estimation of key parameters in the
responsive load Lk(z) beyond the base load Lk, such
as the sensitivity ζ and the model parameters for the
noise (ε); these parameters are influenced by changes in
the comfort-level settings and residential usage profiles,
and vary considerably across individual households. (3)
Consumer Satisfaction: Any DR scheme must meet the
service-level expectations of residential consumers, who

may discern that certain schemes frequently “tamper”
with their base load in an undesirable way, leading to
program opt-outs. For direct control schemes, the already
onerous computational burden of the program operator
is further increased by having to ensure that the service-
level expectations are maintained over time. (4) Fairness:
Consumers also need to perceive that the DR schemes
are fair relative to their neighbors over time [1], [12]. For
instance, dynamic pricing schemes that expose the real-
time prices to all consumersregardless of the desirable
responsiveness or their economic capability raises ques-
tions of overall fairness in the program implementation.
Similarly, direct control schemes must ensure that no
individual household is unfairly penalized with frequent
drops in load with respect to the norm in its local
neighborhood.

B. Overview and Contributions

This paper formally introduces the class of Prob-
abilistic Demand Response (PDR) schemes, which are
perhaps best described using a specific example from the
Olympic Peninsula GridWise Project [13]. The project
included field demonstrations of several smart grid tech-
nologies in a residential electric-feeder network. The
specific example concerned a collection of 50 residential
water heaters, whose individual base loads Lk were
subject to their usual set-point based operation, and
were hence uncertain quantities. In each time period,
the control modules for these water heaters received a
signal z from the program operator. Based on this signal
magnitude, and taking into account the user-defined
household comfort settings, a curtailment probability
was then explicitly derived. Further, for each water
heater, based on this curtailment probability, a sample
Bernoulli outcome Ik(z) was obtained using a random
number generator (RNG). This sample outcome was
either Ik(z) = 0 or Ik(z) = 1, and the corresponding
load response of the water heater to the signal z then took
the form Lk(z) = Ik(z)Lk. So, an outcome Ik(z) = 0
led to full curtailment of the k-th load for that time
period.

The key characteristics of such PDR schemes, which
are explicitly illustrated in Fig. 1, can be described as
follows. The program operator communicates a deter-
ministic signal z to all participating loads. The magni-
tude of z is used to set the parameters of a suitably
designed probability distribution, from which, for each
load, a sample outcome is then obtained using a RNG.
This sampled outcome is used to modify the operation
of the corresponding load according to some pre-defined
rule. Note that even though the same signal z is sent
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to each load, and even if for purposes of argument,
the comfort settings and base loads are identical across
the entire collection, the individual responsive loads will
not be identical due to the variability in the randomly
sampled outcomes. Consequently, the base load Lk,
whose magnitude is already uncertain as noted above,
is further modified, based on the magnitude of signal z
to obtain the randomized responsive load Lk(z). Three
specific examples of such PDR schemes are described
in Section II, in order to exemplify the design and
implementation of PDR schemes.

In our view, PDR schemes can overcome the imped-
iments that were described earlier. First, these schemes
are quite simple to implement for a variety of loads,
including discrete or continuous loads (criterion 1).
Second, they do not require any additional estimation
beyond that for the base load (criterion 2), nor do they
impose an extensive computation burden for obtaining
the individual load settings; in fact, the distribution of
the aggregate load response for a PDR scheme can be
obtained directly using statistical methods, which mini-
mizes the two-way communication requirements and is
hence particularly desirable for a DR scheme [14] (e.g.,
the utility does not need to know the sample outcomes
of the RNG for each individual load). Third, in principle,
these schemes are also intrinsically fair (criterion 4)
because, other things being equal, the same signal z
elicits a statistically identical response from all the
participating loads. A caveat here is the requirement for
implementing random sampling over a large and diverse
collection of participating loads; however, state-of-the-
art RNGs that pass statistical independence tests in very
high dimensions can be implemented with moderate
effort [15], so that this fairness objective is achievable
not only in theory but also in practice. Fourth, as shown
below in Section IV, the issues related to the consumer
satisfaction over multiple periods (criterion 3) can be
addressed by including constraints on consumer service
levels over multiple periods.

We note that probabilistic or randomized protocols are
widely used in many key areas of computer network-
ing and communication infrastructure (e.g., for ethernet
multiple access resolution, router queue management,
multicast and routing in unreliable networks, and router
desynchronization), primarily due to their simplicity and
scalability, and due to their ability to redistribute the
load and reduce resource contention by desynchronizing
network activity.

The PDR schemes described here assume that the
load curtailment effected are always accepted by the
customers as long as a certain level of service is main-

tained, and there are sufficient incentives – economic
or otherwise – for program participation. For example,
one driver for increased buy-in is clearly system-wide
reduction in the cost of electricity due to better planning
because of improved grid efficiency and reliability due
to lower use of reserves. The design of participation
incentives or compliance rebates (provided over longer
time horizons) is an interesting problem in itself, but is
not within the scope of this paper.

The main contribution of this article is a framework
for implementing a given PDR scheme i.e., setting the
signal value z. The three examples of the PDR schemes
are analysed using this framework, and are seen to pro-
vide demand-side controls with a distinct flavor. The gen-
eral framework jointly optimizes the planning and real-
time decision variables, enabling the program operator to
match supply and demand in a systemically beneficial
manner i.e., through an operational objective function
that incorporates various cost (planned generation and
spinning reserve costs) and revenue streams (including
the gain from storage/deferment). In addition, we con-
sider using the framework for the special case where the
planning decision variable, the supply generation level, is
fixed to an exogenously specified value. This flexibility
allows the program operator to use the same framework
for the longer time scale planning, as well as for the
shorter time scale control of the electric grid through
demand response.

As [16] have noted, the control mechanisms in
the emerging smart grid must consider risk-based ap-
proaches for ensuring operational reliability over short
time scales. This objective is similar in spirit to the loss-
of-load probability (LOLP) considerations that are used
to plan generation capacity in traditional power grids,
albeit over longer time scales [17]. However, while the
focus in the literature has hitherto been on ensuring gen-
eration adequacy to handle supply intermittency due to
increased capacity from renewables, this paper proposes
that the demand-side uncertainty that is induced in the
PDR schemes can also be assessed within a similar short-
term, risk-based operational framework.

The objective function of the framework is similar
to generalizations of the well-known newsvendor model
described in inventory theory ([18] and the references
therein). Accordingly, our analysis broadly follows this
theory, but we propose modifications and extensions, and
obtain new structural results, for applying this theory
to this smart grid context. In particular, for the PDR
schemes, we derive sufficient conditions that yield a
well-posed joint optimization problem with non-trivial
optimal solutions for the decision variables. These suf-
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ficient conditions impose certain requirements on the
distribution function of the responsive loads in the PDR
scheme, which are then used to evaluate the suitability of
the proposed schemes in the single-period and multiple-
period contexts respectively.

Finally, we present a simulation study for a realistic
scenario consisting of a large population of thermo-
statically controlled loads. Our results demonstrate that
PDR schemes can significantly improve the program
operator’s objective of meeting residential demand, while
minimizing the use of expensive spinning reserves and
the risk of undersupply, without compromising consumer
service expectations. In this particular scenario, we are
able to demonstrate an increase in operational profit
over a typical day of over 57%, through a reduction of
the reserve requirements by 64%, when compared to a
baseline no-DR scenario. This is achieved at very mini-
mal discomfort to the consumers: the average thermostat
readings differ at worst by only 0.290C.

C. Organization

Section II describes three specific examples of PDR
schemes that are analyzed in the paper. Section III de-
scribes our methodology and framework for implement-
ing and evaluating these schemes based on the proposed
operational objective function. Section IV considers the
multi-period generalization of PDR schemes incorpo-
rating user-behavior dependencies across the individual
periods. Section V describes results for a simulated case
study of PDR schemes in a realistic scenario. Section VI
provides the summary and conclusion.

II. PROBABILISTIC DEMAND RESPONSE SCHEMES

Consider the program operator in the schematic
in Fig. 1 who sends out a load management signal
z ∈ Z to a group of N customers every period (in
implementations, this is usually 5 minutes in duration).
The domain Z is a closed and compact set.

The following are three example PDR scheme designs:
P.Br: Bernoulli ON/OFF

Lk(z) = Ik(z)Lk,

where Ik is 0 with probability z and 1 otherwise.
Here, the signal z ∈ [0, 1] and can be mapped to
the probability of curtailment of the scheme. This
scheme was implemented in the Olympic Peninsula
project [13].
P.DU: Discrete Uniform scaling

Lk(z) =
1

q
XkLk,

where Xk is discrete uniform r.v. in {q − z, ..., q},
q is a positive integer, and z ∈ {0, ..., q}. Here, the
signal z can be mapped to a level of the load that
is probabilistically curtailed, with q fixed a priori.
P.CU: Continuous Uniform scaling

Lk(z) = (1− z + zXk)Lk,

where Xk is U(0, 1). Here, the signal z ∈ [0, 1] and
can be mapped to the probabilistically controlled
load fraction, while 1 − z is the guaranteed load
fraction. More generally, we can have Lk(z) =

(
1−

z+g(z)Xk

)
Lk where the r.v. Xk with values in the

range [0, 1] is independent of z, and g(z) : [0, 1]→
[0, 1] is a positive convex function of z such that
g(z) ≤ z (the reason for this special structure is
clarified in Section III below).

In the above schemes, a deterministic signal z induces
a probabilistic outcome via randomization, which in turn
induces a probabilistic load curtailment as the demand
response. The choice of the elements of the scheme,
including the probability distribution that yields Lk(z)
and the mechanism that sets the signal value z given the
program operators objectives and constraints, are part
of the design elements of a demand response scheme
for a load. The example schemes above are practical
schemes that can be used to adapt existing household
devices such as washer/dryers, dishwashers and other
thermostatic load to the smart grid

The aggregate controllable load observed by the pro-
gram operator is given by the r.v.

D(z) =

N∑

k=1

Lk(z). (1)

Note that this aggregate includes two sources of un-
certainty: 1) the uncertainty in individual loads (Lk)
in the absence of any signal, which may have some
dependence across the population due to shared patterns
of appliance usage, and 2) the uncertainty induced by the
signal z by design through the probability distribution of
the random number generator. The RNG is part of the
scheme’s design, and thus designed to be independent
and identically distributed (i.i.d.) across individual loads.

Setting the signal value z requires an in depth un-
derstanding of the properties of D(z). Estimation of
the aggregate load distribution is simplified for large N
if the uncertainty in the individual loads, Lk, are also
i.i.d., in which case D(z) can be well approximated
using the central limit theorem. Observe that for a
practical implementation of a PDR scheme, it suffices
for the program operator to statistically estimate D(z),
as opposed to measure individual Lk(z) for each k.
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This can simplify the process of learning D(z), thereby
reducing the amount of two-way communication needed
by the scheme.

III. DEMAND MANAGEMENT

The implementation and evaluation framework for the
probabilistic schemes is based on the well-known price-
sensitive newsvendor model described in the operations
management literature [19]. This model is adapted to the
smart grid context, and for this setting we obtain some
newer results as described below.

Consider a period in which the program operator pro-
vides its customers with a signal z ∈ Z with aggregate
demand response D(z). For simplicity, and without loss
of generality in the analysis or results, we omit the
portion of load that cannot be controlled, and assume that
D(z) has a form described in Eq. (1). We assume that
the program operator incurs a unit cost c for any planned
generation, and charges customers a unit price p for their
consumption. We also assume a unit cost m to meet any
supply shortfalls, from the ancillary services market, and
a salvage price s from selling any supply excess. The
cost from the ancillary services market is a blended,
possibly pre-negotiated, cost of ancillary services and
the spot market price of electricity. Our view of salvage
is a contracted selling price with a bulk storage farm,
or any other form of return on excess supply including
unused fuel. This is just set to zero if this supply is
just grounded. To avoid trivial solutions, we assume that
p > c > s and m > c. Letting x ∈ R+ denote the
amount of planned generation, the profit-maximization
objective of the program operator can be formulated as
follows:

P : max
x∈R+, z∈Z

π(x, z), (2)

where

π(x, z) = pE[D(z)]− cx−mE
[
(D(z)− x)+

]

+sE
[
(x−D(z))+

]

In this formulation, we allow both x and z to be
decision variables as it incorporates the flexibility of
jointly optimizing for the planned generation and the
demand signal. For example, this joint optimization may
be possible in one-hour ahead electricity market and it
allows the planned generation to match the predicted
signalled-demand. However, depending on the flexibility
(i.e., ramp constraints) of planned generators, x may
also be predetermined and fixed, in which case, it is
not treated as a decision variable in the optimization.
We refer to this latter problem as the signaling problem
that is solved at a finer time scale (e.g., real-time,

say every 5 minutes) and the former problem as the
joint planning and signaling problem that is solved at
a coarser time scale (say every hour). The advantage of
this unified evaluation framework is that it incorporates
the sequential aspect of energy planning and signaling
(first turn on conventional generators and follow it with
reserve generators and demand response in real-time for
balancing).

The use of formulation 2 for the evaluation of de-
mand response has other advantages as well. First, it
incorporates all the different costs and revenue streams
that are faced by a program operator in order to ob-
tain the demand response signal in a way that makes
economic sense, which is crucial for incentivizing the
implementation of demand response schemes. Second,
it incorporates the notion of managing risk due to real-
time uncertainty with signaling. This can be seen by
rewriting the expected profit by substituting (x − D)+

with x−D + (D − x)+, to obtain:

π(x, z) = (p− s)E[D(z)]− (c− s)Jβ(x, z), (3)

where

Jβ(x, z) = x+
1

(1− β)
E
[
(D(z)− x)+

]
.

In [20], it is shown that minimizing Jβ(x, z) w.r.t x gives
the conditional value at risk, CVaRβ(z), of the r.v. D(z):

CVaRβ(z) = min
x
Jβ(x, z).

The quantity CVaR is a well-known risk measure, which
is also referred to in the literature as the average value
at risk, mean excess loss, or mean shortfall, and is also
closely related to the the widely-used reliability metric
loss of load in expectation (LOLE) in the energy litera-
ture [17]. Third, the formulation can be easily extended
to include boundary constraints on generation and piece-
wise linear generation costs with minor modifications to
the results presented in this paper.

Note that the formulation 2 is similar to the price-
sensitive newsvendor model with emergency ordering,
where the excess demand is satisfied by the market at
a high but constant cost, m [18]; in fact, these are
equivalent where the decision variable z is the price p. In
the same spirit as [21] for the price-sensitive newsvendor
model with lost-sales (m = p), we obtain optimality
conditions for general demand distributions for which
the expected profit problem is concave (however, the
approach in [21] does not generalize to the formulation 2
because m 6= p). More specifically, we derive conditions
under which:

1) π(x, z) is jointly concave in (x, z).
2) π(x, z) is concave in z given x.
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Clearly, the conditions for 2 are more general, and
must hold for 1 to be satisfied. The conditions 1 and 2
are important for developing efficient demand response
algorithms. They also ensure that the optimal solutions
are non-trivial and useful in practice, and as shown
below, provide the criteria for evaluating the suitability
of various PDR schemes.

It is well known that π(x, z), the objective function
for problem P , is a concave function in x for given
z, and the solution of the newsvendor problem has the
form [19]:

x∗(z) = inf

{
x ≥ 0 : FD(z)(x) ≥ β =

m− c
m− s

}
, (4)

where FD(z)(.) is the distribution function for D(z),
and β is referred to as the critical newsvendor quantile.
But extending this result to obtain the joint concavity of
π(x, z) in (x, z) is not always guaranteed, as we will
see below. We first analyze the scheme P.Br.

Claim 1. Under scheme P.Br, π(x, z) is not jointly
concave in (x, z) but concave in z given x.

The proof of this claim is provided in the appendix,
where a counter example is provided which shows that
the objective is convex (rather than concave) in z after
substituting the optimal x∗(z) from Eq. (4) in formu-
lation 2. The intuition for this comes from the nature
of the Bernoulli r.v. that tends to increase the standard
deviation for small non-zero values of z (see Fig. 2
(a)). This is equivalent to increasing risk of undersupply
while decreasing mean demand and is undesirable. As
a result, the P.Br scheme has lower flexibility from the
perspective of our evaluation framework when the deci-
sion variables, i.e., the planned generation and the signal
magnitude must be optimized simultaneously. However,
for fixed x, we retrieve the concavity of the objective in
z (see Claim 1) so that the signal magnitude can always
be fine-tuned when planned generation has been fixed
(this is demonstrated in some of the simulation results
in Section V).

The analysis for this scheme indicates that a pre-
ferred curtailment scheme would allow for the mean
demand and the risk of undersupply to be simultaneously
reduced. Such a preferred design, which is illustrated
in Fig. 2(b) can motivate the design of other schemes
which have this desirable property, as shown below.

First we consider the class of probabilistic schemes
where the induced noise is independent of the signal
z, viz., D(z) = d(z, ε) where d(., .) is a deterministic
function and ε is a r.v. with density function h and
distribution function H respectively independent of z.
Examples of such schemes include the case when the in-

µ(z)

z0 1
0

µ(z)

σ(z)

Curtailment
(a) Bernoulli ON/OFF scheme (b) Example of preferred scheme

σ(z)

Fig. 2. Mean µ(z) and standard deviation σ(z) of the aggregate
demand D(z) as a function of the signal z for (a) the P.Br scheme, and
(b) a preferred scheme in our framework. Note that this is a schematic
and the y-axis is not drawn to scale.

duced probability distributions for the demand response
can be reduced to a standard form with location and
scale parameters. The scheme P.CU is such an example,
although the schemes P.Br and P.DU are not.

Claim 2. Suppose d(z, ε) is convex in z for all ε, and
E[d(z, ε)] is linear in z then π(x, z) is jointly concave
in (x, z).

Proof: From Theorem 2 in [20], we know that
Jβ(x, z) is jointly convex in (x, z) when d(z, ε) is
convex in z for every ε. Since E[D(z)] = Jβ(0, z)
and the latter is also convex. Hence, the linearity in the
expected demand is the minimum requirement that can
be imposed to guarantee the joint concavity of π(x, z).

Remark 3. Consider the case when D(z, ε) = A +
Bd(z), with A and B are positive independent r.v.’s with
E[A] = 0 and E[B] = 1. It is shown in [18], that if d(z)
is continuous and decreasing in z then π(x, z) is jointly
concave in (x, z). Their proof first shows concavity in
the vector (x, µ) = (x, d(z)), which is a special case of
Claim 2. From the 1-to-1 mapping between the expected
demand, d(z), and z, they recover the result for (x, z).

The above remark has an implication that it is suffices
to impose the conditions of Claim 2 on the net signal,
and transform it to the signal space, z, with a one to one
correspondence.

Now consider the most general case of schemes in
which the noise in the demand response also depends on
the signal z. Here, general second-order optimality con-
ditions can be derived when the signal z is continuous,
however, it is often easier to analyze these schemes on
a case-by-case basis based on the structural properties
of individual schemes. This is because the conditions
involve the derivatives of the density function and the
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distribution function of D(z) which are convolution of
the respective load responses of the individual customers,
and are usually hard to obtain in closed form. However,
depending on the structural properties of the scheme, it
may be possible to perform these convolution operations
for various sub-collections of the customer loads, in
order to carry out the analysis (e.g., Claim 1 is an
example of such an analysis). Here, we provide the
analysis for scheme P.DU under two limiting conditions:

Claim 4. Under the scheme P.DU, π(x, z) is jointly
concave in (x, z) for large N with i.i.d loads when µL

σL
<

12q2 + 12q − 1 or for large q.

Discussion: The main observation from all the above
analysis is as follows: demand response schemes should
be designed so that the control signal not only decreases
the mean load but also decreases the risk of undersup-
ply. Otherwise the usefulness of the demand response
scheme is undermined, both at the level of the individual
customer who is unsure of planning specific activities in
the light of control actions, and more so at level of the
aggregate customer population, where the specification
of the planned generation becomes more difficult. This
observation is particularly crucial for PDR schemes
which are specifically designed to induce uncertainty in
the demand response.

Note that probabilistic schemes are not beneficial
for deterministic loads as they increase the variance of
the demand. In fact, no demand response scheme is
beneficial because one can use planned generation for
matching these loads quite accurately unless there is an
unforeseen supply shortfall. On the other hand, highly
variable loads (e.g., AC loads during high-temperature
weather conditions) are good candidates for the imple-
mentation of PDR schemes.

A. Multiple Load Classes

All controllable loads of a customer have been as-
sumed to get the same curtailment signal. The program
operator may however choose to segment the customer
base into load classes, for instance, based on similar
load consumption patterns. Members of a class would
then get the same signal, but the operator could choose
to send different value to different classes. Suppose
aggregate load of each class, i, is denoted by Di(zi)
where i ∈ {1, ...,M}. The aggregate load faced by
the program operator is D(z) =

∑M
i=1Di(zi) where

z which is a vector of the signals zi ∀i. This seg-
mentation can help the program operator gets higher
profits by jointly managing all load classes together than
separately. The risk of undersupply is also lowered with

aggregation. This is because LOLP or CVaR, our primary
risk objective, is subadditive [20], i.e., for any two r.v.’s
the CVAR of their sum is smaller than the sum of their
CVAR’s.

A relevant question here is whether each class is
less curtailed on average, when the class are optimized
together rather than separately. We address this question
in a special case.

Claim 5. Consider an aggregation of independent load
classes each of which is normally distributed with an
affine mean µi(zi) and a convex standard deviation
σi(zi). If the program operator jointly optimizes formu-
lation 2 with all the load classes together, each class
is curtailed by a smaller magnitude than if they are
optimized separately.

The concept of multiple load classes can be extended
to multiple contract classes. Customers may chose to
sign onto different contract classes depending on their
willingness to undergo higher curtailment magnitudes
in return for higher economic participation incentives.
Extending our analysis to optimally price such portfolios
of contract classes is of future interest.

IV. MULTI-PERIOD DEMAND MANAGEMENT

Multi-period model frameworks capture constraints
and behaviors that apply over multiple periods or vary
over time including certain load characteristics or ramp
constraints. There are some important multi-period inter-
actions that need to be modeled in the context of PDR
schemes. Foremost are the issues of customer satisfaction
with respect to demand management across time. Sample
paths where a customer encounters significant discomfort
due to repeated curtailment (e.g., a long run of 0’s from
the P.Br scheme) can be realized under this scheme.
This may lead to such customers perceiving themselves
as being disproportionately penalized, and as a result,
scaling down or opting out of the demand response
program.

Two approaches can be pursued to rectify this situa-
tion. First, a customer-specific service constraint could
be imposed on the program operator’s signal z decision
problem. For instance, one may wish to minimize the
probability that the ratio of the non-curtailed load to
the maximum load requested by each household over a
longer duration, say a day, exceeds a specified bound,
such as P (

∑T
t=1 Lt(zt) ≥ α

∑T
t=1 L

max
t ) ≥ 1 − ε,

where the service level α is offered to the consumer
with probability (1 − ε). In another instance, one may
express a similar constraint by just limiting the signaling
capability without monitoring each household, e.g., for

7



the scheme P.CU, satisfy P (
∑T
t=1(1 − zt + ztXt) ≥

αT ) ≥ 1− ε or E[
∑T
t=1(1− zt + ztXt)] ≥ αT . These

types of service measures are (1) hard for the utility to
monitor, (2) not transparent from the perspective of a
consumer (i.e., unverifiable from an electricity bill), (3)
easy to game by a consumer, and (4) computationally
intensive on the utility as there can be a constraint for
each household or load class that must be guaranteed.

The second, and preferred, approach is to impose a
customer satisfaction rule that is based on the realizations
of the uncertainty at each household. An implementation
of this could allow smart meters to temporarily opt
out of the program for one or more period(s) if a
multi-period service level constraint gets violated. In
scheme P.Br, it can be as simple as stipulating that
there will be no ` successive periods of curtailment.
For schemes P.DU and P.CU, the customer could opt-
out if

∑T
t=1(1 − zt + ztX

ω
t ) > αT for some chosen

value for α where the ω represents the realization of
the r.v.s in successive periods. These transparent service
measures are more attractive because the program opera-
tor’s signal-selection task is simplified: one needs to only
statistically estimate the distribution of the number of
people opting out of the demand response scheme at any
specific time from the history of signals, and incorporate
this information in the decision problem.

Consider a PDR scheme implemented for a population
of N i.i.d. loads, where O customers have opted out
in the current epoch. Then, for the current period,
D(z) =

∑O
k=1 Lk +

∑N−O
k=1 Lk(zk). Using the same

single-period optimization formulation, the program op-
erator would thus send a stronger signal to the remaining
(N − O) users in the program in this epoch to achieve
the same response as when there is no opt-out strategy.
The realization of the r.v. O depends on the history of the
signals. But because O << (N−O), the r.v. D(z) is well
approximated by replacing O with E[O], which is easy
to estimate. For example, in scheme P.Br with the pro-
vision that customers with ` successive curtailments opt
out, E[O] = Π`

τ=1zt−τN . And for scheme P.CU where
the fairness criterion is set up as

∑T
t=1(1−zt+ztXω

t ) >

αT , E[O] = P (
∑T
t=1(1− zt + ztXt) ≤ αT )N .

Observe that the carefully chosen customer fatigue
constraint resulted in only very few people having bad
sample paths, and a complex multi-period problem was
reduced to an enhanced but easily solvable single period
problem. This can be generalized further with a new
participation map ξk(z) of each for customer k in each
epoch. The operator observes the k−th load response as
the composite r.v. Lk(ξk(z)). The participation (random)
map ξk is the identity map (ξk(z) = z) in most instances,

but in rare instances may modify z: as a function of
the complete sequence of prior curtailment signals, the
service level guarantees or other contractually agreed-
to conditions, the no-curtailment value (ξk(z) = 1);
or, the map ξk may also be used to model any incen-
tives/penalties that discourage serial opt-outs for other
reasons by setting ξk(z) < z. The generalization of
ξk therefore encapsulates a broad set of multi-period
behaviors in the PDR scheme. A detailed treatment of
how it may be estimated and used in the context of multi-
period models is of further research interest.

V. SIMULATION CASE STUDY

This section describes a simulation case study of PDR
schemes being used with thermostatically controlled
loads (TCLs), which are considered suitable for demand
response because they provide the ability to shift elec-
tricity consumption in time due to thermal capacitance
effects [1]. The simulations we present consider a setting
where a utility manages a heterogeneous population of
residential air-conditioning (AC) load, but the method
easily extends to other TCL categories such as electric
water heaters and refrigerators.

A. Simulation Setting

We study the operation of N = 1000 ACs over a
typical warm day in Southern California: Fig. 3 plots
the ambient temperature as a function of the hour-of-day.
We compare two PDR schemes P.Br and P.CU against a
baseline scheme with no signal-based demand response.
Under each scheme, the utility operates using a two-
time-scale decision making process. It first solves hourly
planning problems at the beginning of each hour to
decide the next hour’s optimal planned power generation
level x∗hourkW. The second process operates every five
minutes, where the utility runs demand matching opera-
tions. For the baseline, this leads to any excess demand
being purchased from the spot market (ancillary services
such as regulation and reserve including spinning and
non-spinning sources) at mt prices, whose values over
time is plotted in Fig. 3 on the secondary axis. Under
either PDR scheme, demand matching also takes advan-
tage of the DR capability by deciding the optimal signal
z∗t to modulate the demand itself.

The joint optimization problem P from Section III is
used for both the hourly planning and the five-minute
signaling. The baseline scheme solves the planning
problem with a no-curtailment demand D(z) model.
Under the PDR schemes, the planning solves a joint
optimization problem to determine (x∗hour, z

∗
hour), and

the x∗hour is subsequently the fixed power level for the
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Fig. 3. Ambient temperature and spot market prices vs. time of day.

rest of the hour. Note that the planning problem sets
z∗hour = 0 for scheme P.Br, i.e. assumes no curtailment,
which is appropriate in light of Claim 1 and Fig. 2.
Demand matching operations under the PDR schemes
modulates the suggested optimal signal z∗hour by solving
the same optimization problem every 5 min for optimal
zt with the fixed planned power generation level x∗hour.
With these assumptions, the planning and signaling
problems are convex for all schemes, and can be solved
efficiently. The input parameters of the optimization
problem P are chosen to fall within the typical ranges
observed in CAISO [22], [23]. The cost of planned
generation is c = 8¢/kWh, the price of electricity is
p = 12¢/kWh and the price of unused generation treated
as the savings from unused fuel is s = 2¢/kWh. The
hourly planning problems use a blended average spot-
market cost mhour = 1

12

∑
t∈hourmt.

B. Load Model and Forecasting

Accurate modeling and forecasting of heterogeneous
TCL loads by using only aggregate easily-observable
measurements has been recently proposed [11], [14]
for demand response models. While similar methods
are of high interest in implementing PDR schemes, our
focus here is primarily in emphasizing the benefits of
the proposed evaluation framework proposed. We will
therefore assume that the utility has perfect knowledge
of the individual TCL load at any time t to obtain
the aggregate load distribution Dt(zt) and optimize
for the DR signal zt. The dynamics of each TCL is
modeled with the following commonly used ([7], [9])
discrete time state-update equations (We set the time
discretization h to observe the thermodynamic evolution

at 5 minutes, though this can be chosen to be finer than
the demand-signaling interval):

θk,t = akθk,t−1 + (1− ak)(θambk,t−1 − qk,t−1RkPk(zt−1))

+ εk,t−1, and (5a)

qk,t =





0, θk,t < θ−k = θsetk −
δk
2

1, θk,t > θ+k = θsetk + δk
2

qk,t−1 otherwise.
(5b)

Here, at time t and for the k−th device, θk,t denotes
the actual temperature in the house, θambk,t the ambient
temperature and θsetk,t the desired (or set) temperature.
The dimensionless parameter ak = e−h/CkRk , where
Ck and Rk are respectively the thermal capacitance and
resistance. The energy transfer (or usage) rate Pk to oper-
ate the TCL is typically a positive constant equivalent to
the device’s power rating. For PDR schemes, we modify
this to a r.v. Pk(z) that depends on the real-time signal
z. In particular, in the scheme P.Br, Pk(z) = IkPk,
where Ik is 1 with probability 1 − z and 0 otherwise,
and in the scheme P.CU, Pk(z) = (1 − z + zXk)Pk
where Xk ∼ U(0, 1). These simulations do not model
the opt-out possibilities discussed in Section IV. The
noise process εk,t models the heat gain or loss that is not
explicitly modeled, e.g. due to the opening and closing of
doors, or the operation of other loads, or changes in the
number of people within the house. We assume εk,t ∼
Normal(0, hσ2). The TCL control qk,t switches the k−th
thermostat on or off at time t governed by Eq. (5b),
and depends on the width of the dead band δk around
the set point θsetk,t . The parameters of the heterogenous
TCL population are sampled uniformly from the range
of parameter values in Table I. Communications delays

Parameter Definition Value*
θset Temperature set point 20–28oC
δ Dead-band width 0.75–1.5oC
R Thermal resistance 1.5–2.5oC/kW
P Energy transfer rate 10–18kW
η Load efficiency 2.5
σ Standard deviation of ε 0.01-0.02oCs−

1
2

TABLE I
AIR CONDITIONER PARAMETERS.

*Values are for a 250m2 house adapted from [14]

usually result in households observing the latest signal zt
in a staggered fashion over the next 5 minutes, and this
indeed also helps avoid synchronization of the load re-
sponses. We simulate this by assigning a delay factor λk
to the k−th device sampled uniformly over [0, 1]. Each
AC’s load response at time t is then a combination of
the responses to the earlier and current period’s signals:
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Scheme

Total Total Total Total
Profit Energy Planned Reserve

($) Consumed Generation (kWh)(kWh) (kWh)

A
ll

da
y

P.CU 788.5 20,853 21,180 236
(1.3) (12.8) (10.2) (5.1)

P.Br 763.5 20,679 21,043 281.2
(1.1) (16.6) (11) (6.6)

Baseline 486.6 20,935 21,043 773.4
(6.6) (13.7) (11) (9.9)

Pe
ak

*

P.CU 388.9 10,154 10,365 6.7
(0.8) (6.4) (5.1) (0.5)

P.Br 371 9,994 10,280 17
(1.0) (11.9) (5.7) (2)

Baseline 187.7 10,145 10,280 229.2
(6.6) (8.4) (5.7) (7.6)

TABLE II
MAIN RESULTS

Performance averaged over 20 instances (with standard error)

Lk,t(zt) = 1
ηk

[λkqk,t−1Pk(zt−1)+(1− λk)qk,tPk(zt)],
where ηk is the load efficiency parameter. The total
power Dt(zt) for the TCL load population is the cor-
responding sum over the individual loads.

C. Results

The main results described in Table V-C are obtained
by averaging over 20 day-long sample paths (after
stabilization). The upper half of the table summarizes
the results for the entire day, while the bottom half
summarizes it for the duration of the peak period, from
11:00AM through 3:00PM, during which the ambient
temperatures were greater than 32oC. The total profit
for the utility over a day, which is the objective for our
evaluation framework, improves by 62% and 57% for
P.CU and P.Br respectively over the baseline scheme,
and by 107% and 97% respectively during the peak
period. These savings are in part are due to the decrease
in the reserve requirements by 69% and 64% respec-
tively over the baseline scheme, and by 97% and 92%
respectively during the peak periods. Observe also that
the standard errors of the total profit and total reserve are
significantly lower for the probabilistic schemes over the
baseline.

The improved performance of the P.CU relative to
the P.Br scheme (both in absolute numbers and in the
standard errors) is because the former is able to jointly
optimize the planned generation and signal magnitudes,
whereas in the latter, in the light of Claim 1 and Fig. 2,
the planned generation is the same as in the baseline

scheme. The smaller values for the standard errors, in
turn, leads to a slightly larger planned generation levels
(0.7% over a day and 0.8% during peak) that is offset
with a lower reserve requirement and hence a higher
profitability. The P.Br scheme does have a marginally
lower total energy consumption compared to the base-
line. This not the case for the P.CU scheme, especially
during peak hours, because peak shaving is not its
primary objective, but rather is achieved by the frame-
work as a trade-off in improving overall profitability.
Nevertheless, both probabilistic schemes are seen to be
highly promising in terms of their benefits: significantly
improved profitability by properly managing the reserve
required and minimizing its variability.
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Fig. 4. Total power consumed by TCL population

Fig. 4 plots the total power consumed on a 5-minute
time scale throughout the day. We observe a stepwise
behavior of the total power consumption for the prob-
abilistic schemes throughout the day, pronounced when
the ambient temperatures are above the TCL set-points.
This is the combined effect of the hourly planning cycle
that fixes the hourly delivered power to x∗hour, and
the demand modulation via signals zt. Under the PDR
schemes, the hourly scheduled power is set to be in the
range of power consumption expected in the hour (with
signaling for P.CU and without for P.Br), and signals zt
manage to keep consumption below this level throughout
the hour. An interesting side-effect is noticedwhen the
ambient temperatures are rising: the power consumed is
higher under PDR schemes compared to the baseline for
the first part of the hour. This is because the curtailment
signal zt is low in this part of the hour because of the gap
between base load (same as baseline) and planned level
x∗hour, and so ACs that were curtailed in the earlier
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periods are recovering to cool the households in the
absence of a curtailment signal for the beginning of the
hour.
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Fig. 5. Average household temperature at peak period

A higher fraction of the ACs are on (i.e. have a
qk,t > 0 in (5b)) under the PDR schemes during peak
periods. This can be attributed to the load curtailments
in the DR schemes that effectively result in increasing
temperature in the households over the baseline. Fig. 5
shows that the (mean) temperature deviations (across
the TCL population) are at most 0.14oC and 0.29oC
for the P.CU and P.Br schemes respectively occurring
around the peak temperature hour of the day. Thus, the
discomfort experienced by the consumers under the PDR
schemes is very minimal. (The jagged patterns in the
results for the PDR schemes is due to chatter in the
TCL operation at the upper boundary of the dead-band,
in conjunction with the demand response. These can
be smoothed by introducing constraints on TCL control
operation.)

Finally, Fig. 6 shows the load curtailment effect of
the signals under the PDR schemes, plotting the average
fractional reduction in load vs the fraction of the day
when reduction of said magnitude were encountered.
There is little or no signaling over a large portion of
the day (>54%), and large signals are encountered over
proportionately smaller fractions of the overall day. Note
that P.CU curtails only up to half the base load.

VI. CONCLUSIONS

In this paper, we describe a new class of PDR
schemes that induce load randomization as part of the de-
mand response, and provide three examples of such PDR
schemes. We introduce a methodological framework to
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Fig. 6. Bar chart of the fraction of time against the mean depth of
curtailment in the two PDR schemes, corresponding to signal z.

implement and analyse PDR schemes, and obtain struc-
tural results within this framework to help judge their
suitability. In particular, using the proposed framework,
we show that one of the example PDR schemes (the
Bernoulli ON/OFF scheme, P.Br) that was previously
also implemented in a smart grid demonstration [13], has
certain limitations. The other two example PDR schemes
are free of these limitations within the framework,
and yet can be implemented with the same minimal
infrastructure, communication and control requirements
as the P.Br scheme. And finally, we provide a detailed
simulation case-study that illustrates the advantages of
PDR schemes for a realistic residential scenario.

Further theoretical analysis and simulation studies,
along with practical field experiments will be of con-
siderable interest for the development of PDR schemes
for the smart grid. Some other topics of future interest
concern the use of signaling to increase consumption to
accommodate increased availability of power, say due to
excess wind; and an in-depth analysis of how consumer
incentives, economic or other, can be incorporated into
the design of PDR schemes for increasing consumer
acceptance and program participation.

APPENDIX A
PROOF OF CLAIM 1

Proof: We prove the first part of the theorem by counterex-
ample. Suppose the loads, Lk, are i.i.d. random variables.By
design, the signal-induced uncertainties are i.i.d as well. Since
N the number of customers in each load class is large, from
the central limit theorem, the aggregate demand D(z) can be
approximated as a normal r.v. with mean µ(z) = NµL(1− z)
and variance σ2(z) = N [(1 − z)σ2

L + z(1 − z)µ2
L]. For a

normally distributed r.v., X ∼ N (µ, σ2),

CVaRX(β) = µ+ h(β)σ, (6)

where the function h(β) = (
√

2πexp(erf−1(2β − 1))2(1 −
β)−1 which depends only the distribution function for a stan-
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dard Normal r.v., N (0, 1). Substituting Eq. (6), the expected
profit reduces to:

π(x∗(z), z) = (p− c)µ(z)− (c− s)h(β)σ(z). (7)

It can be verified that σ(z) is a concave function because σ2(z)
is a concave function. This implies that π(x∗(z), z) is a convex
function of z (rather than concave as desired) and hence the
result.

To prove the second part of the theorem we perform the
second derivative test with respect to z. For this scheme since
E[D(z)] is linear, it suffices to show that g(z) := E[(D(z)−
x)+] is convex in z.

g(z) = E[(D(z)− x)+] =

∫ ∞
x

[
1− FD(z)(y)

]
dy, (8)

where FD(z)(.) is the distribution function of D(z) We want

to show that g′′(z) = −
∫∞
x

∂2FD(z)(y)

∂z2
dy ≥ 0.

FD(z)(x) = P

(
N∑
i=1

IiLi ≤ x

)

=

N∑
k=0

∑
jk∈Jk

zk(1− z)N−kFL̄jk
(x).

where Jk is the set of all possible (N −k) different loads that
are turned on. We represent the aggregate load that is turned
on by L̄jk for simplicity. Observe that when the loads are i.i.d
the second summation can be replaced by

(
N
k

)
.

∂FD(z)(x)

∂z
=

N∑
k=0

∑
jk∈Jk

zk−1(1− z)N−k−1[k −Nz]FL̄jk
(x)

=
1

1− z

N∑
i=1

[
P (Bi ≤ x)− P

(
N∑

k=1

IkLk ≤ x

)]

=

N∑
i=1

[P (Bi ≤ x)− P (Li +Bi)] ,

where Bi =
∑N

k=1
k 6=i

IkLk.

∂2FD(z)(x)

∂z2
=

N∑
k=0

∑
jk∈Jk

zk−2(1− z)N−k−2FL̄jk
(x) ∗

[
n(n− 1)z2 − 2k(N − 1)z + k(k − 1)

]
=

1

(1− z)2

∑
i 6=j

[
P

(
N∑

k=1

IkLk ≤ x

)
− P (Bi ≤ x)

−P (Bj ≤ x) + P (Ai,j ≤ x)

]
=
∑
i6=j

[
P (Li + Lj +Ai,j ≤ x) + P (Ai,j ≤ x)

−P (Li +Ai,j ≤ x)− P (Lj +Ai,j ≤ x)
]
,

where Ai,j =
∑N

k=1
k 6=i,j

IkLk.

Therefore, in order to show that g′′(z) ≥ 0, it suffices to

show the following that for any i, j

E[(Li + Lj +Ai,j − x)+]− E[(Li +Ai,j − x)+]

−E[(Lj +Ai,j − x)+] + E[(Ai,j − x)+] ≥ 0.

The transformation to the expectation from the distribution
function is similar to that used in Eq. (8). We will prove the
above equation for every realization of the r.v.’s and hence the
result will be true also in expectation. Consider a realization
of the r.v.’s for which we use the same notation for simplicity.
Without loss of generality, say, Li ≤ Lj . We also note that
all the r.v.’s are non-negative. Consider the following different
cases: (a) Ai,j ≤ x (b) Li +Ai,j ≤ x (c) Lj +Ai,j ≤ x and
(d) Li + Lj +Ai,j ≤ x, we can show that

(Li + Lj +Ai,j − x)+ − (Li +Ai,j − x)+

−(Lj +Ai,j − x)+ + (Ai,j − x)+ ≥ 0.

Since the above is true for every realization of the r.v.’s, it is
also true in expectation, and hence the proof.

APPENDIX B
PROOF OF CLAIM 4

Proof: For i.i.d. loads and large N , from the central
limit theorem, we have µ(z) = NµL

(
1− z

2q

)
and variance

σ2(z) = N
q2

[(
q − z

2

)2
σ2
L + (z+1)2−1

12
(µ2

L + σ2
L)
]
. We now

have to identify conditions when σ(z) is a convex function in
z. With these, using Eq. (7) for a normal distribution, we can
deduce that π(x, z) is jointly concave in (x, z).

Suppose h(z) =
√
f(z) and f(z) ≥ 0 ∀z then h(z) is

convex if and only if 2f ′′(z)f(z) > [f ′(z)]2. Translating these
conditions to the case when f(z) = σ2(z), we get

f ′(z) =
N

q2

[
−
(
q − z

2

)
σ2
L +

(z + 1)

6
(µ2

L + σ2
L)

]
,

f ′′(z) =
N

q2

[
1

2
σ2
L +

(z + 1)

6
(µ2

L + σ2
L)

]
,

and finally simplifying, we get 2f ′′(z)f(z)− [f ′(z)]2 > 0 if
and only if σ2(12q2 +12q−1)−µ2 > 0. This proves the first
part of the result.

For large q, scheme 2 is a special case of scheme 3, where
we show that the signal can be separated from the noise using
the U [0, 1] distribution. This result then follows from Claim 2.

APPENDIX C
PROOF OF CLAIM 5

Proof: From Eq. (6) and Eq. (7), we know that

π(x∗(z), z) = (p− c)

[
M∑
i=1

µi(zi)

]
− (c− s)h(β)σ(z), (9)

where σ2(z) =
∑

i σ
2(zi). The first order conditions with an

affine mean simplifies to

σi(zi)

σ(z)

∂σi(zi)

∂zi
=

(p− c)bi
(c− s)h(β)

, ∀i = 1, ...,M,

where µi(zi) = ai+biz. We compare the solution to the above
equations to the case when σ(z) = σ(zi). The difference is in

12



the multiplier to the partial derivative which happen to be less
than 1. With each σi(zi) being convex, it is easy to deduce
by plotting the σi’s and identifying the optima that each class
i gets curtailed by a smaller amount when optimized together
than separately.
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